

OpenLAB CDS EZChrom Edition

Agilent 1200Infinity LC OpenLAB CDS EZChrom Edition 操作簡易マニュアル -装置編-

OpenLAB CDS EZChrom Edition

Agilent 1200 Infinity LC OpenLAB CDS EZChrom Edition 操作簡易マニュアル -装置編-

初版, 2012 年 4 月

目次

目次

目次		4
はじめに		6
第1章	OpenLAB CDS EZChrom Editionの起動	8
第2章	メソッドの作成	17
2-1	新規メソッドを作成する	
2-2	メソッドを保存する	27
第3章	サンプルの分析(シングルラン)	
3-1	メソッドの読み込み	
3-2	メソッドのダウンロードとステータスの確認	
3-3	シグナルの確認	
3-4	サンプル情報の入力と分析の開始	
第4章	OpenLAB CDS EZChrom Edition の終了	
付録 A	ツールバー	

4

Memo

はじめに

はじめに

本取扱説明書は Agilent OpenLAB CDS EZChrom Edition ソフトウェアの操作に慣れること を主目的に Agilent 1200 Infinity LC(Agilent 1220,1260、1290Infinity)との組み合わせ でその操作の概要を説明したものです。本書に記述されていないソフトウェアおよび装置の 詳細な説明についてはオンラインヘルプ、リファレンスガイド、ユーザーガイド等を参照してく ださい。

はじめに

Memo

第1章 OpenLAB EZChrom Edition の起動

第1章 OpenLAB EZChrom Edition の起動

1. コンピュータと 1200Infinity を LAN ケーブルで接続し、1200Infinity の電源を入れま

OpenLAB コントロールパネルのアイコンをクリックします。 (またはデスクトップ上の 1260Infinity(オンライン)や 1220(オンライン) ショートカット アイコンより、直接装置起動が可能です。

2. ナビゲーションパネルで機動する装置を選択し、【プロジェクト】を選択し、【起動】をクリックします。

2			Agilent OpenLAB コントロール	ペネル
管理				
編集 削除	ひのお	■ ■集 プリンタの選択	日本 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 ※ 機器コンフィグレーション ※ データからコンフィグレーション ※ 切断
価格のよび日7	-947	1220		1212
 ○ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		機器を開始 プロジェクト: 1 ③ ステータス	LC 起勤	🔒 オフライン起動
	装置を選択) 詳細) 先週のアクティ 	ビティログ	
			プロジェクトを選択	起動をクリック
P., 48				

3. OpenLAB EZChrom のオンラインのメイン画面が起動します。

4. 装置ウィザードの表示

装置アプリケーション起動時に表示され ます。基本的な操作へのショートカット になっています。[OK]をクリックすると 下記のアプリケーション画面が表示され ます。

	1220 (4) (7) (7)	(OK
	新規メソッドの作成	ヘルプ(<u>H</u>)
	現在のメソッドの変更	
	ディスク上のメソッドの変更	
	シーケンスの作成	
\odot	インテリジェントレポート ウィザード	
F	シーケンス解析	
▼ 機器起動	肺に表示	

第1章 OpenLAB EZChrom Edition の起動

5.装置の準備

- 5-1.1220、1260Infinity LC システムの準備(システムパージ)
- 1)ポンプの各チャンネルに、アプリケーションで使用する移動相をセットします。
- 2)ナビゲーションバーの[コントロール]-[装置ステータス]を選択し、装置ステータスウインド ウを開きます。

📀 シーケンス 🔞 一時停止 💿 再	開 🛑 停止 💛 DEF_LC.M		*
🔶 サンプラ 📃 🗖	🧴 グラジエントポンプ 🔔 🗐	🧪 カラムオーブン 🚄 🖿	💙 VWD 📃 🗖
 ④ EME② 待機 	② EMF⊗ ノットレディ	◎ EMF⊗ ノットレディ	③ EMF⊗ ノットレディ
5.0µL	B 100.0 0.0 0.000 mL/min 1.00 bar	24.64 °C	250 nm
localhost 0.00	/ 0.30 min	機器 ノットレディ	マ ()オン ()オフ

3) ポンプをパージします。ポンプのパージバルブを開きます。装置ステータス下部装置の 電源オン(緑色ボタン)をクリックします。

装置ステータスウィンドウのポンプで右クリックを押し、表示されたメニューからメソッド を選択します。 画面下のOK ボタンを押すと、A チャンネルのパージが開始します。

4) A チャンネルのパージが終了したら、ポンプメソッド画面(前ページ 6. 参照)に再度入り、 溶媒チャンネル B の%を 100 に設定し、OK ボタンを押します。 B チャンネルのパー ジが終了したら、画面下のオフ(赤色ボタン)を押し、ポンプを止めます。

サンブラ ・ グラジエントボンブ ・ カラムオーブン ・ WD ● EMF© 待機 ● EMF© ノットレディ ● EMF© ノットレディ ● EMF© ノットレディ ● EMF© ノットレディ ● 5.0µL ● ● ● ● ● ● 100.0 0.0 ● ● ● ● ● 100.0 0.0 ● ● ● ● ● 250 nm ● ● ● ● ● ●	📀 シーケンス 🕕 一時停止 🕟 再	調 🕘 停止 🔰 DEF_LC.M		•
● EMF ● 存機 ● EMF ● ノットレディ	🔶 サンプラ 🗕 🗐	🍐 グラジエントポンプ 👝 🗐	🧪 カラムオーブン 🔔 🗖	💙 VWD 📃 🗐
5.0µL 5.0µL 100.0 0.0 0.000 mL/min 1.00 bar 24.64 ℃ 機器	③ EMES 待機	◎ EMF⊗ ノットレディ	◎ EMF ノットレディ	② EMF⊗ ノットレディ
	5.0µL	A B 100.0 0.0 0.000 mL/min 1.00 bar	0 24.64 °C	250 nm
localhost 0.00 / 0.00 min ノットレディ グ マオ ひオ	localhost 0.00	/ 0.00 min	機器 ノットレディ	てた⓪ 😯 🎯 🧐 🧧

クォータナリポンプを使用する場合は、引き続き同じパージ操作を C チャンネル、D チャンルについても実施してください。

第1章 OpenLAB EZChrom Edition の起動

5-2.1290Infinity LC システムの準備

- 1)ポンプの各チャンネルに、アプリケーションで使用する移動相をセットします。
- 2)ナビゲーションバーの[コントロール]-[装置ステータス]を選択し、装置ステータスウインド ウを開きます。

📀 シーケンス 🕕 一時停止 💽 再	聞 💿 停止 💛 DEF_LC.M		*
🧼 サンプラ 📃 🗐	🧴 グラジエントポンプ 👝 🗐	カラムオーブン 🗕	VWD
5.0 µL	100.0 0.0		
•**	0.000 mL/min 1.00 bar	24.64 °C	250 nm
localhost 0.00	/ 0.00 min	機器 ノットレディ	マオン 💿 オン

3) ポンプをパージします。

GUIのポンプで右クリックを押し、表示されたメニューからコントロールを選択します。

①パージの時間と流量を入力します。(例:時間 10min、流量 3mL/min)

30K をクリックします。	
ポンプ	
	© 77
	 スタンバイ
自動的にオンにする	
📃 オンにする	2012年4月4日 15:00:00 🗦 🔻
パージ	
	時間 100 一前
(T-)	
<u>●</u> (<u>7</u>)	流童 2.000 - mL/min.
	組成A 100.00 🔅 🌮 🕴 0.00 🕂 🎗
7514	
◎オン	
◎オフ	②D%を設定
<u> </u>	
	OK(0) キャンセル(C) ヘルブ

②B%を設定します。まず、A をパージするために、B%は 0.00 に設定します。 ③0k をクリックします。

4) ポンプを右クリックし、メニューからパージオンを選択します。 パージが開始します。 ステータス

5)B チャンネルのパージを実施します。

第1章 OpenLAB EZChrom Edition の起動

パージの時間と流量を入力します。(例:時間 10min、流量 3mL/min)
 ②B%を設定します。続いて B をパージするために、B%は 100 に設定します。
 ③0k をクリックします。

ביארם ארם	
ポンプ	
	 オン
	© オフ
	 २५७७४४
自動的にオンにする	
📃 オンにする	2012年4月4日 15:00:00 🗘 👻
パージ	①パージ時間と流量を入
© オン ● 团 2	時間 1.00 ÷ mit 流量 2.000 ÷ mL/min. 組成A 100.00 ; % E 0.00 ÷ %
プライム	
◎オン	
◎ オフ	②応を設定
	OK(0) キャンセル(C) ヘルプ

GUIを右クリックし、メニューからパージオンを選択します。

第1章 OpenLAB EZChrom Edition の起動

Memo

第2章 メソッドの作成

2-1 新規メソッドを作成する <1220Infinity LC>

メニューの[ファイル]-[新規]をクリックして、空白.metを選択しOKを押します。機器条件画面を表示します。

- 1. 各タブをクリックして機器条件を設定します。
 - A) カラムオーブンタブの設定

概器条件		1	
戦 ハラムターソフ 輪 クラジエントホンプ	🎔 WWD 🦦 ALS ※ 補助N-3	x 'UL ^~x71)7±99 22	ッポー カラムオー
温度		タイムテーブル	
⑦ 未制御		時間 / 機能	パラメータ
•	o 🕂 0		
ストップタイム	ポストタイム		
◎ まいさ / 小さいわり日期	a +7		
0 1.00 1 分	◎ 3.7 ◎ 1.00 € 分		
		追加(<u>A</u>) 削隊	(日) すべて消去
		100取0 二世	- 189付け
		詳細設定	

- B) ポンプ(グラジエントポンプ/アイソクラティックポンプ)タブの設定
 ・流量(mL/min)を入力します。
 ・溶媒に移動相の種類(例:Water,ACN)、Bの組成比(%)を入力します。
 ・ストップタイムを入力します。
 - ・圧力制限:最小(例:0bar)と、最高(例:600bar)の圧力を入力します。

・詳細設定(タイムテーブル):グラジエント分析を行いたい場合は行を追加しグラジ エント条件(時間、パラメータ)を設定します。

💓 カラムオーブン 🗇 グラジエントポンプ 🚫 VWD 🛛 📎 サンプラ 🕅 💥 補助トレース	沙 [4] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		グラジエントポンプ(G4290B)
流量	● 詳細設定	
1 000 * rol /win	◆ タイムテーブル (未設定)	
1.000 - 11.271111		🔲 機能中心ビュー
溶媒	時間 [min] / A [%] B [%] 藻量 最大圧力 [mL/min] 以外 [bar]	
A: 80.0 📜 🕱	0.00 80.0 20.0 1.000 600.00	
B: 💟 20.0 🔭 🎗		
圧力リミット		
下限: 0.00 bar 上限: 600.00 bar		
ストップタイム ポストタイム		
 インジェクタと同期 参阪なし オフ 		
● 1000 mm ◎ 1.00 mm	追加 削除 すべて消去 未設定の消去	
	切り取り コピー 貼り付け 時間のシフト	min
•		Þ

C) VWD タブの設定

波長を入力します	。ピーク幅る	を選択します。

カラムオーブン 🏭 グラジェントポンプ 🔍 VWD 🧇 ALS ※ 補助トレー	ス 🤨 ベースラインチェック 🚴	りが-	
		VWD (G	4290A
ヴナル	タイムテーブル		
演長: 254 ‡ nm ピーク幅: > 0.1 min (2 s resp. time) (5 Hz)	時間 / 機能	パラメータ	
トップタイム ポフトタイム			
 ● ポンブノインジェクタと同期 ● オフ ● 100 : 分 			
	iëtn(A)	(日) すべて消去)	
	切り取り 3	2- 貼り付け	
	詳細設定		

- D) サンプラタブの設定
 - ・注入量を入力します。

・ニードル洗浄付き注入を選択した場合はニードル洗浄のバイアル番号を指 定します。

・ストップタイムを入力します。

	^^ ^ ~ スラインチェック シン ドリガー ALS (G4290A)
注入モード 注入量 500 計 μL ④ 腰遮注入 ④ 二ードル洗浄付き注入	詳細設定 済風防設定 吸引速度: 200 ∴ μL/min り生出速度: 200 ∴ μL/min 吸引ボジション: 0.0 ∴ mm
 二ードル洗浄 △ #限なし ● 400 ÷ 分 	//イスループット ・ 一 最適化を有効 ・ ③ 「ゲアルの準備 ・ 「 ケアルの準備 ・ ヴァブ注入サイクル ・ ① なった、 注入後の時間 (分)
時間: 3.88386 min - 信号強度: 40 °C 41 温度: 独是: 独是: 独是社本 g ;	Едів. — элуна Г ⁴¹

- E) 補助トレースタブの設定:シグナルのほかに取り込みたいパラメータ(ポンプ圧力、リップル等)がある場合は項目を選択します。
- F) ベースラインチェックタブの設定:ベースラインチェック、ノイズチェックを行いたい場 合に設定します。

ースラインチェック時間 ースラインチェックは引く時間(不進	合峙)			30	min min	
バス計算法:		(rms		•		
チャンネル	有効ノイスラスト	間値 (ノイスつ	有効 トツフトテスト	間値 (ドリフト/hr)		
VWD:シグナル A	9	80/		6000.0		

G) トリガータブの設定
 ・トリガータイプを「外部」に設定します。
 (外部検出器がなく、1220のみの接続でもトリガーを必ず「外部」に設定してください)

第2章メソッドの作成

- ナビゲーションバーの[メソッド]-[レポート]をクリックして、メソッドレポートウインドウを表示します
- 4. レポートスタイルウインドウ上で右クリックし、レポートのインポートを選択します。レポートテンプレートの中からテンプレート(例:ESTD.srp)を選択します。

5. メニューの[ファイル]- [名前をつけて保存] -[メソッド]を選択し、任意の名前でメソッドを 保存します。

2-2 新規メソッドを作成する <1260/1290 Infinity LC>

メニューの[ファイル]-[新規]をクリックして、空白.metを選択しOKを押します。 機器条件画面 を表示します。

- 2. 各タブをクリックして機器条件を設定します。
 - A) カラムコンパートメントタブの設定
 ・温度(℃)を入力します。(検出器セルと同期させることも可能)
 カラムコンパートメントのヒーターは右と左で個々に設定が可能です。
 - ・内蔵バルブがある場合は、ポジションを設定します。
 - ・必要時、詳細設定を変更します。

🥰 カラムコンパートメント 🚉 バイナリポンプ バルブ バルブ 🤝 DAD 📎 HiP	サンブラ 📉 補助トレース 🍒 トリガー 🔪	
		カラムコンパートメント (G1316C)
温度	▪ 詳細設定	A
左: 右:	分析を有効にする	
 未制御 未制御 	▼ フロントドアか開いてい	
© 20.0 ; °C © 20.0 ; °C		右:
◎ 検出器セルと同期 📐 ◎ 検出器セルと同期	◎ 全温度	◎ 全温度
◎ 組み合わせ	 	 温度がわットポイント以内の場
バルブ	± 0.8 ÷ °C	2° 🕂 8.0 ±
#=> c>1 ▼		
ストップタイム ポストタイム		
 ポンブインジェクタと同期 1.00 : min 1.00 : min 		
	● タイムテーブル	~
© 1.00 ; min © 1.00 ; min	 多イムテーブル 	

- B) ポンプ(グラジエントポンプ/アイソクラティックポンプ)タブの設定
 ・流量(mL/min)を入力します。
 ・溶媒に移動相の種類(例:Water,ACN)、Bの組成比(%)を入力します。
 ・ストップタイムを入力します。
 - ・圧力制限:最小(例:0bar)と、最高(例:600bar)の圧力を入力します。

・詳細設定(タイムテーブル):グラジエント分析を行いたい場合は行を追加しグラジ エント条件(時間、パラメータ)を設定します。

🚀 カラムコンパートメント 🚆 バイナリポンプ バルブ バルブ 👽 DAD 📎 HiP サンフ	プラ 🚧 補助トレー	지 💫 년	ガー				
					バイ	ナリポンプ (G4220A)	
流量	• 詳細設定						
1 000 1 111	▪ タイムテーブル	(1/100 ብ	~>F)				
1.000 , mL/min						📃 機能中心ビュ	-
溶媒	時間 [min]	A [%]	B [%]	流量 [mL/min]	最大圧力 以ット [bar]		
1 (a) 100.0 % Water V.02	0.0	100.00	0.00	1.000	1000.00		
A: 100.00 3 %	5.0	0.00	100.00				
P. 7 0.00 100.0% Acetonitrile V.02 -							
B: 0.00 2 100.0 % Acetonitrile V.02							
圧力リミット							
下段: 0.00 🗧 bar 上路: 1,000.00 🗧 bar							
ストップタイム ポストタイム							
 インジェクタと同期制限なし オフ 							
	追加	削	ŝ	すべて消去	未設定の消費	5	
	切り取り	שצ	- [貼り付け	時間のシフト	min	
•							•

第2章**メソッドの作成**

C)-1.VWD タブの設定

第2章メソッドの作成

C)-2.DAD タブの設定

・シルナル A から H までの 8 波長の設定が可能です。使用するシグナルに ■を入れます。

波長、バンド幅を入力します。必要時、リファレンス及びバンド幅を入力します。 ・ピーク幅を選択します。

・ストップタイムを設定します(通常、ポンプ/インジェクタと同期を選択)

・スペクトルの採取方法を選択します。スペクトル採取時はすべてを選択してください。

・スリット幅の変更が可能です。(1、2、4、8nm から選択)

・取り込みに必要なランプオンを設定します。高感度分析および 500nm 以上の波長でのデータ採取が必要な場合は、200 ランプをチェックします。

・タイムテーブルを使用することで時間で波長切り替え、スペクトル取り込みモードの変更等が行えます。

🚀 カラムコンパートメント 🚆 バイナリポンプ 🗍 バルブ 🗍 バルブ 🔍 DAD 🚫 HiP	サンプラ 🛛 🔆 補助トレース 🛛 🛼 トリガー 🗋	
		DAD (G4212A)
シヴナル(<u>S</u>)		*
シグナル 油声 いっぱ リファレンス リファレンス	スペクトル	
友佳田 派表 ハンド酒 法臣 パンド植	保存: すべて	•
シグナル A 🛛 254.0 🗧 4.0 🗧 📝 360.0 🗧 100.0 🗧 nm	なし	
シグナル B 🔍 210.0 🔹 4.0 🐳 📝 360.0 🐳 100.0 🐳 nm		
シグナル C	人テップ: 2.0 -	_ nm
シクテル D V 230.0 + 4.0 + V 360.0 + 100.0 + nm シグナル F V 260.0 + 4.0 + V 360.0 + 100.0 + nm	アナログ出力	
シグナル F	出力 1:	
シグナル G 📄 280.0 🗘 4.0 🔅 📝 360.0 🔅 100.0 🔅 nm	ゼロオフセット: 5 🛟 %	
シグナル H 🔄 250.0 🔅 4.0 🔅 📝 360.0 🔅 100.0 🔅 nm 🦲	アッテネーション: 1000 💌 mAU	
ピーク幅	、 ネガティブ® 映画マージン	2105
>0.10 min (2.0 s レスポンスタイム) (2.5 Hz) 🔹 🔤	100010 201001 000	
71	100 🗧 mAU	4 F
	自動バランス	取込に必要なランプオン
ボンブインジェクタと同期 (の) オフ	📝 プレラン	UV ランプ
🔘 🔘 1.00 🗘 min 📉 🔘 1.00 🗘 min	□ ポストラン	
	● タイムテーブル	•

D)サンプラタブの設定

・注入量を入力します。

・ニードル洗浄付き注入を選択した場合はニードル洗浄のモードを次のいづれかを 選択します。

フラッシュポート:洗浄時間を入力します。 洗浄バイアル:洗浄用バイアル位置と回数を入力します。

・ストップタイムを設定します。(通常、ポンプと同期を選択)

・必要に応じで、詳細設定を変更します。 サンプル粘度によって、吸引速度/吐出速度を変更します。

・ハイスループット分析時は、ハイスループットについて設定します。

スループットを高める場合は、☑オーバーラップインジェクションの有効化をチェッ クします。

- E)補助トレースタブの設定:シグナルのほかに取り込みたいパラメータ(ポンプ 圧力、リップル等)がある場合は項目を選択します。
- F)ベースラインチェックタブの設定:ベースラインチェック、ノイズチェックを行いたい場合 に設定します。

ースラインチェックは寺間:				30	min		
ヘ~スラインチェンクルト了時間(不適合時)				30	min		
7常计算法:				rms		1	
チャンネル	有効ノイスラスト	間値 (ノイズつ	有効 トツフトテスト	間値 (ドリフト/hr)			
VWD:シグナル A	9	50.0	F	\$000.0			

C) トリガータブの設定

・トリガータイプを「外部」に設定します。

(外部検出器がなく、1220 のみの接続でもトリガーを必ず「外部」に設定してください)

保留条件		
♥ カラムオー タイフ↑	- プン (***********************************	
なし マニュアル 外部	開始は名グウをすると同時に取り込みを開始します。ケウンスランでは分析との所の間で一時(存止しません。 Flotter4ーを1号して分析を開始します。ケーシンスランでは分析と分析の間で一時(存止します。 オートサンプはたはオニュアルインションがらのスカート信号を使用して分析を開始さず34年はこのかく7を選択します。	

- ナビゲーションバーの[メソッド]-[レポート]をクリックして、メソッドレポートウインドウを表示します
- レポートスタイルウインドウ上で右クリックし、レポートのインポートを選択します。レポートテンプレートの中からテンプレート(例:ESTD.srp)を選択します。

5. メニューの[ファイル]- [名前をつけて保存] -[メソッド]を選択し、任意の名前でメソッドを 保存します。

2-3 メソッドを保存する

1. [ファイル]- [名前を付けて保存] - [メソッド]-をクリックします

2. [ファイル名]の欄に保存するメソッドファイルの名前を入力します。 入力が完了したら、[保存]をクリックします。

メソッドファイルに名前を付けて保存	? 🛛
(保存する場所①: È Method ▼ ← 色 쓴 匣* month to the state of the	保存(S) キャンセル ヘルブ(H)
ファイル名(W): LC_test ファイルの種類(D): メファトウァイル(# met)	
	×

*メソッドファイルの拡張子.met は自動的に付きます。

*メソッドを上書き保存する場合: [ファイル] -[上書き保存] -[メソッド]をクリックしま す。 第3章 サンプルの分析(シングルラン)

第3章 サンプルの分析(シングルラン)

- 3-1 メソッドの読み込み
- 1. [ファイル] -[開く] -[メソッド]をクリックします。または^{ジ・}をクリックして[メソッドを開く]を選択します
- 2. メソッドの一覧からサンプルの分析に使用するメソッドを選択し、[開く]をクリックします。
- 3. メソッドが読み込まれると、装置アプリケーションウィンドウのタイトルバーに読み込んだ メソッド名が表示されます。

a 1120	¥V9№ test.met		a multi c	alibration	level 4.dat
: 771N(E)	編集 日表示 10	メソッド(<u>M</u>)	データ(<u>D</u>)	シーケンス(<u>S</u>)	前処理(<u>P</u>)
! 🎦 • 🔊 ·	• 🔚 • 🍇 • 1: VWI	D: シグナル	A 👻 🗶	- - - - - - - - - -	; 🚓 🔜 📚

3-2 メソッドのダウンロードとステータスの確認

メニューの[コントロール]-[ダウンロードメソッド]を選択します。
 →メソッドの条件が装置に転送されます。

装置ステータス画面で各モジュールが待機(レディ)状態になっていることを確認します。

画面下のオン(緑色ボタン)を押して 送液を開始します。

3-3シグナルを確認する

- 🔲 オンラインシグナルグラフ - O × 90 80 70 60 50 40 30-20-10 0 10 20 30 40 50 分 校正 変更... ÷
- 1. メニューバーの[表示]メニューの[オンラインシグナル]をクリックします。

2. 表示したいシグナルを"使用可能シグナル"から"選択したシグナル"に追加します。

シグナルブロットの編集	
使用可能シグナル	選択したシグナル
カラムオーフン: 温度 (C)	VWD: 吸光度 (mAU) 254 nm
グラジエントポンプ: 圧力 (bar)	追加(点) ->
グラジエントポンプ:流量(mL/min)	
クラジエントボンフ: ビストン A の方向 0	<- 前序余(元)
りラジエントホンノ: 溶媒比率 A V&	
VWD: 吸光度 (mAU) 254 nm	
 予想できる範囲(P) 	 浮動レンジ(E)
開始(<u>F</u>): 0 🚽 mAU	Y 軸レンジ(E): 📄 mAU
終了(I): 400 🗐 mAU	オフセット(Q):
	「自動丫調整(?)
_ ウィンドウプロパティ	
×軸レンジ∞: 30	
□ グリッド描画(<u>G</u>)	
	OK キャンセル 適用(1)

シグナルが表示されベースラインの安定、ポンプ圧力の安定を確認することができます。

第3章 サンプルの分析(シングルラン)

3-4サンプル情報の入力と分析の開始

1. [シングルラン]ボタン を、またはツールバーのシングルランアイコンをクリックしてク リックして[シングルラン]ダイアログボックスを開きます。。

シングルラン		×
分析情報 サンフル ID メソッド: データファイム: 結果パス: 結果名: 繰り返し回数:	・ キャリブレーション ・ キャリブレーションレベル・ ・ ・ ・ <th>スタート(S) キャンセル(Q) ヘルプ(H)</th>	スタート(S) キャンセル(Q) ヘルプ(H)
- メソッドレポート	「 ベースラインチェック	
定量結果の補正 サンブル量: 補正係数: 希釈係数:	1 I 1 1 1 1 1 1 1]
-オートサンブラ 「ユーザーブログラム: バイアル: 注入量:	バイアル1 5 「バイアル番号	1988

<分析情報>

- ・ サンプル ID: サンプルの ID(識別)情報を入力します。 ▶をクリックしてあらかじめ 設定された ID から選択することも可能です(複数選択可)。
- メソット: 現在読み込まれているメソッドが入力されています。他のメソッドを使用 する場合、 をクリックしてメソッドを選択します。
- ・ デ・タファイル: データファイル名を入力します。 ▶をクリックしてあらかじめ設定され た命名法から選択することも可能です(複数選択可)。
- 結果パス: データファイルを保存するパスを設定します。
 遅択します。
- 結果名:結果ファイル(結果とPDF ファイルが含まれた結果ファイル名を入力します。ここに入力した名前はフォルダ名としても利用されます。
- ・ 繰り返し回数:繰り返し回数を入力します。
- ・ バイアル番号を入力します。

[スタート]ボタンをクリックして分析(データの取り込み)を開始します。クロマトグラムウインド ウと補助トレース画面が表示されます。

第3章サンプルの分析(シングルラン)

 分析中に現在のキューの確認、変更、追加を行うことができます。ツールバーのラン キューボタン 、またはナ(図ーションバーの[コントロール]-[ランキュー]を 選択し、ランキューウインドウを表示します。

シーケンス、データ解析の詳細については、別紙"OpenLAB CDS EZChrom Edition B.04.03 簡易取扱説明書"を参照ください、

第3章 サンプルの分析(シングルラン)

第4章 OpenLAB CDS EZChrom Editioneの終了

- 12-1 OpenLAB CDS EZChrom Editionの終了
- 1. [ファイル]-[終了]をクリックします。またはウィンドウ右上の区ボタンをクリックします。

OpenLAB コントロールパネルが立ち上がっている場合は、コントロールパネルも上記と同じ 方法でクローズします。 第4章OpenLAB CDS EZChrom Editioneの終了

付録

付録 A ツールバー

メインツールバー

🎦 🗸 🧭 🗸 🔚 🗸 🍇 🗸 | 1: TCD - Channel A 🖌 👗 🍋 📔 🞯 🖾 | 🚓 🎜 🖬 🖾 🔛 🔛 🖉 🔤 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🕲 🕲 🕲 😵

1 → 新規作成	📓 シーケンス編集
❷ - 開<	ジーケンス解析
□ - 保存	▶ 検量線
● ■ 印刷	カスタムレポートを編集
1: TCD - Channel A ▼ チャンネルを選択	解析
3000000000000000000000000000000000000	🖾 解析/シングルレヘ゛ルキャリフ゛レーション
	🔲 プレビューラン
1 貼り付け	シングル ラン
₩ 機器条件	シーケンス ラン
ピーク/グループテーブル	シンキュー
お インテグレーションイベント	〇 分析中止
ƒ <mark>●</mark> MIF テーブル	隊 機器ウィザード
	? ヘルプ

インテグレーションイベントツールバー

\Leftrightarrow	ピーク幅	R	マニュアルベースライン
	検出感度	Д,	マニュアルピーク
Å	肩ピーク処理	^₩	垂直分割
*	解析オフ	3A.	ピーク開始点変更
A	谷渡り処理	N	ピーク終了点変更
X	ベースライン水平処理	<u>s</u> Da	ベースラインの移動
Σ	後方ベースライン水平処理	24	ベースライン終了点移動
0.0		Lot	
<u></u>	最下限ベースライン水平処理	2 29	
<u></u>	最下限ベースライン水平処理	谷渡り処	山理ベースラインリセット
	最下限ベースライン水平処理 テーリング処理	公谷渡り処二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	ユ理ベースラインリセット RT 許容値の調整
	最下限ベースライン水平処理 テーリング処理 リーディング処理	ジ 谷渡り処 ふ ふ 、	ユ理ベースラインリセット RT 許容値の調整 グループ範囲の調整
	最下限ベースライン水平処理 テーリング処理 リーディング処理 最小ピーク面積	ジ 谷渡り如 ふ ふ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	¹ 理ベースラインリセット RT 許容値の調整 グループ範囲の調整 シングルピーク設定
	 最下限ベースライン水平処理 テーリング処理 リーディング処理 最小ピーク面積 反転ピーク処理 	ジ 谷渡り如 ふ ふ へ ふ く ス く ス く の の く ス の の の の の の の の の の の	 ユ理ベースラインリセット RT 許容値の調整 グループ範囲の調整 シングルピーク設定 ピーク指定
	最下限ベースライン水平処理 テーリング処理 リーディング処理 最小ピーク面積 反転ピーク処理 簡易グルーピング	ジ 谷渡り如 ふ ふ へ ふ へ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	 ユ理ベースラインリセット RT 許容値の調整 グループ範囲の調整 シングルピーク設定 ピーク指定 グループ指定

シーケンスツールバー

습 🕂

シーケンスの[Review]をオンにした時に使用します。指定した方法でシーケンスが一時停止するので、次のラインを開始するにはこの下矢印をクリックします。

メソッドツールバー

矢印をクリックすると、メソッドの編集画面を順番に表示します。フロッピーのボタンを押すと [Save Method As]ダイアログボックスを表示します。

Memo

アジレント・テクノロジー株式会社

