

Blosビードへの交換方法

7890A,6890 シリーズ GC

対応 GC ファームウエア

 (ファームウエアのバージョンアップが必要な場合があります。担当営業にご確認ください。)
 7890A シリーズ GC A.01.09 以上
 6890A シリーズ GC A.03.08 以上
 6890N シリーズ GC N.04.12 以上がのぞましい

ジェットの交換(必ず必要ではありませんがお勧めいたします)

Bloaビードでは、拡張ジェット付きキャピラリ用をお勧めします。以下を参照ください。

キャピラリ専用タイプ用ジェット(ショートジェット)

下図ID	説明	ジェットチップ内径	全長(mm)	部品番号
1	拡張ジェット付きキャピラリ用(推奨)	0.29 mm (0.011″)	51.5	G1534-80580
2	キャピラリ用	0.29 mm (0.011″)	48.0	G1531-80560
3	キャピラリ、高温用	0.47 mm (0.018")	48.0	G1531-80620

パックド兼用タイプ用ジェット(ロングジェット)

下図ID	説明	ジェットチップ内径	全長(mm)	部品番号
1	拡張ジェット付きキャピラリ用(推奨)	0.29 mm (0.011″)	70.5	G1534-80590
2	キャピラリ用	0.29 mm (0.011")	61.5	19244-80560
3	キャピラリ、高温用	0.47 mm (0.018")	61.5	19244-80620
4	パックド用	0.46 mm (0.018")	63.5	18710-20119

交換手順は、

「Agilent (6890 または 7890A) ガスクロマトグラフ GC のメンテナンス」マニュアルの【NPDのメンテナンス】、 【NPD コレクタ、セラミックインシュレータ、およびジェットをメンテナンスするには】を参照ください。

GC の準備

1)Bead voltage を 0.0 にする。(Off に設定してはいけません) *データシステムでは、Bead voltage を 0.0 にしてメソッドを保存してからプログラムを閉じておきます。 6890シリーズ 7890A

-			
XXXXX D	et (n	PD)	
Temp	27	Off	
H2 flow	0.0	Off	
Air flow	0.0	Off	(\mathbf{n})
Adjust of	fset	Off<	
Output		0.5	
Bead volt	age (0.000<-	

XXXXX DETE	CTOR (NP	D)	
Temperature	28.0	Off	
H2 flow	0.00	Off	
Air flow	0.00	Off	
Makeup (N2)	0.00	Off	
Adjust offset	Of	f 20<-	≤ 2)
Output		0.5)
Bead:	0.000	0.000< -	(1)

2) Adjust Offset を off にします。

- 3)検出器温度を60℃以下に冷まします。ガス流量はそのままで結構です。検出器温度を早く冷ますために、 GC上部カバーとNPDカバー(オーブン温度の影響で熱い場合がありますので気をつけてください)を開けます。
- 4) GC 本体エレクトロニクスカバー(キーボード側上部)を開きます。 (7890A と6890シリーズによって異なります。各々の場合を以下に説明します)

7890A

①この場所にネジがありますので T-20 トルクスレンチを使用してゆるめます。はずす必要はありません。 (ストッパーがありますので、抜け落ちることはありません)

②エレクトロニクスカバーのネジ側を持ち上げます。

③カバーを開けると下図のようになります。

6890シリーズ ①GC 上部カバーを外します。 金属ヒンジタイプ GC 上部カバーを45° ぐらい持ち上げ、下記のようにはずします。

(1) 矢印の上下部をつまんで、止まるまで手間に引っ張ります。

(2) 丸いピン部を矢印の方向に止まるまで押します。

(3) GC上部カバーを矢印のように右にずらしてから、上へ持ち上げて取り外します。

金属ヒンジではないタイプ

GC上部カバーを垂直に開いて、右側を上に持ち上げて引き抜き(1)後、斜め右側方向に引き抜きます(2)。

Clips

②右側のカバーは、GC本体の電源スイッチが OFF であることを確認してから、T-20 トルクスレンチを使用して 上部にある2つのネジをゆるめ(1)、カバー全体を後部に2cmほどずらした(2)後に、持ち上げてはずします(3)。

③エレクトロニクス上部カバーは、下図の Clips と書かれた位置にツメがあるため、GC 右側カバー取り外し後に 上向きに手を入れて、奥側のツメの位置である Clips 部を手前側に押しながら 1cm ほど持ち上げて(1)から 手前側のツメの位置である Clips 部を奥側に押しながら(2)、カバーを持ち上げて取り外します(3)。

④カバーを開けると下図のようになります。

ビードの取り外しと取り付け

1)ほこりが出にくい手袋をつけてください。

2)ビードアッセンブリケーブルを、1の方向に 押しながら、2のようにリングを回して、3の方向に ケーブルを外します。

3) T-10 トルクスレンチでビードアッセンブリから 3つのネジを取り外します。

4) 古いビードアッセンブリをゆっくりと持ち上げ ながら取り外します。
このとき NPD リッドの内側にぶつけないように 気を付けてください。

- 5)新しいビードアッセンブリのプラスチックカバーを取り外します。
- 6) NPD リッドに新しいビードアッセンブリを取りつけます。NPD リッドの内側にぶつけないように気を付けて ください。

9)ケーブル同士を1の方向に押しつけるように しながら接続してから、2の方向にリングを 回してロックします。

- 10)NPD カバーを閉じてすべてのカバーを元に戻します。(GC の準備 4)の手順の逆です) NPD のベースライン安定のために、すべてのカバーは閉じてください。
- 11) 7890A では、[Config] [Front Det] または [Config] [Back Det] とキーを押して、下記画面にて新しいビードの コンフィグレーションをします。

a) ビードタイプを設定をします。

Blos bead: の行にカーソルを持って行き、[On/Yes] キーを押します。 下記の Maximum bead voltage 設定が 1.100 に変更されます。

b) 必要であれば Maximum Bead Voltage 設定を確認して調整します。

Blos Bead から Ceramic Bead にするときには、a)の操作で Off としても自動的に値の変更が されませんので、[4][.][0][9][5][Enter]とキー操作をして、Maximum bead voltage の値を 4.095V に変更します。

c) Dry Bead と Auto Adjust Bead は Yes の設定になっていることを確認します。

12)NPD ガス流量を下記流量に設定します。

6890シリーズ

XXXXX DET (NPD)				
Temp	27	Off		
H2 flow	3.0	3.0		
Air flow	120	120		
Mkup (N2)	10.0	10.0<		
Adjust of	fset	Off		
Output		0.5		
Bead volta	age (0.000		

NPD Blos	bead)
28.0	Off
3.00	3.00
120.0	120.0
10.00	10.00<
Off	20
	0.5
0.000	0.000
	NPD Blos 28.0 3.00 120.0 10.00 0ff 0.000

推奨された流量設定(初期値):

ビード種類	H2	Air	Makeu	p (Mkup)
Blos ビード	$1\sim3$ ml/min	120 ml/min	1~20 (N2) m1/min	10 以下 (He) ml/min
セラミックビード	$2\sim 5 \text{ ml/min}$	60 ml/min	$5{\sim}10$ (N2) ml/min	5 以下 (He) ml/min

13) すべてのガスを ON にしましたら、

NPD 温度を150℃の状態にして、Actual (実測温度)が Setpoint (設定温度)になってから、15分間待ちます。 次に NPD 温度を250℃に設定し、Actual (実測温度)が Setpoint (設定温度)になってから、15分間待ちます。

14) 実際の測定時の検出器温度に上げます。(推奨値は325から335℃です。最終オーブン温度よりも高く。) Actual (実測温度)が Setpoint (設定温度)まで上がりましたら、安定のために15分間待ちます。

15)NPD のリークカレントを確認します。

6890シリーズ

XXXXX DET (NPD)				
Temp	320	320		
H2 flow	3.0	3.0		
Air flow	120	120		
Mkup (N2)	10.0	10.0		
Adjust of:	fset	Off		
Output		0.5<		
Bead volta	age C	. 000		

7890A

XXXXX DET (1	NPD Blos	bead)
Temperature	320.0	320.0
H2 flow	3.00	3.00
Air flow	120.0	120.0
Makeup (N2)	10.00	10.00
Adjust offset	Off	20
Output		0.5<
Bead:	0.000	0.000

a) detector output を表示させます。

b) output (リークカレント)が 2.0pA 以下で安定していることを確認します。

もし、2.0pA 以上の場合はビードの取り付け状態を確認して取り付け直します。 それでも高い場合は、セラミックインシュレータを交換するか、コレクタを交換します。

交換手順は、「Agilent (6890 または 7890A) ガスクロマトグラフ GCのメンテナンス」ドキュメントの 【NPDのメンテナンス】章内の、【NPD コレクタ、セラミックインシュレータ、およびジェットをメンテナンス するには】を参照ください。

ビードをオンにする

ビードの取り付けが完了しました。ビード電圧はオフになっていますが、ガスの流れでビードの水分が NPD の外に 蒸発しました。 次に Adjust Offset (7890A にて Firmware A.01.09 以上である場合のみ)またはマニュアル操作で 決められたオフセット値になるように、ビード電圧を調整します。

Adjust Offset 機能を使用してのビード電圧の設定

- 警告:<u>6890シリーズでは</u>、Blos ビードの最大ビード電圧 1.10 V 以上の電圧を入力できないようにする機能である <u>Maximum bead voltage 設定機能がありません</u>。最大ビード電圧を超えて、<u>Blos ビードを破壊してしまう</u> <u>可能性があるため、Adjust Offset は使用しないでください</u>。(セラミックビードの場合は使用できます。)
- 1) オフセットの設定をします。 ([Front Det] or [Back Det] キーを押したのち[▼]で移動し、[2] [0] [Enter])

XXXXX DET (NPD	Blos bead)		
Makeup (N2) 1 Adjust offset Output	10.00 10.00 0ff 20< 0.5	・ブロスビード: ・セラミックビード(白または黒):	20pA 30pA

Agilent データシステムを使用している場合は、機器のオンラインセッションを立ち上げてください。
 Blos ビードに替えている場合は、ビードに合うように、現在のコンフィグレーションを修正しなければなりません。
 手順は、【機器(I)】メニューの【GC ソフトコンフィグレーション編集(S)】をクリック
 画面左上部の【コンフィグレーション】のタブをクリック

4) GC が Ready になりましたら、自動的に Adjust Offset を開始します。

マニュアル操作でのビード電圧の設定

ビード電圧が初期設定値になりましたら、ビードが赤熱するまでは 0.05V ずつのビード電圧増加をしていきます。 各ビード電圧変更後には、約10秒ずつ待ちます。NPD の output 値をモニターしている間に、ビードが赤熱すると、 output 値は突然上がるため、上昇時は安定するようにビード電圧を下げます。

Output 値の推奨は、

・ブロスビード: 20pA ・セラミックビード(白または黒): 30pA です。

最善の方法は、調整無しで24時間置いておくことです。24時間経過後に、適正なオフセット値になるまで、少ない 値での増加(0.05~0.1V)で、ビード電圧を調整します。

清潔な環境、清浄なガス供給、低いカラムブリードでの典型的なオフセットは、24時間経過後で 6-12pA 下がるかもしれません。

各ビードでの推奨される設定値(初期値):

ビード種類	Blos ビード	セラミックビード
一般的なビード電圧	0.5~1.0V	$2.5 \sim 3.7 \mathrm{V}$
H2 流量	$1\sim3$ ml/min	$2\sim 5$ ml/min
Air流量	120 ml/min	60 ml/min
メークアップガス(N2)流量	$1\sim$ 20 ml/min	$5\sim 10$ ml/min
メークアップガス(He)流量	10以下 ml/min	5以下 ml/min

注意点

- ・Blosビードでは、一般的にセラミックビードと同じようなサンプルレスポンスを示します。 しかし、白または黒のセラミックビードより低いオフセット値を必要とします。
- ・新品の Blos ビードでは、昇温分析時にベースラインの増加を示します。この挙動は2,3回の測定を することで、昇温分析時のベースラインの増加が少なくなります。

NPD 汚染度の目安

下記は、システムにて推奨された流量と温度に設定したときの、典型的なNPDリークカレントの値です。

リークカレント(pA)	システムステータス	コメント
0.3~0.9	きれい	サンプルレスポンス低下。
$1.0 \sim 9.9$	汚れている	ほとんどサンプルレスポンスはありません。
10 以上	非常に汚れている	通常はコレクタのセラミックインシュレータの汚染です。

上記にてリークカレントが 10 以上の場合は、セラミックインシュレータの交換が必要です。

交換手順は、

「Agilent (6890 または 7890A) ガスクロマトグラフ GCのメンテナンス」ドキュメントの【NPDのメンテナンス】 【NPD コレクタ、セラミックインシュレータ、およびジェットをメンテナンスするには】を参照ください。