Evaluation of LC/MS/MS for the Determination of Amiodarone and its Metabolite Extracted From Dried Blood Spot Samples

ASMS 2010

Yoshifumi Kogure, Hiroshi Sezaki Agilent Technologies, Tokyo, JAPAN

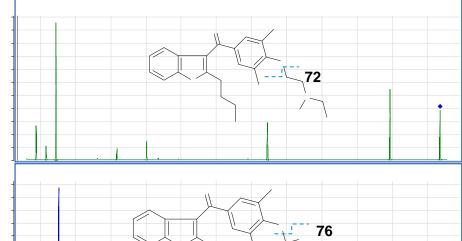
Evaluation of LC/MS/MS for the Determination of Amiodarone and its Metabolite Extracted From Dried Blood Spot Samples

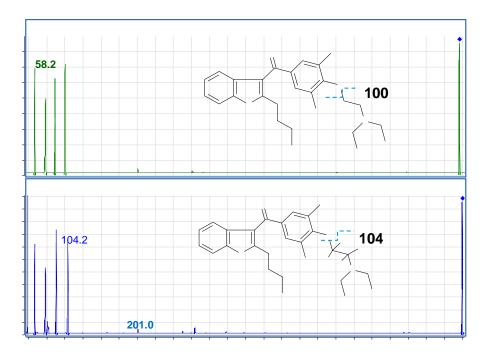
Introduction

A method for rapid detection and quantitation of amiodarone and des-ethylamiodarone in samples extracted from dried blood spots (DBS) was evaluated.

Amiodarone hydrochloride is an effective anti-arrhythmia medicine. However, as the disposition patterns of amiodarone in the human body show great differences between individuals, TDM (therapeutic drug monitoring) is usually necessary as part of the treatment.

In this study, using a small amount of sample extracted from dried blood spots, a rapid and easy-to-prepare LC/MS/MS method of the detection of amiodarone and amiodarone metabolites is evaluated.


Experimental


Creating MS/MS (MRM) method for determination of amiodarone and desethylamiodarone Reagents; Amiodarone Hydrochloride, Amiodarone-d4 Hydrochloride, Desethyl Amiodarone Hydrochloride, Desethyl Amiodarone-d4 Hydrochloride were purchaced from Toronto Research Chemicals Inc.

Mass Spectrometer ; Agilent 6460 Triple Quad LC/MS with Agilent Jet Stream Technology Ion Source parameters ; ESI positive mode Neblizer: 60 psi Sheath gas : 390°C, 12 L/min N₂ gas 300°C, 10 L/min HPLC System; Agilent 1200 SL Binary Pump, Column Oven,

Well Plate Autosampler

Optimization of MS/MS conditions; Optimization of MS/MS instrument parameters for MRM mode acquisition was performed using Agilent MassHunter Optimizer software, during flow injection analysis of standard solutions.

Product Ion Scan spectrum of Amiodarone Hydrochloride(upper) and Amiodarone-d4 Hydrochloride (lower), at collision energy=30eV

Compound Name	Formula	Nominal Mass	Method	Precursor Ion	Fragmentor			Product Ion	Colli	sion Energy	Abundance	Project Nam
АМ		645.02	D:\MassHunter\M					58.2	56	(10927	Amiodarone2
	COTU20121102			646	120	\subset		100.2	32	\sim	4622	Amiodarone2
	C25H29I2NO3						Þ	86.2	32	\sim	4245	Amiodarone2
								72.3	40		1078	Amiodarone2
DEA		616.99	D:\MassHunter\M	618	140	\subset		72.2	-28	\sim	16613	Amiodarone2
	C23H25I2NO3							546.9	20	\subset	14741	Amiodarone2
	LZ3HZ5IZNU3						P	372.8	36		5413	Amiodarone2
							石	44.2	56		5417	Amiodarone2
d4AM		649.05	D:\MassHunter\M	650.1	180	\subset		58.2	56	~	7711	Amiodarone2
	C25H33I2NO3							88.2	39		2921	Amiodarone2
	C20H33I2NU3							104.2	32)		3039	Amiodarone2
								73.2	36	\bigcirc	2146	Amiodarone2
d4DEA		621.02	D:\MassHunter\M	622	100			76.3	28		34564	Amiodarone2
	C23H29I2NO3							546.9	20		27474	Amiodarone2
	C23H29I2NU3							372.8	36	\sim	10675	Amiodarone2
						\frown		48.3	60		9877	Amiodarone2

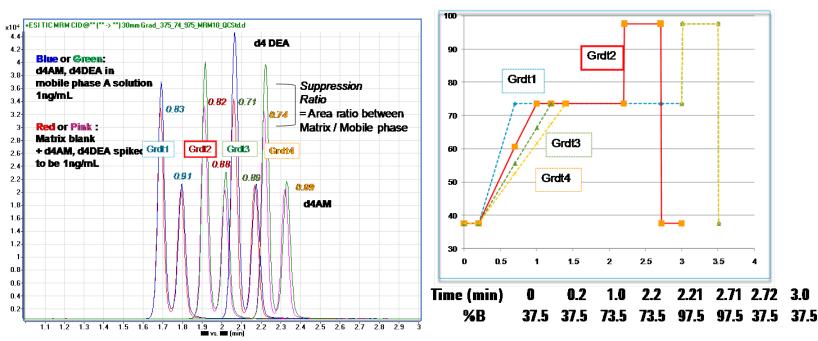
Result summary of MS/MS parameter optimization using MassHunter Optimizer software. Parameters with red circles were applied to further MRM analysis.

Sample extraction and preparation using Dried Blood Spots (DBS) Standard solutions with each concentration shown in the table were prepared by dilution with 2 mM ammonium formate containing 0.1% formic acid . 2 μ L of internal standard solution (10 μ g/mL of d4amiodarone and d4-desethylamiodarone, respectively) and standard solution (12 concentration steps of amiodarone and desethylamiodarone) were spiked in 96 μ L of rat blood.

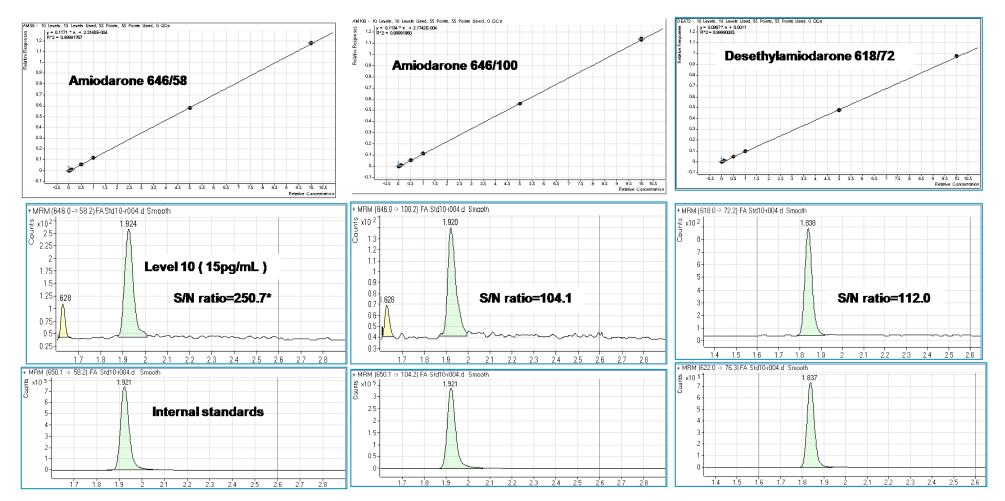
Picture of FTA-cards and the 6 mm ID puncher.

Left: A 15 µL blood spot. Right: Spots in which a 6 mm ID disk was punched. (Reference ; Agilent Technologies Application Note 5990-4705)

Product Ion Scan spectrum of Desethyl Amiodarone Hydrochloride(upper) and Desethyl Amiodarone-d4 Hydrochloride (lower), at collision evergy=15eV


Evaluation of LC/MS/MS for the Determination of Amiodarone and its Metabolite Extracted From Dried Blood Spot Samples

Results and Discussion

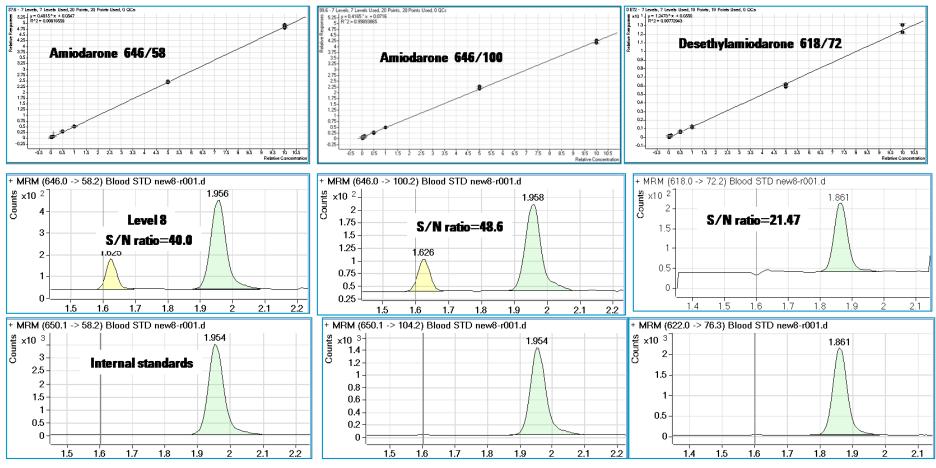

Investigation of LC separation suitable for high throughput LC/MS analysis HPLC conditions for the separation of amiodarone and desethylamiodarone are examined. A gradient profile was developed which considered both peak separation and the peak intensities. Column ; ZORBAX Eclipse plus C18 (2.1 x 30 mm, 1.8 μm) Column temp. ; 50°C Mobile Phase ; A: 2 mM ammonium formate with 0.1% formic acid B: 2 mM ammonium formate with 0.1% formic acid

Flow rate ; 0.8 mL/min Injection Volume ; 5 µL

Suppression effects for blood extracted samples in matrix varied according to the gradient profile. Peak area differences between standard solution and the standard spiked in blank matrix at the same concentration were compared. Considering both intensity and suppression ratio results, gradient profile 2 (Gradient 2) appears to be most suitable for further quantitation work.

With the standard solution made up with the mobile phase A solution, there was excellent linearity for Level 10 (15 pg/mL) to Level 1 (300 ng/mL) for both amiodarone and desethylamiodarone.

* S/N ratio calibration is based on RMSx5 for all chromatograms.



Evaluation of LC/MS/MS for the Determination of Amiodarone and its Metabolite Extracted From Dried Blood Spot Samples

Results and Discussion

Sample solution preparation – Standard solution and Blood spot spiked samples													
Calibration level	0	1	2	3	4	5	6	7	8	9	10	11	12
Standard solution (µg/mL) Conc. In Blood spot (ng/mL) Final conc. (ng/mL)	500 10,000 1,500	100 2,000 300	500 1,000 150	10 200 30	5 100 10	1 20 3		2	0.05 1 0.15	0.01 0.2 0.03	0.1	0.02	0.0005 0.01 0.0015

For DBS extracted standard solution, there was excellent linearity for Level 8 (150 pg/mL=1ng/mL blood) to Level 1 (300 ng/mL=2 µg/mL blood) for both amiodarone and desethylamiodarone.

Each sample injection were replicated 3 times. At all the calibration level, accuracy values are between 85 to 115%. Calibration curves were weighed 1/x.

LC/MS/MS analysis For the detection of amiodarone, two MRM transitions $(m/z \text{ of } \Omega 1/\Omega 3 = 646/58 \text{ or } 646/100)$ were monitored.

Detection Limit For both amiodarone and desethylamiodarone, the S/N ratio for chromatograms with Level 9 (0.2 ng/mL blood) were at least 5 times higher than that of Level 0 sample (Chromatograms are not shown here). Detection limit of the method shown here is estimated at 0.2 ng/mL blood.

Application Typically for TDM, the concentrations of amiodarone in blood are usually monitored between the range of 600 ng/mL blood to 2000 ng/mL blood. The method developed in this work can be used to determine drug levels.

Further discussion Further studies will evaluate method precision and robustness.

Reference 1) J. Kuhn et al. J. Pharm. Biomed. Analysis 51(2010) 210-216 2) Agilent Technologies Inc. Application Note 5990-4705 Rat blood was provided by the kindly courtesy of Department of Biophysical Chemistry, Kyoto Pharmaceutical Univ. FTA Elute MicroCards (FTA-cards) were provided by the kindly courtesy of GE Healthcare Japan Corporation.

