

2µm以下の粒子(充てん剤)が高分解能 高速 HPLC に与える影響

アプリケーション

基礎研究、環境分析、医薬品開発

Alan D. Broske, Robert D. Ricker, Bernard J. Permar, Wu Chen, and Maureen Joseph Agilent Technologies 2850 Centerville Road Wilmington, DE 19808-1610 USA

要旨

新しく開発された RRHT(Rapid Resolution High Throughput)カラムは2ミクロン以下の充てん剤を 使用しており、分離度の向上、分析時間の短縮が得られしかも耐久性に優れていました。従来の 3.5µm 充てん剤を使用したカラムに対して、約2倍の効率を示しました。

序論

HPLC カラム用のシリカベース充てん剤は、長い間に亘って改良され続けています。化学結合相の技術の 進歩により、今日では広範囲な pH で使用することが可能になりました。StableBond - C18 で使用されて いるジイソプロピル基のような嵩高いアルキル基を側鎖に導入した化学結合相の技術は低 pH での長寿命 を実現しました。Bidentate (2座構造) - C18 を使用した化学結合相は pH10 以上の高 pH において抜群 の安定性を示します。

シリカの製造プロセスもまた改良されてきました。金属含有量の低い高純度シリカ(Type B)がベースシ リカとして開発されました。高純度シリカの使用により極性化合物を、以前の純度の低いシリカベースの 充てん剤で見られるようなテーリングを起こすことなく分析できるようになりました。シリカ充てん剤の 製造プロセスの継続的な改良が、3.5 µm やそれ以下の非常に小さい粒子を極めて狭い粒度分布で製造す ることを可能にしました。より小さい粒子は高効率のカラムを実現することができます。そのため、小さ い粒子サイズで作られた短いカラムは、大きな粒子で作られた長いカラムと同等の効率を示します。より 短いカラムを使用することで、分析時間を短縮し溶媒消費量も削減できます。

今回、2µm以下の粒子で作られた短いカラムの効率とカラム寿命を検討しました。 使用する LC システムは、これらのカラム効率を最大にするため最適化されている必要があります。

実験条件

HPLC システムはバイナリポンプ + デガッサ、オートサンプラ、カラム恒温槽、ダイオードアレー検出器 で構成された Agilent 1100LC を用いました。

LC システムの配管は標準の長さの内径 0.17mm のものを用い、内径 0.12mm を使用した実験も行いました。詳細なシステム構成を表1に示しました。

システムの制御とデータ解析は Agilent ケミステーション Rev9.03 を使用しました。

Agilent Technologies

項目	仕様	部品番号
標準配管		
Needle seat	0.17 mm	G1313-87101
Injector to column compartment	28 cm x 0.17 mm	01090-87304
Column compartment to column	7 cm x 0.17 mm	G1316-87300
Column to DAD	38 cm x 0.17 mm	G1315-87311
キャピラリ記管		
Needle seat	0.12 mm	G1313-87103
Injector to column compartment	28 cm x 0.12 mm	01090-87610
Column compartment to column	7 cm x 0.12 mm	G1316-87303
Column to DAD	38 cm x 0.12 mm	G1315-87312
Standard cell (DAD)		G1315-60012
Semi micro		G1315-60011
Micro high pressure		G1315-60015
表1.HPLCシステム配管構成と部品番号		

ウラシル,フェノール,4-クロロニトロベンゼン (Aldrich Chemical),トルエン (Burdick and Jackson) は 移動相に溶解しました。

濃度はそれぞれ 5,200,25,800 µg/mLです。

LC システムの検討

ラピッドレゾリューション(RR)HT カラムを使用するとき、このカラムが最適なパフォーマンスを得る ためにはイソクラティック、グラジエント分析において LC システムに注意すべきいくつかのパラメータ があります。

最も重要な 3 つのパラメータは、データ取り込み速度(サンプリングレート)、システムボリュームそして、移動相流速です。

これらの中でデータ取り込み速度(サンプリングレート)は最も重要なパラメータです。

カラム分離効率が良くなるにしたがってピーク幅は狭くなりますから、正確な積分に不可欠な適切なピー ク認識を行うためには十分なデータポイントが必要になります。

通常 UV/Vis 検出器のサンプリングレートは 0.6~1.25 Hz(デフォルト値)に設定されています。この数値は RRHT カラムにより得られるシャープなピークに対しては遅すぎるため、カラム効率が低下したような結果を与えます。データポイントを増やすことによりピークの正確な計測が可能になります。

例として、データ取り込み速度を 0.6 Hz (2 s)から 10 Hz (0.1 s)へ変えた時のクロマトグラムを図 1 に示 します。

RRHT カラムで高効率を得るためには、システムボリュームにも注意しなければなりません。 Agilent 1100 システムの標準配管は内径 0.17mm(グリーン)のチューブを使用しています。システムボリ ュームを減らすためには内径 0.12mm(赤)のチューブに変更することが必要です。 ZORBAX SB-C18(RRHT カラム)の効率を、表1に示した2つの配管構成で測定しました。 表 2 はウラシル、フェノール、4-クロロニトロベンゼン、トルエンを含むサンプルで実験した結果を示し ました。

0.17mm(グリ	ノーン配管)		0.12mm(赤	配管)	
カラム(mm)	k mm)	理論段数	カラム(mm	x mm)	理論段数
2.1 x 15	Uracil	77	2.1 x 15	Uracil	134
	Phenol	ND		Phenol	142
	4-Chloronitrobenzene	330		4-Chloronitrobenzene	540
	Toluene	596		Toluene	870
2.1 x 30	Uracil	124	2.1 x 30	Uracil	198
	Phenol	261		Phenol	428
	4-Chloronitrobenzene	1248		4-Chloronitrobenzene	1875
	Toluene	2326		Toluene	3166
4.6 x 15	Uracil	372	4.6 x 15	Uracil	496
	Phenol	752		Phenol	966
	4-Chloronitrobenzene	1845		4-Chloronitrobenzene	1947
	Toluene	1925		Toluene	1950
4.6 x 30	Uracil	1284	4.6 x 30	Uracil	1709
	Phenol	2932		Phenol	3596
	4-Chloronitrobenzene	6519		4-Chloronitrobenzene	6578
	Toluene	6622		Toluene	6192
4.6 x 50	Uracil	3064	4.6 x 50	Uracil	4474
	Phenol	6363		Phenol	8606
	4-Chloronitrobenzene	10560		4-Chloronitrobenzene	11206
	Toluene	10328		Toluene	10464

表2. 異なった配管による RRHT SB-C18 カラム効率の比較

より小さい内径の配管を使用することでより高い効率が得られ、これはより短くて内径の小さいカラムで 顕著です。この結果から、システムの配管にはより小さな内径(0.12mm)の配管が必要なことがわかります。 これによりバンド幅の広がりを押さえ、カラム効率を最大にすることができます。

グラジエント分析においても同様に、より内径の小さい配管(0.12mm)が必要になります。

さらに、ポンプとオートサンプラのシステムボリュームが最小になるようにしなければなりません。この ボリュームを減らすことは組成の変化した移動相がカラムヘッドに到達する時間(ディレイタイム)を短 くすることを意味し、結果的に分析時間を削減することができます。具体的にはポンプに取り付けられて いる溶媒ミキサーを外すか、高圧セミプレップフィルター(部品番号 5022-2165)のような低ボリュームミ キサーへの変更が推奨されます。

ポンプとオートサンプラの接続には低ボリュームの 0.12mm 配管(部品番号 G1375-87318)を使用して ください。

システムボリュームに影響を与えている他の要因は検出器のフローセルのボリュームです。

低ボリュームのフローセルを使用することにより効率が改善されます。

13µl のボリュームを持つ標準フルーセルは、SB-C18 RRHT カラム使用時にはかなりのピーク幅増大を もたらします。セミミクロフローセル(8µl)や高圧ミクロセル(1.7µl)を使用することにより、効率を上げ ることができます。

標準セル	セミミクロセル	ミクロ高圧セル
(13 µl)	(8 µl)	(1.7 µl)
134	98	96
142	177	176
540	681	675
870	1066	1068
198	243	236
428	570	556
1875	2482	2458
3166	3878	3844
496	748	669
966	1290	1240
1947	2140	1982
1950	2006	1866
1709	2476	2788
3596	4839	4920
6578	6886	6977
6192	6380	6535
4474	5892	6078
8606	10195	9760
11206	11435	11298
	標準セル (13 µ!) 134 142 540 870 198 428 1875 3166 966 1947 1950 1709 3596 6578 6192 4474 8606 11206	標準セル セミミクロセル (13 µ!) (8 µ!) 134 98 142 177 540 681 870 1066 198 243 428 570 1875 2482 3166 3878 496 748 966 1290 1947 2140 1947 2140 1950 2006 1947 2140 1950 2006 1709 2476 3596 4839 6578 6886 6192 6380 4474 5892 8606 10195 11206 11435

表3.に RRHT カラムでのセルボリュームの影響を示します。

表3. RRHT カラムの効率におよぼすセルボリュームの影響(理論段数)。

図 2 . アセトニトリル / 水: 50 / 50 における Van Deemter カーブ (サンプル;トルエン)

RRHT カラムの最適流速は、5µm カラムよりも高流速側に位置します。

図2.はアセトニトリル/水=50/50 を移動相としたときの 4.6 mm x 30 mm カラムにおける Van Deemter カーブです。この条件下では RRHT カラムの最適流速は 2ml/min でした。

また、メタノール/水=60/40 の移動相出で検討した結果、内径 4.6mm カラムにおいては 1.5ml/min で最 も高い効率を示しました。さらに、内径 2.1mm カラムの最適流量は、メタノールで 0.35ml/min となり、 アセトニトリルで 0.6ml/min となりました。

RRHT カラムでは粒径の大きい粒子(3.5µm や 5µm)と異なり、流速を増やしてもカラム効率がほとんど 低下しません。

このことは、分離効率を損なうことなく高流量で高速分析を行うことができる、ということを示しています。

カラム寿命

小さい粒子径のカラムでは一つの問題が論じられています。それは、移動相、サンプル中の微粒子や充て ん剤からの微粉末がカラムを詰まらせてしまうという問題です。カラムが詰まってしまうと、過度の圧力 上昇が起こりポンプが停止してしまうことがあります。

RRHT カラムの寿命をテストするために、4.6 mm x 30 mm の SB-C18 カラムを用いて連続注入試験を行 いました。サンプルとしてトルエンを用い、リテンションタイム(RT)、テーリングファクター(TF)を 計測しました。図3.に結果を示します。

図 3. RR HT SB-C18 カラムの耐久性

RRHT カラムは優れた耐久性を示しました。

RT(リテンションタイム)と TF(テーリングファクター)の変化は 2000 回以上のインジェクション後にも見られませんでした。

またカラムの詰まりも起こらず、システムのバックプレッシャー上昇によるシステム停止も発生しません でした。

分析効率の向上

RRHT カラムを使うことの利点は、大きな粒子と比較してより高い効率が得られることです。最適化された LC システムを使えば、従来のカラムより理論的に 2~5 倍の分析効率が得られます。

RRHT カラムは 3.5 µm 粒子を充てんした同じカラムサイズのカラムよりも約 2 倍の効率が得られるように設計されています。図4.に同じカラムサイズ(4.6 mm x 30 mm)での 3.5 µm カラムと RR HT カラムの比較を示しました。

もしシステムのパラメータを最適な状態に設定すれば、結果は予想とよく一致します。

Agilent Technologies

RRHT カラムの本当のメリットはピーク間の分解能の改善です。RRHT カラムの高い効率は、定量分析に 有用な非常に細いピークを生み出します。図5.に同じカラムサイズで異なる粒子径の充てん剤を充てん したカラムでのカゼ薬の分析例を示します。表4.にアセチルサリチル酸ピークのピーク幅、分離度、効 率(理論段数)を示します。

粒径	ピーク幅	分離能	効率(理論段数)	
RR HT	0.028	8.5	6474	
3.5 µm	0.043	6	3170	
表4.異な	った粒子径に	おけるクロ	マトグラム結果(フ	Pセチルサリチル酸)

予想通りリテンションタイムは同一ですが、ピーク幅が顕著に狭くなっておりピーク間の分離度が改善さ れています。

RRHT カラムは分離の難しい成分の分析や、分離度が規定されている分析メソッドでの分析に理想的なカ ラムです。

高速分析

RRHT カラムの高い効率(理論段数)は、効率を犠牲にすることなく短いカラムを使うことを可能にしま す。短いカラムは短時間分析を可能にし、結果的に溶媒消費量の削減というメリットも得られます。 図6.に RRHT カラムの高速分析例を従来のカラムと比較して示しました。

非常に小さい粒子が充てんされた短いカラムを使うことで、分析時間を大幅に削減することができました。 分析速度が速くなっても、近接して溶出するピークの分離度は十分に維持されています。

Mobile phase: 1% Formic acid Acetonitrile

図6.RRHT カラムの高速分離例

結論

RRHT カラムはすばらしい分離特性を示します。これらのカラムは 3.5 µm カラムの約 2 倍の効率(理論段数)を示しました。高い効率(理論段数)は高速分析を可能にしピークの分離能を向上させました。 さらに、2000回以上の連続分析後でもその特性を維持し、優れた耐久性を示しました。

最高の性能を発揮させるためには、データ取り込み速度の高速化や内径の小さい配管の使用、低容積の検 出器セルの使用といった若干の変更を、標準の 1100 LC システムに加える必要があります。

参考文献

- 1. J.L. Glajch, and J.J. Kirkland, U.S. Patent 4,705,725. 1987.
- 2. J.L. Glajch, and J.J. Kirkland, (1990) LC-GC, 8, 140.
- 3. J.J. Kirkland, J.B. Adams, Jr., M.A. van Straten and H.A. Claessens, (1998) Anal. Chem., 70, 4344.
- 4. J.J. Kirkland, M.A. van Straten and H.A. Claessens, (1998) J. Chrom. A, 797, 111.
- 5. L.R. Snyder, J.L. Glajch and J.J. Kirkland, Practical HPLC Method Development. 2nd Edition New York: Wiley-Interscience; 1997.

この技術資料は「The Influence of Sub-Two Micron Particles on HPLC Performance. Publication Number 5988-9251EN」を翻訳したものです。

May 7, 2003 5988-9251JAJP

Agilent Technologies