Fast Screening and Identification of WADA Prohibited Anabolic Steroids in Urine by UHPLC/MS/MS

ASMS 2010

Jerry Zweigenbaum, Agilent Technologies, Wilmington, DE

Introduction

The World Anti-Doping Agency (WADA) lists 5 endogenous anabolic steroids, 20 of their isomers, and 41 exogenous anabolic steroids prohibited for use in sports. For these compounds a minimum required performance level (MRPL) of 10 and 2 ng/mL for some hormones must be achieved by any laboratory doing this analysis. In addition, WADA requires that when precursor/product transition ions are monitored in MS/MS that the ratios of those ions be within a specified tolerance for identification. The advantage of fast analysis of athletes for events such as the Olympics with no false negatives or positives is obvious. This study examines the feasibility of using UHPLC /MSMS for urine samples to meet the above criteria with a 4.2 minute analysis time.

Experimental

Configuration:

Agilent 1290-Bin Pump Model G4220A;

1290-ALS Model G4226A;

Sampler Thermostat;

1290-Column Compartment Model G1316C

Method Conditions:

Column: Zorbax Eclipse Plus C18 HD, 2.1 x 150m

(1.8µm), 40 °C, 0.5 ml∕min

Injection volume: 2 uL Autosampler temp: 4°C

Needle wash: Flushport (100% methanol), 5 seconds

Mobile phase: A = 0.1 % formic acid in water

B = Methanol

 Gradient (no split at MS):
 Time (min)
 %B

 0.00
 70

 3.0
 85

 3.5
 100

MS/MS <u>Agilent 6460 Triple Quadrupole</u>:

Dry Gas Temp: 200 °C
Dry Gas Flow rate: 8 L/min
Nebulizer: 35psi

V_{can}: 3000 V(pos)/2500(neg)

 Frag.:
 120V

 Skimmer:
 65V

 OCT1 RFVpp
 750V

 SGF
 11 L/min

 SGT
 275 °C

Nozzle Voltage 0 V(pos)/1000 V(neg)

Ion Source: ESI+Agilent Jet Stream

Scan Type: Dynamic MRM

Ion Mode: Positive/Negative switching (30 ms)

Cycle Time: 350 ms

Experimental

Compound Name	Prec Ion	MS1 Res	Prod Ion	MS2 Res	Frag (V)	CE (V)	Ret Time	R Windo
6B- Hydroxyfluoxymesterone 6B-	353.2	Unit	149.1	Unit	170	28	1.169083	0.48
Hydroxyfluoxymesterone 6Beta-	353.2	Unit	95.1	Unit	170	32	1.175783	0.48
Hydroxymethandienone	317.2	Unit	281.3	Unit	77	4	1.2765	0.433
6Beta- Hydroxymethandienone	317.2	Unit	147.1	Unit	77	20	1.277467	0.435
formebolone metabolite	347.2		281.3	Unit	113	20 8	1.29185	
ormebolone metabolite	347.2		147.1	Unit	113	20	1.2928	
Boldendione	285.2		147.1	Unit	116	20 8		
Boldendione	285.2		121.1	Unit	116	16	1.702917	
	265.2 271.2		213	Unit	140	10	1.8516	
Dehydroepiandrosterone Androstenediol	271.2 273.2		159	Unit	130	17		
							1.85595	
19-norandrostendione	273.2		109	Unit	152	25 25		
19-norandrostendione	273.2		83	Unit	152	25	1.8567	
Trenbolone	271.2		253.1	Unit	154	17	1.857067	
Frenbolone	271.2		199	Unit	154	21	1.857817	
Dehydroepiandrosterone	271.2		105	Unit	140	40	1.8582	
Epi-boldenone	287.2		121.1	Unit	95	20		
Boldenone	287.2		121	Unit	113	22		
Boldenone	287.2		135	Unit	113	10		
Fluoxymesterone	337.2	Unit	91	Unit	178	60	1.979833	0.49
Fluoxymesterone	337.2	Unit	131	Unit	178	33	1.98535	0.49
Oxandrolone	307.2	Unit	289.1	Unit	86	5	2.041983	0.56
Oxandrolone	307.2	Unit	271.1	Unit	86	9	2.042217	0.56
Nandrolone	275.2	Unit	109	Unit	150	25	2.066667	0.55
Nandrolone	275.2	Unit	79	Unit	150	49	2.0669	0.55
4-Androstenedione	287.2	Unit	109	Unit	147	22	2.119333	0.41
Androstenedione	287.2	Unit	109	Unit	154	25	2.119333	0.41
4-Androstenedione	287.2	Unit	97	Unit	147	22	2.119917	0.41
Androstenedione	287.2	Unit	97	Unit	154	21	2.119917	0.41
Metandienone	301.2	Unit	149	Unit	124	13	2.16945	0.50
Metandienone	301.2		121	Unit	124	25	2.16975	0.50
Gestrinone	309.2		241.2	Unit	137	20	2.17355	
Gestrinone	309.2		199.1	Unit	137	36	2.173833	
4-hydroxytestosterone	305.2		125.1	Unit	161	24	2.276417	
4-hydroxytestosterone	305.2		113.1	Unit	161			
Epi-boldenone	287.2		269.3	Unit	95	4	2.306067	
Epitestosterone	289.2		109	Unit	156	29		
Epitestosterone	289.2		97	Unit	156	25		
5a-dihydrotestosterone	200.2	Oille	91	Oille	100	20	Z.UZZUU	0.40
sulfate NEt2 salt	370.2	Unit	96.9	Unit	200	40	2.450217	0.40
methyltestosterone	303.2		109	Unit	156	29	2.6058	
Norethandrolone	303.2		109	Unit	154	30		
methyltestosterone	303.2		97	Unit	156		2.606433	
Methenolone	303.2		187	Unit	152		2.662283	
Methenolone	303.2		83	Unit	152	21	2.6642	
Testosterone	289.2		109	Unit	154		2.733483	
Testosterone	289.2		97	Unit	154	21		
Dihydrotestosterone	291.2		159	Unit	150	19		
Dihydrotestosterone	291.2		255.1	Unit	150		2.853367	
17a-methyl-1-testosterone	303.2		201.2	Unit	137		2.967317	
17a-methyl-1-testosterone	303.2		145.1	Unit	137	24	2.9679	
Norethandrolone	303.2		285.1	Unit	154		2.984017	
Mesterone	305.2		269	Unit	133		3.074933	
Mesterone Mesterone	305.2 305.2		2 69	Unit	133	29		
	305.2 329.3		95	Unit	204	29 45		
Stanazolol Stanazolol								
	329.3		81	Unit	204		3.080117	
Oxymetholone	333.2		43	Unit	150	35		
Oxymetholone	333.2	Unit	99	Unit	150	33	3.876267	0.3

Sample Preparation

Human Control (100 mL), spiked 10 mL, 2 each at 0 ng/mL, 1

ng/mL, 5 ng/mL, and 25 ng/mL.

SPE Cartridge: Agilent SampliQ C_8 6 mL, 500 mg Conditioning: 10 mL 60:40 ethylacetate:methanol

10 mL H_2 0

Add 10 mL urine sample under vacuum, take to dryness 5 min

Elute with 3 mL 80: 20 ethylacetate:methanol

Blow down gently with N_2 to 100 μ L and add 900 μ L H_2 O

Filter with 0.2 u PTFE 25 mm id membrane into 2.0 mL

autosampler vials

Results and Discussion

Chromatographic Results

The goal of this study is to show the feasibility of screening and confirming the World Anti-doping Agency (WADA) prohibited steroids in a rapid LC/MS/MS analysis. Fast separation is facilitated by the use of sub 2 micron particle size LC columns and an LC system that is both capable of high pressure and very low delay and dead volumes. Figure 1 shows the separation of 28 of the prohibited steroids and some of their metabolites. More would be included but the compounds are difficult to obtain and some are only available to WADA accredited laboratories. In addition, only steroids with non-saturated rings are ionized using electrospray and those with this chemical attribute are not included in this evaluation. Peaks are about 5 seconds at baseline and the unexpected dispersion is attributed to the hydrophobic nature of the compounds. The initial concentration of mobile phase of 65 % organic is selected because there was no gain in chromatographic resolution using a higher aqueous concentration. With 5 sec peaks a MS/MS cycle time of 500 ms or less is sufficient to obtain 10 points across a peak.

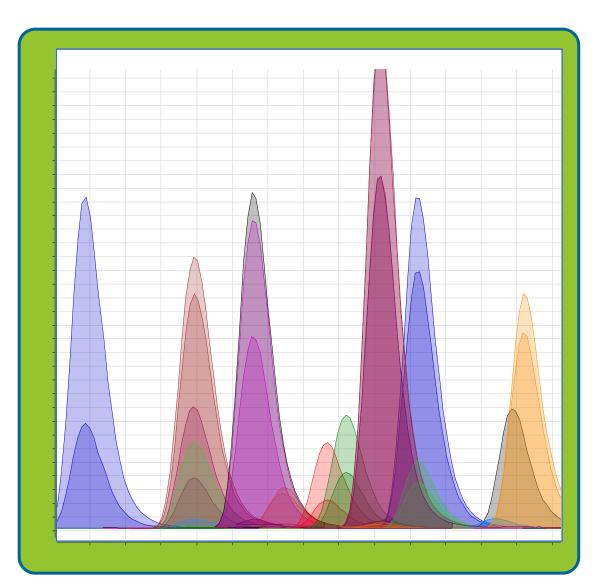


Figure 2. Region of separation where numerous transitions overlap. Dwell times are maximized by dynamic MRM with no degradation of peak integrity

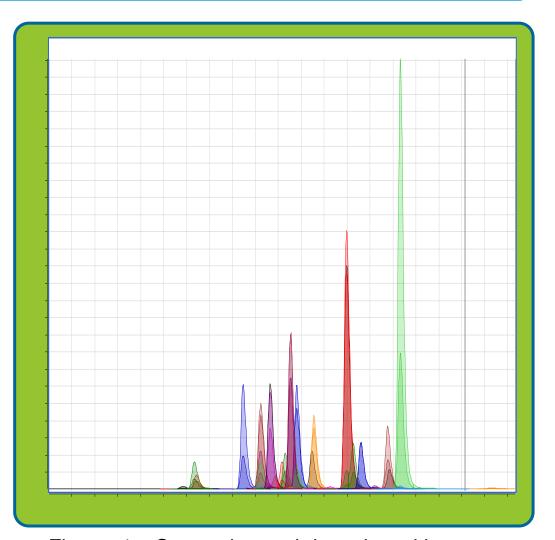


Figure 1. Separation and detection with two transitions each of 29 prohibited steroids in 4 min.

MS/MS Results

The necessary cycle time is obtained using Dynamic multireaction monitoring (MRM) where each transition is only collected in a retention time window centered at the elution time of that transition. Dwell times are managed automatically by the number of co-eluting transitions and the selected cycle time. For this analysis a peak width of 1-2 sec at baseline would be desirable and if this could be obtained a faster cycle time and shorter retention time windows would be used. Figure 2 shows a section of the where multiple transitions chromatogram Although dwell times are "dynamic" in this region, peak shapes and response are not affected. This demonstrates the power of the system (hardware, firmware, and software) working together to obtain high quality data. This extends the capability of LC/MS/MS in MRM mode to determine more transitions per unit time. Combining the high selectivity of MS/MS and the power of chromatography, coeluting compounds are separated by the MRM transitions as shown with epi-boldinone and epi-testosterone in Figure 3. In the same figure the chromatographic separation of boldinone and testosterone with their epi forms shows the extensive power of the hyphenated technology.

Results and Discussion

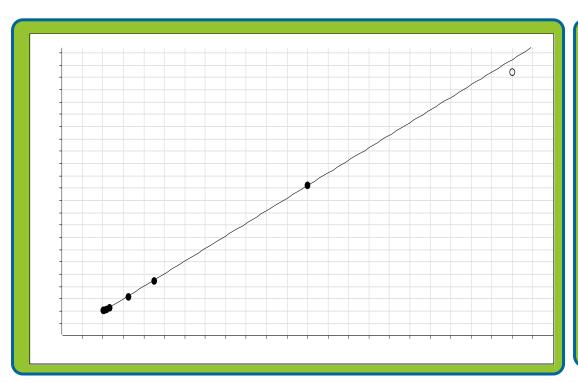


Figure 4. Calibration curve for boldenone showing that region of high transition overlap does not effect quantitative results.

Quantitative Results

Using a 70 % initial organic mobile phase and all other conditions the same, quantitative results are evaluated. Figure 4 shows the linearity of boldinone in the transition dense region of the chromatogram. Figure 5 shows that this compound cannot be confirmed at 0.1 ng/mL using the ratios of the two selected transitions. Results of 20 steroids spiked into control urine demonstrate that most can be recovered and detected at 1 ng/mL as shown for norandrone in Figure 6.

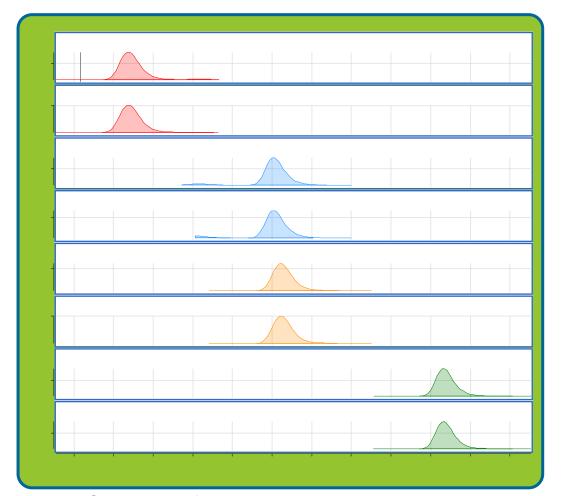


Figure 3. Separation of boldenone, epi-boldenone, testosterone and epi-testosterone, critical pairs that cannot be distinguished by MS/MS.

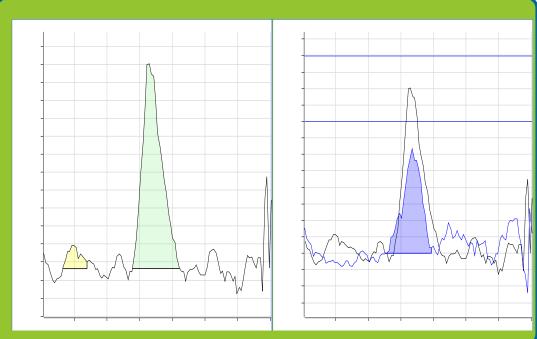


Figure 5. Quantifier and qualifier ion for boldenone at 0.1 ng/mL shows at this concentration the compound cannot be confirmed.

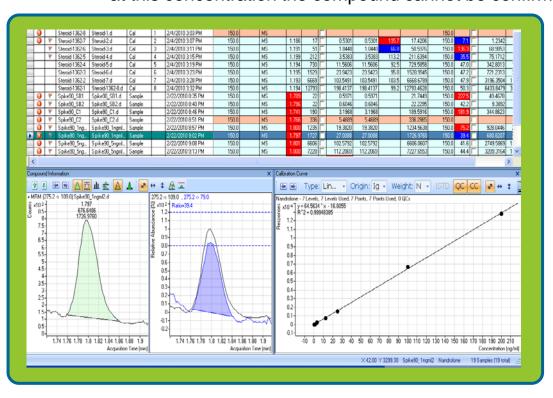


Figure 6. Norandrone spiked in urine at 1 ng/mL is both detected and confirmed with correct ion ratios of quantifier and qualifier and retention time match.

Conclusions

- The ability to separate many steroids in a short analysis time with both chromatography and MS/MS is shown
- Dynamic MRM provides the ability to determine more transitions per unit time while maintaining chromatographic and quantitative fidelity
- With a simple SPE procedure most of the steroids examined can be detected, quantified, and confirmed at the 1 ng/mL level
- Future work will examine if peaks on the order of 1 to 2 sec at baseline can be obtained with C8 or C3 columns
- Future work will examine if APCI might ionize steroids with all unsaturated rings like mesterolone and norandrosterone.