Agilent ICP-MS ジャーナル

2010年5月-第42号

本号の内容

- 2-3 Agilent 7700x と HMI を用いた簡単で信頼性の高い EPA 6020A 分析
- 4-5 ユーザー記事: HPLC-ICP-MS による生物学サンプル中 PBDE の スクリーニング
- 6 新しい Agilent GC-ICP-MS インターフェースの紹介
- 7 GC-ICP-MS による高温模擬蒸留
- 8 4000 台目の ICP-MS を出荷、最新 ICP-MS 文献

Agilent 7700x と HMI を 用いた簡単で信頼性の 高い EPA 6020A 分析

Steve Wilbur

ICP-MS アプリケーションスペシャリスト アジレント・テクノロジー

EPA メソッド 6020A は、複雑で可変的 な幅広い環境サンプルに含まれる微量金 属の分析に適用されます。こうした分析で は、マトリックス組成や濃度がまったく未 知のケースもあり、干渉のない分析結果が 求められるうえに、厳しい時間的制約があ ることもしばしばです。こうしたニーズに 応えるためには、サンプルの種類やマト リックスにかかわらず、メソッドを簡単で 正確、かつ堅牢にする必要があります。 Agilent 7700x ICP-MS は、2 つの独自 技術により、この基準をクリアしています。 1つ目は、アジレントが特許を保有する高 マトリクス導入 (HMI) システムです。こ れにより、測定可能なサンプル中のマトリ クス濃度が%レベルにまで拡がり、イオン 抑制やシグナルドリフトといったマトリッ クス効果が大幅に低減されます。2つ目は ヘリウム (He) コリジョンモードです。こ れにより、あらゆるマトリックスですべて の多原子イオン干渉を除去します。サンプ ルやマトリックスに固有の最適化は必要 ありません。他社のコリジョンセルやリア クションセルモードでは、こうした干渉除 去は不可能です。

7700x のパフォーマンステスト

EPA 6020A の要件に従って、水と土壌、 堆積物の認証標準物質 (CRM) および海 水からなる一般的な高マトリックスサンプ ルを、15 時間、156 サンプルのシーケン スで分析しました。規定されているすべて の QA/QC 基準を遵守しました。QC エ ラーは生じませんでした。7700x をロバス

質量	元素	モード	MDL (µg/L)
9	Be	ノーガス	0.019
23	Na	He	2.134
24	Mg	He	0.582
27	AI	He	0.214
39	К	He	1.873
44	Ca	He	3.171
51	V	He	0.007
52	Cr	He	0.012
55	Mn	He	0.012
56	Fe	He	0.157
59	Co	He	0.004
60	Ni	He	0.011
63	Cu	He	0.012
66	Zn	He	0.028
75	As	He	0.013
78	Se	He	0.034
95	Мо	ノーガス	0.016
107	Ag	ノーガス	0.007
111	Cd	ノーガス	0.009
121	Sb	ノーガス	0.008
137	Ba	ノーガス	0.015
201	Hg	ノーガス	0.005
205	TI	ノーガス	0.005
208	Pb	ノーガス	0.005
232	Th	ノーガス	0.009
238	U	ノーガス	0.004

表 1. EPA 6020A 元素における 3 回繰り返し MDL とコリジョンセルモード

トプラズマ条件 (CeO+/Ce+ < 1 %) に設 定し、HMI を中レベルエアロゾル希釈 (キャリアガス 0.6 L/min、希釈ガス 0.4 L/min) に設定しました。多原子イオン干 渉の影響を受ける可能性のあるすべての 元素について、He モードを使用しました。 多原子イオン干渉の影響を受けない元素 は、ノーガスモードで分析しました。干渉 補正式は使用しませんでした。He モード では、セル生成反応プロダクトイオンの使 用や代替同位体の測定が必要ないため、す べての元素がもっともアバンダンスの高い 同位体で直接分析されます。初期較正の 直後に、低濃度標準物質の7回繰り返し 分析をもとにして、メソッド検出下限 (MDL)を算出しました(表 1)。この値は 「実現しうる最高の」MDLではなく、複雑 な未知サンプルを迅速かつ正確に測定す るための条件下で、実際に得られた検出下 限を示しています。

CRM の平均回収率を表 2 に示していま す。これらのサンプルを 15 時間にわたっ て繰り返し分析しました。分析対象物の濃 度は ppb 以下から数千 ppm まで、TDS は % レベルまでにわたっています。

長期安定性

内部標準回収率は、高マトリックスサンプ ルのシグナル抑制を示すもので、長期安定 性の指標にもなります。

メソッド 6020A では、すべてのサンプル の内部標準回収率が 70 % を超えること が求められています。この基準に満たない 場合、サンプルを希釈または再分析する必 要があります。図 1 に、シーケンス全体に おける内部標準回収率を示しています。 70 % の基準に満たないサンプルはありま せん。また、フラットな ISTD プロットは、 これらの高マトリックスサンプルを 15 時 間にわたって継続的に分析しても、長期的 なシグナルドリフトがほぼ生じないことを 示しています。

図 1. 156 回の分析、14.8 時間における ISTD 安定性。EPA 6020A の管理下限は 70 % です (下の赤い破線)。スペースの制約上、すべてのサンプル名は記載 していません。

	NIST	NIST	河口堆積物	河川堆積物	河川堆積物	土壌	土壌
	1643e	1643e (10x)	(10x)	"A" (10x)	"B" (10x)	"A" (10x)	"B" (10x)
9 Be	107.6%	106.6%	95.8%				
23 Na	94.9%	92.9%	96.7%		102.8%	95.0%	91.9%
24 Mg	101.5%	91.7%	101.0%	97.8%	102.2%	99.5%	96.4%
27 AI	103.9%	105.9%	99.6%	100.8%	101.8%	98.0%	96.1%
39 K	99.7%	88.5%	100.5%	99.3%	102.8%	97.8%	95.5%
44 Ca	101.9%	100.1%	97.3%	100.1%	97.7%	97.2%	96.7%
51 V	102.3%	100.0%	97.8%	99.8%	97.3%	99.3%	96.8%
52 Cr	103.5%	102.1%	96.5%	102.7%	101.8%		94.3%
55 Mn	101.4%	98.5%	104.2%	105.9%	104.5%	99.1%	98.5%
56 Fe	104.0%	108.8%	99.2%	101.1%	98.8%	97.8%	96.1%
59 Co	99.0%	96.7%	99.4%	112.4%	98.1%		99.4%
60 Ni	101.8%	100.7%	96.8%	101.2%	96.0%	96.0%	96.8%
63 Cu	100.5%	98.8%	94.8%	98.1%	94.6%	94.6%	100.4%
66 Zn	98.7%	101.8%	94.5%	105.1%	94.4%	96.2%	100.0%
75 As	101.0%	102.1%	99.9%	101.7%	100.0%	100.2%	99.3%
78 Se	94.9%	101.0%	99.2%		93.6%	93.8%	
95 Mo	107.3%	96.5%					
107 Ag	93.1%	91.3%					
111 Cd	99.2%	100.9%		99.6%	97.8%		96.8%
121 Sb	102.2%	99.7%		100.6%	100.0%	101.2%	101.8%
137 Ba	107.9%	99.8%		100.0%	107.9%	107.1%	105.5%
205 TI	95.5%	94.1%		88.0%	84.0%		
208 Pb	101.3%	104.6%	94.2%	107.4%	104.3%	102.1%	104.8%
232 Th			94.6%	98.4%	93.9%	96.5%	97.3%
238 U				97.1%	91.3%	94.1%	107.7%

表 2 認証標準水、土壌、堆積物の分析における精度 (回収率)。NIST 1643e は希釈および無希釈で分析しました。 この 2 種類の分析結果が良好に一致してい ることは、7700x の精度、感度、干渉除去性能が優れていることを示しています。 空欄は参照値が存在しないことを示しています。

結論

EPA メソッド 6020A は、クリーンな水か ら汚染の激しい土壌や汚泥までのサンプ ルに含まれる幅広い元素に適用されます。 そのため、メソッド 6020A を使用する受 託ラボは、1 回のシーケンスで分析するサ ンプルについて、組成や濃度などの詳細情 報を得られないこともあります。Agilent 7700x ICP-MS は、数多くの理由から、こ うした困難なアプリケーションの分析にき わめて適しているといえます。単一のセル ガスモード (He モード) により、濃度や組 成にかかわらず、すべてのサンプルを分析 できます。サンプルに関する情報をあらか じめ得ておく必要はありません。 内蔵の HMI により、サンプル前処理後に さらなる希釈を行わなくても、ほとんどの サンプルを分析できます。また、プラズマ の堅牢性が大幅に向上するため、内部標準 エラーが最小限に抑えられると同時に、次 回の較正を実施するまでに分析できるサ ンプルの数も増加します。こうした利点の すべてが、複雑な環境サンプルの簡単で高 速、かつ信頼性の高い分析につながります。

このアプリケーションの詳細については、 アジレントアプリケーションノート 5990-5514EN をご覧ください。 **7700x の詳細について**は、 アジレントの Web サイト (www.agilent.com/chem/jp)を ご覧ください。

HPLC-ICP-MS による 生体サンプル中の ポリ臭素化ジフェニル エーテルの スクリーニング

Katarzyna Bierla, Joanna Szpunar, Brice Bouyssiere

CNRS/UPPA, LCABIE, UMR Pau, France

はじめに

防火剤として用いられる合成有機化合物 の一種であるポリ臭素化ジフェニルエーテ ル (PBDE) は、環境への残留や生体内で の蓄積により、毒性を生じるおそれがある ことから、その測定技術が重要視されるよ うになっています。PBDE は 209 種類の 同族体が存在し、臭素化の数や位置がそ れぞれ異なりますが、その多くは不安定で、 環境中で脱臭素化される傾向があります。 PBDE の一般的な構造を図1に示します。

図 1. ポリ臭素化ジフェニルエーテルの一般的 な化学構造

ガスクロマトグラフィ (GC) は、一般的に 低分子量のPBDE (分子量約700まで) のルーチン分析に用いられますが、リテン ションタイムが長く、カラム内での分解が 生じるため、高分子量の同族体を分析す ることができません。そのため最近では、 代替手法として HPLC が使われるように なってきました。しかし、逆相 HPLC に よる分離では、PBDE を定量的に分離す るために大量の有機修飾剤が必要となる ほか、信頼性の高い検出手法がありませ ん。一方、ICP-MS は感度が高い、感度が 分子構造によらない、移動相が異なっても 容易にコントロールできるなどの利点を持 つため、HPLC でヘテロ原子含有化合物 を分析するのに適した検出テクニックとな ります。しかし、ICP-MS による臭素の検 出には、以下の2つの問題があります。1 つは第1イオン化ポテンシャルが比較的 高い(11.84 eV)ために感度が出にくいこ と、そしてもう1つは多原子イオン干渉の 問題です。

この研究の目的は、ラットの肝臓および糞 に含まれるデカブロモジフェニルエーテル [1]の代謝物を高速でスクリーニングする

それがある 用しました。なお、研究の初期段階では、
視されるよ マイクロボアカラム SB-C18 (Agilent 209 種類の ZORBAX: 150 x 0.5 mm、5 µm) と
Agilent 7500ce ICP MS を使用しました。

実験手法

使用装置

試薬および標準物質

Sigma-Aldrich (サンカンタン・ファラビ エ、フランス) 製の化学分析用グレードの 試薬と、Milli-Q システム (Millipore、ベッ ドフォード、マサチューセッツ州) で作成 した超純水 (18 M Ω cm) を使用しました。 PBDE 標準物質は、Wellington Laboratories (ゲルフ、オンタリオ州、カ ナダ) から入手しました。ただし、BDE-209 については、Sigma-Aldrich から購 入しました。

HPLC-ICP-MS メソッドを開発すること

です。高速周波数マッチング RF ジェネ

レータを備えた新しい ICP-MS 装置を検

証し、HPLC において PBDE 化合物を分

離する際に必要な、有機溶媒含有量の多い

高流量の移動相への適合性を調べました。

プラズマ周波数マッチング RF ジェネレー

タとオクタポールコリジョン/リアクショ

ンセル (ORS) を搭載した Agilent 7700x

ICP-MS と、Agilent 1200 LC と組み合

わせて使用しました。PBDE の分離には、

逆相カラム (Agilent ZORBAX Eclipse

XDB-C18: 4.6 x 50 mm、1.8 µm) を使

サンプル前処理

ラットの肝臓および糞のサンプルを採取 し、ホモジナイズしたのち、約1gを分取 しました。PBDEは次に述べる手順で抽出 しました。アセトニトリル 5-mL (肝臓の 場合)または10-mL (糞の場合)を用いて 各サンプルから3回抽出し、同量のアセト ニトリル:トルエン混合液(90:10、v/v) を用いてさらに3回抽出しました。抽出溶 液をすべてあわせ、№ で蒸発乾燥させた のち、残った物質をトルエン 1.5 mL に再 溶解しました。

分析手順

水 (A) とアセトニトリル (B) のグラジエ ントを用いて、12 分間のクロマトグラフィ で分離しました。サンプルの注入量は 10µLとしました。グラジエントプログラム は、次のとおりです。0~4分 (70 % B)、 4~8.5分 (90 % B)、8.5~11.5分 (95 % B)、11.5~12分 (70 % B)、移動相流量 は 1.5 mL/minとしました。モニターした 同位体は、⁷⁰Br と⁸¹Br です。⁷⁰Br/⁸¹Br 同位体比を最適化し、かつ最大の感度が 得られるように、コリジョンガス (ヘリウ ム)とキャリアガス (アルゴン)の流量を最 適化しました。最適な流量は、ヘリウムコ リジョンガスが2mL/min、アルゴンキャ リアガスが0.65 L/min でした。プラズマ RFは1550Wとしました。また、酸素ガ スを8%になるようにアルゴンキャリアガ スに添加しました。スプレーチャンバの温 度を-5°Cに設定しました。

結果と考察

HPLC-ICP-MS による PBDE 分析の 最適化

PBDE を逆相 HPLC で分離する場合に は、高濃度の有機修飾剤が必要となりま す。しかし、7500 シリーズ ICP-MS では、 流量 1 mL/min で有機修飾剤を導入する ことができません。そのため、マイクロボ アカラムを用いて、流量 50 µL/min で分 離しました。このシステムにより、臭素を 安定して検出できましたが、感度が水系の 場合よりも 1 桁ほど低くなり、PBDE 同 族体のうち 85 と 100、207 と 208 のベー スラインを分離できなくなりました。

2回目の実験では、分離能を高めるため に、1.8µm ビーズを用いた超高性能 HPLCを検証しました。これにより、分析 対象となるすべての PBDE をベースライ ンで分離できました。ただし、207と208 については、分子量が同じで、構造の違い がごくわずかであるため、ベースラインで 分離できませんでした。

内径 4.6 mm カラムを移動相流量 1.5 mL/min で使用し、アセトニトリル 70% 以上を含む移動相を用いた場合は、ほぼ満 足のいく分離結果が得られました。しかし、 この条件では、7500 ICP-MS のプラズマ を維持できませんでした。そのため、そう した溶液に対する耐性を備えた、7700x ICP-MS (高速周波数マッチング RF ジェ ネレータ搭載)を用いました。標準的なサ ンプル導入システム (Meinhard ネブライ ザ)と-5°Cに冷却したダブルパス Scott スプレーチャンバを用いた場合は、アセト ニトリルを 1.5 mL/min で 7700x のプラ ズマに直接吸引しても、プラズマの安定性 に影響は出ませんでした。この条件で得ら れた PBDE 標準物質混合物のクロマトグ ラムを図2に示します。

分析性能の指標

0、35、70、80、95 % v/v のアセトニト リルを含む移動相を用いた場合の、フロー インジェクション法 で得られた Br 検量 線(NaBr 溶液から調製)の傾きを比較し、 アセトニトリル濃度が感度に与える影響 を調べました。 ブランクの 3σ で算出した検出下限は、そ れぞれ 4、16、18、18、16 ng/mL でし た。アセトニトリルを加えることにより、感 度が 4 分の 1 まで低下しましたが、この 低下はアセトニトリル濃度が 0~35% の 間で生じました。そのため、主に定量に用 いられる 35% 以上のアセトニトリル濃度 では、感度はほぼ一定でした。

実際の分離では、アセトニトリル35%以上ですべての分析対象化合物が溶出するため、検出下限は悪化しませんでした。また、標準物質中の目的成分の濃度の不確定性も考慮に入れると、検出下限はすべての成分において約20 ng/mL (Br)となりました。

生体サンプル中の PBDE の定量

このメソッドを、デカブロモジフェニルエー テル (bis (ペンタブロモフェニル) エーテ ル、BDE-209)の代謝物の定量に適用し ました。肝臓サンプルの代表的な HPLC-ICP-MS クロマトグラム例を図 3 に示し ます。デカブロモジフェニルエーテルの代謝 物は検出されず、デカブロモジフェニル エーテルのみが検出されました。この化合 物は、標準添加 (3 レベルの添加)で定量 でき、肝臓および糞サンプルの抽出物にお ける測定濃度 (n=3)は、それぞれ 7.9 ± 0.2 および 14.1 ± 1.1 mg/mL (Br)でし た。3 回の繰り返し分析の精度は、肝臓サ ンプルで 6.8 %、糞サンプルで 6.9 % でした。

結論

高速周波数マッチング RF ジェネレータを 搭載した 7700x ICP-MS を使用すること で、最高 95% のアセトニトリルを含む HPLC 移動相を大流量 (1.5 mL/min) で 導入可能なことが実証されました。これに より、さらなる HPLC-ICP-MS アプリケー ションの可能性が期待できます。実際に本 研究においても、ラット代謝研究における デカブロモジフェニルエーテル (bis (ペン タブロモフェニル) エーテル) 代謝物のス クリーニングメソッドを開発できました。 本 HPLC-ICP-MS メソッドは、HPLC の 放射能検出に匹敵する検出方法であり、 生体サンプルに含まれる PBDE 代謝物の スクリーニングに用いられている他のメ ソッドに代わる手法となります。

図 2 PBDE 標準物質の HPLC-ICP-MS クロマトグラム; 1- BDE 47、2 - BDE 85、3 - BDE 100、4 - BDE 138、 5- BDE 155、6 - BDE 201、7 - BDE 206、8 - BDE 207 および 208、9- BDE 209、各 0.25 mg/mL

謝辞

サンプルを提供してくださった Anne Riu 氏、Laurent Debrauwer 氏、Daniel Zalko 氏 (INRA、UMR 1089、トゥールー ズ、フランス) に謝意を表します。

参考

1. http://en.wikipedia.org/wiki/ Decabromodiphenyl_ether#cite_ref EU2002_2-2

詳細

この記事の完全版は、JAAS; 2010, DOI: 10.1039/C000686F で読むことができま す。Royal Society of Chemistry (RSC) の許可を得て再掲載しています。

www.rsc.org/jaas

図 3. 肝臓サンプルの HPLC-ICP MS クロマトグラム。実線: サンプル; 破線: bis (ペンタブロモフェニル) エーテル 0.25 mg/mL を添加したサンプル

新発売 Agilent 7700 シリーズ ICP-MS 向け GC-ICP-MS インターフェースキット

田野島 三奈

ICP-MS プロダクトマーケティング、 アジレント・テクノロジー、東京

新発売のアジレント GC-ICP-MS インター フェースキット (G3158C) は、7700 シ リーズ ICP-MS と 7890A GC を連結し (図 1)、揮発性有機化合物および有機 金属化合物の分析で優れた性能を実現し ます。

7700 シリーズ向け GC-ICP-MS インター フェースは、以下のことを実現します。

- より簡単で迅速な ICP-MS との連結と 取り外し
- トーチ設置の堅牢性と再現性の向上により、長期安定性が向上
- 安定した位置合わせトーチインジェクタ により、設置と設定が簡単になり、最適 な性能を保証
- 完全不活性のSulfinert®スチール裏打ちトランスファーラインとインジェクタにより、GCオーブンからプラズマまで、コールドスポットなしで300°Cまでの加熱が可能
- 使用していないときにインターフェース を収納し、保護できる便利なドッキング ステーション (図 2) を付属

図 2. GC-ICP-MS インターフェースに付属の ドッキングステーション

こうした信頼性と使いやすさの向上に加え て、新しいインターフェースは、旧バージョ ンの長所も引き続き備えています。

• Hg、As、Se、ハロゲンなどの高イオン 化ポテンシャル元素で優れた感度を実現 する高温乾式プラズマ

図 1. Agilent 7700 シリーズ ICP-MS に連結された新 GC-ICP-MS インターフェースキット (G3158C)

- 硫黄およびリンのバックグラウンド干渉 がなく、原子量での微量測定が可能
- ICP インジェクタ先端に至るまで均一 な高温を維持し、インジェクタでの凝縮 に起因するピークテーリングや高沸点化 合物の損失を防止

有機スズ分析

有機スズ標準物質の混合物を分析し、新 インターフェースの分析性能を評価しまし た。GC と ICP-MS の動作条件を表1に 示しています。全測定時間はたったの12 分で、トリブチルスズ (TBT)の検出下限 は5.9 ppt でした (図3)。このデータは、 GC-ICP-MS が有機スズの高速、高感度分 析に対応できることを示しています。この 新インターフェースはそのほか、燃料中S の形態分析や、ポリ臭素化ジフェニルエー テル (PBDE)防火剤の分離など、困難な アプリケーションにも対応することができ ます。

GC 動作条件				
注入	1 µL			
カラム	HP-5 (長さ 30 m x 内径 0.32 mm x 膜厚 0.25 µm)			
オーブンプログラム	70 °C (1 分)、30 °C /min > 190 °C (0 分)、			
	15 °C /min > 270 °C (4 分) > 270°C (4 mins)			
キャリアガス	He、2 mL/min (コンスタントフロー)			
注入温度	290 °C			
トランスファーライン温度	250 °C			
ICP 注入温度	250 °C			
ICP-MS 動作条件				
RF パワー	1200 W			
サンプリング位置	8 mm			
キャリアガス	0.80 L/min			
補助ガス	1.50 L/min			

表 1. GC-ICP-MS を用いた有機スズ分離のメソッドパラメータ

図 3.10 ppb の有機スズ標準物質混合物 1 uL を注入して得られたクロマトグラム

GC-ICP-MS による 高温模擬蒸留

今後の展望

Steve Wilbur

ICP-MS アプリケーションスペシャリスト アジレント・テクノロジー

模擬蒸留 (SimDis) は、未処理の原料、中 間物質、最終製品の収量分布(沸点vs.量) を迅速に測定する目的で、石油精製業界 で広く用いられている手法です。炭素以外 の元素を同時に測定できる GC-ICP-MS を使えば、硫黄種の分布や濃度など、原料 品質に関する重要な情報を得ることがで きます。しかし、GC カラムアウトレット から ICP-MS へのトランスファーラインに ついては、沸点が 600 °C (> 1000 °F) を 超えることもある化合物を定量的に ICP プラズマに運べる性能が必要となり、技術 上の大きな問題となります。それを克服す るためには、優れた温度制御と不活性が求 められます。また、ICP-MS については、お もに硫黄に影響を与える一般的な干渉を コントロールする機能も求められます。

乾式プラズマを組み合わせて、プラズマま での全体を均一に加熱するトランスファー ラインと ICP インジェクタを用いれば、こ の2つの要件を解決することができます。 機能が拡張された新しい Agilent GC-ICP-MS インターフェースは、以下の独自 機能により、これらの要件に応えます。

- トランスファーラインと ICP インジェ クタの両方を、GC から個別に加熱およ び制御。
- トランスファーラインと ICP インジェ クタ全体が、不活性の高い Sulfinert® ステンレススチールにより裏打ちされて います。
- GCオーブン内にて、ICP-MSへ流れる アルゴンのメイクアップガスが、溶出中 の化合物の温度まで予備加熱されます。
- 加熱アルゴンをトランスファーラインに 高流速で流すことで、GC と ICP トー チの間で費やされる時間を 100 ミリ秒 未満にまで短縮し、溶出化合物とトラン スファーラインとの相互作用の可能性 を大幅に低減します。

図 1. マーカー炭水化物を示す沸点参照標準物質

図1では、C₉₀までの炭化水素標準物質 の炭素(赤は¹²C、緑は¹³C)の抽出イオン クロマトグラムを示しています。この抽出 イオンクロマトグラム中では、炭素番号 C₄₀~C₉₀までの沸点参照標準物質の各 ピークにそれぞれの番号がつけられてい ます。

図 2 は、ディーゼル標準物質中の NIST 2724B 硫黄のクロマトグラムを示してい ます。この新構成のシステムでは、単一の 検出器 (ICP-MS のみ)を用いて炭素と硫 黄の両方をモニタリングできることが示さ れています。 炭水化物成分を青の¹³C で、硫黄含有成 分を赤の³²S でプロットしています。

湿式プラズマを用いると、O2⁺ の強い干渉 が生じるため、³²S と他の元素を同時に測 定することはできません。

アジレントの GC インターフェースのみが、 こうした困難なアプリケーションに求めら れる高温、不活性、乾式プラズマ条件に対 応することができます。

図1. ディーゼル標準物質 NIST 2724B 硫黄における炭素および硫黄の抽出イオンクロマトグラム

4000 台目の ICP-MS を出荷

山田 知行

ICP-MS プロダクトマネージャー アジレント・テクノロジー、東京

Agilent 4500、7500、7700 シリーズ ICP-MS:アジ レントの化学分析事業部 (東京工場) では、これ までに 4000 台を超える ICP-MS を出荷してき ました。

1994 年の 4500 シリーズ ICP-MS 発売 以来、化学分析事業部 (東京工場) は、世 界中の 80 か国を超えるお客様に、総計 4000 台を超える、4500 シリーズ、7500 シリーズ、7700 シリーズシステムを出荷 してきました。アジレントが ICP-MS 開発 の最前線を走り続けられていられるのは、 アジレントを常に支え、ご協力いただき、 さまざまなフィードバックを与えてくださ るお客様のおかげです。お客様に深く感謝 いたします

アジレントの ICP-MS 関係者が一堂に会 し、東京工場からの最後の 7500 ICP-MS の出荷を見送りました。これ以降の生産は 7700 シリーズ ICP-MS に完全に移行し ました。

本文書に記載の情報は、予告なく変更されることが あります。また、発行時点で終了しているイベントや キャンペーンが含まれる場合があります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2010 Printed in Japan. May 28, 2010 5990-5807JAJP

Agilent ICP-MS 関連資料

最新の資料の閲覧、ダウンロードは、www.agilent.com/chem/jpの 「Library Information (ライブラリ情報)」から検索してください。

- アプリケーションノート: Simple, Reliable Analysis of High Matrix Samples According to US-EPA Method 6020A using the Agilent 7700x ICP-MS, 5990-5514EN
- アプリケーションノート: Maximizing Productivity in High Matrix Samples using the Agilent 7700x ICP-MS with ISIS Discrete Sampling, 5990-5437EN
- アプリケーションノート : Sensitive, High-Throughput Analysis of Lead in Whole Blood using the Agilent 7500cx ICP-MS with ISIS-DS, 5990-5416EN
- 技術概要: New Agilent GC-ICP-MS Interface-Fully Heated Interface for the 7890 GC & 7700 ICP-MS Allows Routine Analysis of High Boiling-Point Compounds, 5990-5798EN
- 技術概要: Maximizing ICP-MS Productivity for High Matrix Samples Using the 7700x with ISIS Discrete Sampling, 5990-5631EN
- 技術概要: Pharmaceutical Analysis by ICP-MS: New USP test for elemental impurities to provide better indication of potentially toxic contaminants, 5990-5427EN

以下のポスターも、オンラインで無料でご覧いただけます。ICP-MS 文献ライブラリの ポスターセクションからご覧いただくか、検索機能を用いてタイトルを検索してください。

- New Design of Ion Lens and Collision/Reaction Cell for ICP-MS: He Mode on the ORS3 for Effective Interference Removal in a Range of Complex Matrices (新設計の ICP-MS イオンレンズおよびコリジョン/リアクションセル:幅広い複雑なマ トリックスで効率よく干渉を除去する ORS3 の He モード)
- Introducing the New Agilent 7700 Series ICP-MS; Improved Performance for Speciated Analysis (新しい Agilent 7700 シリーズ ICP-MS の紹介:スペシエー ション分析の性能が向上)
- Meeting Current and Future Regulatory Requirements for Trace Metals in Drinking Water Using Simplified Helium Collision Mode ICP-MS (単純化したヘ リウムコリジョンモード ICP-MS により、飲料水中微量金属分析の現在および将来の ニーズに対応)
- Improving Collision Cell Efficiency for the Separation of Challenging Polyatomic Interferences (困難な多原子干渉の分離におけるコリジョンセル効率の 向上)
- Trace Level Analysis of V, As and Se Using He Cell Gas via Kinetic Energy Discrimination and Collisional Dissociation in Acidic Matrices (He セルガス、 動的エネルギー弁別、衝突解離による酸性マトリックス中 V、As、Se の微量レベル分析)
- Performance Evaluation of Helium Mode ICP-MS for High-matrix Sample Types in a High-throughput European Laboratory (ハイスループット欧州ラボで の高マトリックスサンプル分析におけるヘリウムモード ICP-MS の性能評価)
- Strategies for Increasing Effective Plasma Temperature and Improving Matrix Decomposition in ICP-MS (ICP-MS のプラズマ温度効率とマトリックス分解 の向上に向けた戦略)
- Combining Discrete Sampling with Helium Collision Mode for High Throughput ICP-MS Analysis of High Matrix Samples (高マトリックスサンプル のハイスループット ICP-MS 分析における離散サンプリングとヘリウムコリジョンモー ドの組み合わせ)

表紙写真: ICP-MS アプリケーションエンジニアの中野かずみ (東京) と ICP-MS アプリケーションケミストの Fred Fryer (オーストラリア/ニュージーランド担当)

Agilent ICP-MS ジャーナル編集者

Karen Morton、アジレント・テクノロジー e-mail: icpms@agilent.com

Agilent Technologies