Comparison of Full Scan High Resolution MS and Triple Quadrupole SRM in **Quantitative Bioanalysis**

Bristol-Myers Squibb

INTRODUCTION

Triple quadrupole MS has been the workhorse for quantification of drugs and their metabolites in biological samples. Recently, there is a growing interest in the application of full scan high resolution MS (HRMS) to this area. Besides quantitative information, it also has the potential to provide additional information related drug metabolites or biomarkers. Before LC-HRMS can be fully integrated into quantitative bioanalysis, there is a need to build a knowledge base regarding the sensitivity, specificity, linearity, accuracy/precision and assay performance in the quantitation of drugs in biological matrices.

Herein, we present our evaluation and comparison of the performance of HRMS and triple quadrupole MS for the quantification of drugs in plasma.

Can high resolution MS-detection be used in quantitative bioanalysis?

- Triple quadrupole MS (SRM)
- Pros
- High degree of selectivity - Good sensitivity
- Longer duty cycle time
- Cons
- Time-consuming method development for SRM
- Sometimes compounds don't fragment or have not a specific tragment
- Detect only analytes included in SRM Cons
- Post acquisition data mining is not possible if the transitions are not present in the method file.

High resolution full scan MS detection • Pros

- High degree of mass resolving power
- High degree of mass accuracy (<5
- Generic method for all analytes
- Retrospective data analysis to look for metabolites, biomarkers, and endogenous components without sample re-injection
- Needs evaluation on method selectivity, sensitivity, linear dynamic range, ruggedness
- Significant increase in data storage and processing needs

METHOD

Sample Preparation

 Twenty-eight model drug compounds, prop buspirone, nefazodone, prednisolone and res compounds were selected due to their divers

 Human plasma samples was precipitated spiking with neat solutions of these compour injected onto LC-MS systems. For compound labeled (SIL) analogs were available, the SIL standards. For other compounds, structure a

 Calibration curves range: 0.2 to 1000 ng/m replicates for SRM and seven replicates for I

LC and Mass Spectrometry Condition

LC conditions

- Column: Waters Acquity UPLC HSS T3, 1.
- Mobile phases: (A) 0.005% formic acid i (B) – acetonitrile
- Gradient elution: 0 - 2 min from 20%B to 95%B; 2 - 2.8 mi 95%B to 20%B
- Flow rate: 0.5 mL/min: Column temperative
- Injection volume: 5 μL

HRMS (TOF)

- Agilent QTOF 6530 equipped with ESI sour
- Agilent 1200 UHPLC system
- Resolution setting = 10,000
- Scan range: *m/z* 100 *m/z* 1600, in positive
- Samples were analyzed using one MS metil

SRM (triple quadrupole)

- Thermo-Fisher TSQ Quantum with ESI sou
- Accela UHPLC system
- Unit resolutions for Q1 and Q3
- Dwell time was 25 ms for each transition
- CE of each compound was optimized
- Samples were analyzed using three separa achieve sufficient data points across a chrom

Evaluation Criteria

• LLOQ determination:

- ✓ Analyte signal-to-background ratio >
- \checkmark %Dev < 20% for at least 3 replicates
- ✓ %CV < 20% for at least 3 replicates
- ✓ Peak responses showed proportional
- Linearity determination:
- ✓ Regression model: Linear with 1/x2 w
- ✓ %Dev < 15% for all levels except LLC</p>

Nga Kit Eliza Fung,¹ Mohammed Jemal,¹ Jim Lau,² Bob Walker,² Timothy Olah,¹ Yuan-Qing Xia,¹

¹Bioanalytical and Discovery Analytical Sciences, R&D, Bristol-Myers Squibb, Route 206 and Province Line Road, Lawrenceville, NJ 08543-4000 ²Life Sciences and Chemical Analysis, Agilent Technologies, Inc., 2850 Centerville Road, Wilmington, Delaware

	Method D	evelopment							Table 2. model c	Sensitiv ompoun	vity compa ds	rison of HR	MS and \$	SRM in q	uantificati	on of
prietary and marketed, including eserpine were used. These se physico-chemical properties.											LLOQ	Percent achievir	age of con ıg specifie	npounds d LLOQ		
											(ng/mL) HRM	IS*	SRM**		
with acetonitrile, followed by nds. The resulting extracts were											1	57%	%	70%		
ds for which stable-isotope L analogs were used as internal analogs were used as IS											2	79%	% x	78% 85%		
											5	307	70	0070		
L. Samples were analyzed in six HRMS method											10	*N - 28: *	%	89%	-	
ons									Table 3.	Accurac	y and pred	cision of Bu	Ispirone :	standard	curves	
	Table 1. Sum	nmary of lower lim	it of quar	ntitation	(LLOQ)) and u	ipper li	mit of	SR	M metho	d Quantum		F	RMS met	nod QTOF	6530
	quantitation	(ULOQ) of the mo	del comp	ounds f	rom hu	, man pl	lasma		STD	Mean	Precision	Accuracy	STD	Mean	Precision	Accuracy
.8 μm, 2.1 x 50 mm	obtained usi	ng HRMS (Agilent	QTOF) a	nd SRM	(Therm	io-Qua	ntum).		(ng/mL)	Conc	%CV	(%)	(ng/mL)	Conc	%CV	(%)
III Walei					LLOQ	LLOQ	ULOQ	ULOQ		(ng/mL)				(ng/mL)		
		Elemental							0.2	0.20	8.3	98.3	0.2	0.20	15.5	99.3
nin 95%B; 2.8 – 2.9 min from	Compound 4	Composition	[M+H]+	SRM	HRMS	SRM	HRMS		0.5	0.52	2.8	104.5	0.5	0.53	6.6	105.7
	Compound 1	C29H28CI2F2N2O4S	609.1188	609>591	0.2	0.2	500	1000		1.01	4.8	101.1	1	0.98	3.1	98.2
ature: 40 ºC;	Compound 2	C27H24FN5U35	518.1657	518>347	2.0	0.2	1000	1000	2	1.96	3.1	98.1 07.5	2	1.79	3.1	89.5
	Compound 3	$C_{23} = 27 C_{12} = N_{3} O_{2}$	440.1000	440>200	1.0	0.5	1000	1000	10	4.00 9.79	29	97.5	5 10	4.90 9.82	2.0	97.9
	Compound 5	$C_{23} \square 27 C_{12} \square 3 O_{3}$	404.1302	404>301	2.0	0.5	1000	500	20	19.67	2.0	98.4	20	18.41	1.8	92.1
rce.	Compound 6		440.1397	440>200	2.0	0.5	1000	1000	50	49.38	1.4	98.8	20 50	52.47	1.8	104.9
	Compound 7		3/1.1314	2/1>2/5	2.0	0.5	1000	1000	100	98.48	2.2	98.5	100	109.40	2.1	109.4
	Compound 8	C10H21E2NI5O3	106 1685	406-240	2.0	0.5	1000	1000	200	210.04	2.3	105.0	200	201.61	2.7	100.8
e or negative ESI mode	Compound 9	C18H10E2NI5O3	302 1520	302-240	2.0	0.5	1000	1000	500	519.96	2.1	104.0	500	524.27	1.3	104.9
thod	Compound 10	C18H18CIN3O	328 1211	328~118	2.0	0.5	500	1000	1000	979.03	1.1	97.9	1000	991.70	2.4	99.2
	Compound 11		340 1007	340-225	1.0	0.5	1000	1000	Linear dy	ynamic rang	ge of 0.20 -100	of 0.20 -1000; N = 6		Linear dynamic range of 0.20 - 1000; $N = 7$.		
	Compound 12	C21H27NO3	342 2064	342-223	1.0	0.5	1000	1000	Table 4	Mass A		of Ruspiror	no at diff	erent co	heentratio	ne
lice	Compound 13	C28H29CIN2O3S	500 1660	500-260	1.0	0.5	500	1000	(Exact r	nass of	Buspiron	e: <i>m/z</i> 386.	2551)			/15
	Compound 14	C28H26EN5O3S	532 1813	532>361	5.0	0.5	1000	1000								
	Compound 15	C10H12Cl2N2	231 0450	231>188	1.0	1.0	1000	1000	STD		Mean	%CV	Measur	ed <i>m/z</i>	Mass Ac	curacy
	Compound 16	C36H45N5O5S	660.3214	660>535	0.2	1.0	1000	1000		, Ре	ak Area	Dook Aroo			(1919)	m)
ate MS methods in order to	Compound 17	C28H26Cl2F2N2O4S	595 1031	595>497	10.0	2.0	1000	500		-)				0550	(ppi 1 0	<u>n)</u>
natographic peak	Compound 18	C24H19CIN2O4S	467.0827	467>383	1.0	2.0	1000	1000	0.5		0.0103	6 1	386 '	2556	۱.o 1 ۹_	9
	Compound 19	C24H21CIN2O4S	469.0983	469>385	5.0	20.0	1000	1000	1		0243	10.1	386 (2544	-1.0	7
	Compound 20	C40H50N8O6	739.3926	739>565	5.0	50.0	1000	1000	2		0780	3 /	386 (2540	-2.1	<i>'</i>
	Compound 21	C35H43N5O5S	646.3058	646>553	1.0	20.0	1000	1000	5	C C	0709	3.4 1 2	386 '	2542	-2.4	9 8
5	Compound 22	C37H46N4O5S	659 3262	659>536	2.0	10.0	500	1000	10		12120	2.0	386 '	2545	-z.1	8
	Compound 23	C35H46CIN5O9S	748.2778	748>648	1.0	ND	1000	ND	20) 7951	0.0	386 '	2548	-1 -0.8	5
	Prednisolone	C21H28O5	361 2010	361>147	10.0	5.0	1000	1000	50		0.7301	0.9	386 '	2540	-0.0	1
I increase with concentrations	Prednisone	C21H26O5	359,1853	359>147	5.0	5.0	1000	1000	100		2021	1 1	200.2	-551 2548	-0.1 _0.7	'A
	Nefazodone	C25H32CIN5O2	470.2317	470>274	0.5	0.2	1000	1000	200	ç	8 6885	0.5	386 ·	2538	-3.25	
	Buspirone	C21H31N5O2	386.2551	386>122	0.2	0.2	1000	1000	500	2	2 5915	0.6	386 '	2536	-3 7	.~ 7
	Reservine	C33H40N2O9	609.2807	609>195	0.5	0.5	1000	1000	1000	<u>ک</u>	2.7322	0.3	386 (2538	-3 2	25
	ND – Not D	Determined								•		0.0	N = 7		0.2	-
													···· — /			

LLOQ	Percentage of compounds achieving specified LLOQ							
(ng/mL)	HRMS*	SRM**						
1	57%	70%						
2	79%	78%						
5	93%	85%						
10	100%	89%						

Buspirone

Buspirone

RESULTS AND DISCUSSION

Comparison of LLOQ's and linear dynamic ranges

- Table 1 summarizes the results on LLOQ and dynamic range of the 28 model compounds. In general, the two techniques yielded comparable results in terms of LLOQ and dynamic range, with triple quadrupole MS being slightly more sensitive and wider dynamic range for some selected compounds.

– Using HRMS, 57% of the compounds achieved 1 ng/mL; 75% achieved 2 ng/mL; 93% achieved 5 ng/mL; 100% achieved 10 ng/mL (Table 2).

– HRMS provides a good dynamic range of 500-5000 for at least 75% of the tested model compounds (Table 1).

Comparison of assay performance

- Table 3 shows the results of accuracy and precision for quantitation of buspirone in human plasma standard curve extracts. HRMS achieved an excellent linear dynamic range of 0.2 - 1000 ng/mL. The same LLOQ and linear calibration curve were established in both HRMS and SRM methods (Table 3 and Figure 1).

– HRMS gave excellent mass accuracy over the calibration range for buspirone (Table 4).

Post-acquisition data-mining

- Since data from a wide range of m/z's are acquired by HRMS (instead of selected SRM), the data can be mined post-acquisition to obtain additional information. This is illustrated with phospholipids elution profile (Figure 2) that is used to verify chromatographic resolution.

Additional advantages of HRMS

- Moreover, multiple analytes can be analyzed by HRMS in one single run, while triple-quadrupole SRM is limited by the dwell time and peak width of the chromatographic peak. In addition, no MS method development (e.g. CE, SRM transitions) is required for HRMS which simplifies the method development.

CONCLUSIONS

- Based on the results from the 28 model compounds evaluated, QTOF HRMS provides comparable results with those of SRM using triple quadrupole MS for the quantification of drugs in plasma extract.
- HRMS achieved excellent selectivity, accuracy/precision, mass accuracy and ruggedness.
- One generic LC-HRMS method was used to analyze all of the compounds in a single injection, while optimization of parameters (e.g., CE, SRM transitions) was needed for SRM.
- HRMS can be used for the quantification of target analytes. It also allows for post-acquisition data mining to obtain additional information in the sample, such as phospholipids, metabolites, biomarkers in a single injection.

REFERENCES

- Bateman, K.P., Kellmann, M., Muenster, H., Papp, R., Taylor, L. J. Am. Soc. Mass Spectrom. 2009, 20, 1441-1450.
- Zhang, N.R., Yu, S., Tiller, P., Yeh, S., Mahan, E., Emary, W.B. Rapid Commun. Mass Spectrom. 2009, 23, 1085-1094. • Kellmann, M., Muenster, H., Zomer, P., Mol, H. J. Am. Soc. Mass Spectrom. 2009, 20, 1464-1476.
- van der Heeft, E., Bolck, Y.J.C., Beumer, B., Nijrolder, A.W.J.M., Stolker, A.A.M., Nielen, M.W.F. J. Am. Soc. Mass Spectrom. 2009, 20, 451-463.
- Rousu, T., Herttuainen, J., Tolonen, A. Rapid Commun. Mass Spectrom. 2010, 24, 939-957.
- Kaufmann, A., Butcher, P., Maden, K., Widmer, M. J. Chromatogra. A. 2008, 1194, 66-79.
- Zhou, J-L., Li, P., Li, H-J., Jiang, Y., Ren, M-T., Liu, Y. J. Chromatogra. A. 2008, 1177, 126-137.
- Mol, H.G.J., Plaza-Bolanos, P., Zomer, P., de Rijk, T.C., Stolker, A.A.M., Mulder, P.P.J. Anal Chem. 2008, 80, 9050-9059.