

アジレント SureSelect^{XT}(ポストプール) ターゲットエンリッチメントシステム 自動化システム対応キット イルミナペアエンドマルチプレックス シーケンス

200 ng プロトコル対応 和文プロトコル

本自動化プロトコルに沿って 200 ng の gDNA から SureSelect 実験を 実施する場合、必ず、Low Input (200 ng)プロトコルに対応した Vworks 自動化プログラムを用いる必要があります。 必ずご確認のうえ、ご利用ください。

Protocol

Version H.1. 対応 [2017年1月版 和文]

アジレントシュアプリントテクノロジーで製造した SureSelect プラットフォーム Research Use Only. Not for use in Diagnostic Procedures.

本プロトコルについて

プロトコルは予告なく変更になることがあります。

本日本語プロトコルは、英語版の

Protocol SureSelect^{XT} Automated Target Enrichment for Illumina Paired-End Multiplexed Sequencing Version H.1., June 2016 G7550-90000

に対応していますが、一部、日本での冬季の室温や実験室の設定温度が低い場合にあわせて 改変しています。必ず本和文プロトコルを参照して、実験いただくようお願いします。

このプロトコルでは、イルミナペアエンドマルチプレックスシーケンスに対応した Agilent の SureSelect^{XT} 自動化対応キットを用い、ゲノムの中のターゲット領域を Capture するための操作 手順を記述しています。本プロトコルは、ビオチン化 RNA オリゴマーライブラリ(Bait)を使って、タ ーゲットとするゲノム DNA の領域を、リピート配列やターゲット領域以外のシーケンスを除いて濃 縮するために開発、最適化されています。サンプル調製ステップは SureSelect^{XT} 自動化システ ムで多くの部分が自動化されています。

このプロトコルは、SureSelect 新製品体系のイルミナ社マルチプレックスペアエンドシーケンス 対応用の SureSelect^{XT} 自動化対応キットを用いて、ライブラリを調製するためのものです。自動 化用ではない SureSelect^{XT} キットを使用する場合、別途、専用プロトコルを参照ください。シング ルエンド、マルチプレックスではないペアエンド、メイトペアシーケンス、その他のライブラリには 対応していませんので、ご注意ください。

本プロトコルに関するご質問やご意見などございましたら、下記のメールアドレスにご連絡ください。

email_japan@agilent.com

1. はじめに

この章では、実験をはじめる前に読む必要がある情報(安全上の注意点、必要な試薬や機器 など)について説明しています。必ず実験前にお読みください。

2. SureSelect Target Enrichment のための Agilent SureSelect^{XT} 自動化システ ムの使用

この章では、Agilent SureSelect^{XT} 自動化システムの紹介、SureSelect Target Enrichment のプロトコルの概要、および SureSelect の実験をデザインする際の Agilent SureSelect^{XT} 自 動化システムを使った自動化プロセスで注意すべきポイントについて説明しています。

3. サンプル調製 (3 ug DNA サンプル)

この章では、3 ug のゲノム DNA サンプルを用いて、ターゲット領域の濃縮に用いるライブラリの調製法について説明しています。

4. サンプル調製 (200 ng DNA サンプル)

この章では、200 ng のゲノム DNA サンプルを用いて、ターゲット領域の濃縮に用いるライブラ リの調製法について説明しています。

5. ハイブリダイゼーション

この章では、サンプルの調製とハイブリダイゼーションのステップについて説明しています。

6. インデックス付加

この章では、ハイブリダイゼーション後のサンプルの増幅、精製と品質チェックのステップについて説明しています。サンプルはキャプチャの後、シーケンシング前にプールされます。使用するインデックスの長さ(8 bp または 6 bp)によって、試薬の調整方法が異なりますので、ご注意ください。

7. リファレンス

この章では、本実験に用いる装置や消耗品の付加的な注意点について説明しています。

Version H.0, H.1 での変更点

- Human All Exon V6、OneSeq 1Mb CNV Backbone キャプチャライブラリを追加しました。
- 200 ng プロトコルにおけるコバリスでの DNA 断片化について、補足説明を追加しました。
- NextSeq プラットフォームでのシーケンスについてなど、シーケンシングガイドラインを追記しました。(155 ページ)

Version G.2 での変更点

- ・ OneSeq キャプチャライブラリを追加しました。
- ClearSeq Comprehensive Cancer XT ライブラリなどの ClearSeq キャプチャライブラリ を追加しました。

Version G.1 での変更点

- 2014 年 12 月の初旬から、従来の 6 bp のインデックスに変わり、新しい 8 bp のインデッ クスが添付されるようになりました。6 bp、8 bp の長さにより、使用するインデックスの液 量が異なるため、それぞれのインデックスを使用する際のプロトコルを記載しました。使用 する長さのインデックスのプロトコルを必ずご参照ください。
- 8 bp のインデックスは、青い 96 well plate(従来の 6 bp は、透明キャップのチューブ)に 入っています。インデックス試薬の詳細および 8 bp のインデックスの配列については、プロトコル末尾のリファレンスを参照ください。
- ・ 従来品の 6 bp のインデックス試薬は、透明キャップのチューブに入っています。使用する インデックス試薬を事前によく確認のうえ、適切なプロトコルをご使用ください。
- インデックスの長さの変更に伴い、シーケンスランセットアップのためのガイドラインが変 更になりました。
- 以前のバージョンで変更されたキャプチャ後の増幅ステップでの On-bead PCR の採用により不要となっていた Elution Buffer と Neutralization Buffer が、ハイブリダイゼーションキットに含まれなくなりました。詳細はリファレンスの項を参照ください。

和訳 2014 年 6 月版(Version F.0)での変更点

 キャプチャ後のライブラリのサイズ範囲が 300 bp - 400 bp から 250 bp - 350 bp に修 正されました(実験手順に変更はありません)。

Version F.0 での変更点

- 200 ng DNA サンプル Input オプションに対応しました。3 ug DNA サンプルの標準プロト コルと比べての変更点は以下の通りです。
 - 1. コバリスによる断片化時の液量は、標準プロトコルの 130 uL ではなく、50 uL
 - 2. コバリスによる断片化後、末端修復前の AMPure 精製は削除
 - 3. ライブラリに付加するアダプター濃度は 1/10

- 4. キャプチャ前の PCR に、サンプルの半量ではなく全量を用いる
- 5. キャプチャ前の PCR のサイクル数は 10 サイクルに増加

目次

1. はじめに	8
操作に関する注意	9
安全に関する注意	11
実験に必要な試薬	12
2. Agilent SureSelect ^{XT} 自動化システムを使用した SureSelect Target Enrichment	18
Agilent SureSelect ^{xT} 自動化システム	19
Bravo プラットフォームについて	19
BenchCel について	20
VWorks Automation Control ソフトウェア	25
VWorks の終了	30
SureSelect Target Enrichment Procedure の概要	32
自動化ランを行う上での実験条件の検討	35
自動化プロセスで 96 ウェルプレートに入れる gDNA サンプルの場所について	36
装置の設置について	37
3. サンプルの調製 (3ug DNA サンプル)	38
STEP1. DNA の断片化	40
STEP2. Agencourt AMPure XP ビーズによるサンプルの精製	42
STEP3. DNA フラグメントサイズの品質(サイズ)チェック	47
Option 1: Agilent 2100 バイオアナライザによる品質(サイズ)チェック	47
Option 2: Agilent TapeStation による品質(サイズ)チェック	49
STEP4.ターゲットエンリッチメントのための DNA 末端修飾	51
STEP5. アダプター付き DNA ライブラリの増幅	57
STEP6. Agencourt AMPure XP ビーズによるサンプルの精製	64
STEP7. DNA サンプルのサイズチェックと定量	68
Option 1: Agilent 2100 バイオアナライザによる品質チェック	68
Option 2: Agilent TapeStation による品質チェック	70
4. サンプルの調製 (200 ng DNA サンプル)	74
STEP1. DNA の断片化	76
STEP2. DNA フラグメントサイズの品質(サイズ)チェック	79
Option 1: Agilent 2100 バイオアナライザによる品質(サイズ)チェック	79
Option 2: Agilent TapeStation による品質(サイズ)チェック	80
STEP3. ターゲットエンリッチメントのための DNA 末端修飾	82
STEP4. アダプター付き DNA ライブラリの増幅	90
STEP5. Agencourt AMPure XP ビーズによるサンプルの精製	
STEP6. DNA サンプルのサイズチェックと定量	101
Option 1: Agilent 2100 バイオアナライザによる品質チェック	101
Option 2: Agilent TapeStation による品質チェック	103

5. ハイブリダイゼーション	107
STEP1.ハイブリダイゼーションのための調製した DNA サンプルの分取	109
STEP2.DNA ライブラリと SureSelect Capture Library のハイブリダイゼーション	112
STEP3. SureSelect オリゴライブラリにキャプチャされた DNA の回収	126
6. ハイブリダイゼーション後の増幅とインデックスタグの付加	135
STEP1. キャプチャライブラリの増幅とインデックスタグの付加	136
STEP2. Agencourt AMPure XP ビーズによるサンプルの精製	145
STEP3. キャプチャライブラリの定量とサイズ確認	149
Option 1: Agilent 2100 バイオアナライザによる品質(サイズ)チェック	149
Option 2: Agilent TapeStation による品質(サイズ)チェック	150
STEP4. 定量 PCR によるインデックスタグ付きキャプチャライブラリの定量	152
STEP5. マルチプレックスシーケンスのためのサンプルのプール	153
STEP6. シーケンスサンプルの準備	155
7. リファレンス	157
試薬一覧 8 bp のインデックスが入った試薬キット	158
試薬一覧 6 bp のインデックスが入った試薬キット	162

1. はじめに

実験をはじめる前に、必要な機器と試薬について必ずご確認ください。

- NOTE 本プロトコルは Agilent の SureSelect^{XT} 自動化システムを用いたサンプル自動調製につい て説明します。Agilent の SureSelect^{XT} Target Enrichment Kit(イルミナマルチプレックス シーケンシグ対応)を用いてマニュアルでサンプルを調製する場合には別途、専用プロトコ ル(G7530-90000 の和訳版)を参照ください。
 - NOTE 使用するインデックスの長さ(8 bp もしくは 6 bp)により、キャプチャ後のアダプター付き DNA 増幅の準備の手順が異なります。必ず事前にご使用になるインデックスの長さを確認の上、適切なプロトコルをご使用ください。
- NOTE Target Enrichment Kitを本プロトコルに記載されている以外の non-Agilent プロトコルを用いて使用する場合、キットは保証の対象外となり、技術サポートも適用外となります点、ご 了承ください。
- NOTE 本 SureSelect^{XT} 自動化システム対応キットにつきましては、他のマニュアル操作の製品と 同様に、誤った使用法による実験の失敗については、補償の対象外となりますことをご了 承ください。万一、自動化システムもしくは弊社試薬の不具合により、実験がうまくいかなか った場合は、弊社サポート担当にご連絡ください。連絡先はプロトコル末尾に記載されてい ます。
- NOTE 本プロトコルは、イルミナ社のマルチプレックスペアエンドサイブラリ作製プロトコルと異なる 点がありますのでご注意ください。
- NOTE ベックマン・コールター社製の精製ビーズについては、必ずベックマン・コールター社のユー ザーズガイドをあわせて参照ください。
- NOTE 本プロトコルでの室温は、20~25℃の範囲となります。できるだけこの範囲内の室温で、自動化システムを操作ください。特に 20℃未満での低温での操作はハイブリダイゼーション バッファの析出を招き、結果に悪影響を与える危険性があります。

操作に関する注意

<<重要>>>

- 本プロトコルのライブラリ調製ステップでは、3 ug の gDNA から実験する標準プロトコルと、200 ng の gDNA から実験する Low Input オプションの 2 つの選択肢があります。どちらを使用する かによって、立ち上げる VWorks のフォームが異なりますのでご注意下さい。
- 遠心の際にシールを貼ったプレートについては、特にシールを貼ったままという記載のない限り、
 Bravo やミニハブのデッキにプレートを載せる際に、シールを必ずはがしてください。シールをは
 がす時に、反動で液がはねないようにご注意ください。
- ご使用するインデックスの長さ(8 bp または 6 bp)にあわせたキャプチャ後アダプター付き DNA
 ライブラリの調製方法を参照ください。
- このプロトコルの特定の段階では、Bravo デッキとサーマルサイクラの間で、実験者がサンプル プレートを素早く移動させる必要があります。ご使用になるサーマルサイクラを Agilent SureSelect^{XT} 自動化システムのごく近くに置き、迅速かつ効率的なプレートの移動ができるよう にしてください。
- 各自動化プロトコルのランを始める前にそのステップに詳述されているように Agilent SureSelect^{XT} 自動化システムを準備してください。ワークステーションの Labware MiniHub にプ レートをセットする際には、いつも43ページの図 3の向き(A1の位置が MiniHub に正対して手 前左の位置になる)でプレートを置いてください。
- Thermo Scientific Reservoir を MiniHub にセットする際は、かならず、切り欠きの部分が MiniHubの中心側を向くように置いてください。切り欠きを MiniHubの外側に向けないようにして ください。
- 黒アダプターに ABI MicroAmp プレートをセットする場合やシルバーの Nunc DeepWell プレート インサートに Nunc DeepWell プレートをセットする場合に、プレートが浮きやすくなります。手で そっと押し下げて確実にセットするようにしてください。
- ・ ヌクレアーゼの試薬への混入を避けるために、操作を行う場合は、必ずパウダーフリーのラボ用
 手袋を着用し、適切な溶液、ピペット、ヌクレアーゼフリー エアロゾル防止フィルタ付きピペット
 チップを使用ください。

- ・ 実験スペースは常にクリーンな状態にします。
- gDNA を含む溶液は、基本的には Vortex で混合しないようにしてください。指でそっとタッピング することで、液を混合するようにしてください。ただしプロトコルで Vortex による混合が指定されて いる個所は、プロトコルに従ってください。
- gDNA を含む溶液は、できるだけ凍結融解の繰り返しを避けるようにしてください。本プロコトル に示されている stopping point では、gDNA サンプルを 4°C で一晩保存できます。24 時間以上 保存する場合には、サンプルは-20°C で保存してください。ただし、サンプルの凍結融解の繰り 返しは避けてください。。
- ・ 凍結しているストック溶液を使用する際には次のステップで行います。
 - 1. 室温以上の温度で加熱しないように、かつできるだけ速く分注された溶液を融かします。
 - 2. Vortex Mixer で軽く短時間混ぜ、遠心機で5~10秒遠心して、チューブの壁やふたについた液を落とします。
 - 3. 使用時までオンアイスまたは冷却ブロックの中で保存します。

本バージョンから、アジレントサービス担当者向けの機能として、据え付け時のソフトウェアの動 作確認のため、インキュベーションとミックスの時間をスキップして、プログラムを走らせる機能が 付加されました。Form 画面の一番右下に次の画面があります。

Advanced Settings TESTING ONLY: Reduces all incubation times
and/or mix cycles

この設定に誤ってチェックを入れると、正常なインキュベーションとミックスが行われません。 誤ってチェックを入れたままプログラムをスタートすると、次のメッセージが画面に現れます。

このメッセージが画面に現れたら、プログラムが正常動作しませんので、Pause and Diagnosis のボタンをクリックしてください。続けて以下の Schedule Paused のポップアップ画面が出ます ので、ここで Abort Process をクリックし、Protocol を Abort で止めてから、Advanced Setting の TESTING ONLY のチェックを外して、再度ランさせてください。

Scheduler Paused	
Continue	VWorks
Diagnostics	Protocol aborted!
Einish, no new plates	ОК

Biosafety Level 1(BL1)のルールに基づき、実験を行います。

安全に関する注意

 実験室で実験を行う際は、各実験室において決められた規則に従い、保護用の用具(白衣、安 全眼鏡など)を着用してください。

実験に必要な試薬

下記の表は以下の WEB-site から pdf ファイルをダウンロードいただくことができます。

http://agilentgenomics.jp

サポート ■ 実験前に必要な情報のダウンロードサイト をご参照ください。

表 1 SureSelect XT で使用可能なキャプチャライブラリリスト

		マニュ	アル用	自動化用
SureSelect XT キャプチャライブラリ (ベイト)		16反応分	96反応分	96反応分
SureSelect XT Human All Exon V6	Agilent	5190-8863	5190-8864	5190-8865
SureSelect XT Human All Exon V6 + UTRs	Agilent	5190-8881	5190-8882	5190-8883
SureSelect XT Human All Exon V6 + COSMIC	Agilent	5190-9307	5190-9308	5190-9309
SureSelect XT Human All Exon V5	Agilent	5190-6208	5190-6209	5190-6210
SureSelect XT Human All Exon V5+UTRs	Agilent	5190-6213	5190-6214	5190-6215
SureSelect XT Human All Exon V5+IncRNA	Agilent	5190-6446	5190-6447	5190-6448
SureSelect XT Human All Exon V5+Regulatory	Agilent	931071	931072	931073
SureSelect XT Focused Exome	Agilent	5190-7787	5190-7788	5190-7789
SureSelect XT Clinical Research Exome	Agilent	5190-7338	5190-7339	5190-7344
SureSelect XT Mouse All Exon	Agilent	5190-4641	5190-4642	5190-4643
SureSelect XT Mouse All Exon V2 (mm10 対応)	Agilent	EA	EA	EA
SureSelect XT NCC oncopanel	Agilent	931195	931196	931197
SureSelect XT カスタム 1 - 499 kb	Agilent	5190-4806	5190-4807	5190-4808
SureSelect XT カスタム 1 - 499 kb, 再発注	Agilent	5190-4811	5190-4812	5190-4813
SureSelect XT カスタム 0.5 - 2.9 Mb	Agilent	5190-4816	5190-4817	5190-4818
SureSelect XT カスタム 0.5 - 2.9 Mb,再発注	Agilent	5190-4821	5190-4822	5190-4823
SureSelect XT カスタム 3.0 - 5.9 Mb	Agilent	5190-4826	5190-4827	5190-4828
SureSelect XT カスタム 3.0 - 5.9 Mb,再発注	Agilent	5190-4831	5190-4832	5190-4833
SureSelect XT カスタム 6.0 - 11.9 Mb	Agilent	5190-4836	5190-4837	5190-4838
SureSelect XT カスタム 6.0 - 11.9 Mb, 再発注	Agilent	5190-4841	5190-4842	5190-4843
SureSelect XT カスタム 12.0 - 24.0 Mb	Agilent	5190-4896	5190-4897	5190-4898
SureSelect XT カスタム 12.0 - 24.0 Mb, <mark>再発注</mark>	Agilent	5190-4901	5190-4902	5190-4903
ClearSeq キャプチャライブラリ (ベイト)				
ClearSeq SS Comprehensive Cancer	Agilent	5190-8011	5190-8012	5190-8013
ClearSeq SS 遺伝性疾患リサーチ	Agilent	5190-7518	5190-7519	5190-7520
ClearSeq SS DNA Kinome	Agilent	5190-4646	5190-4647	5190-4648
OneSeq キャプチャライブラリ (ペイト) SureSelect XT のみ対	応			
OneSeq SS Constitutional Research	Agilent	5190-8702	5190-8703	5190-8704
OneSeq SS Hi Res Backbone + カスタム 1 - 499 kb,	Agilent	5190-8705	5190-8887	5190-8888
OneSeq SS Hi Res Backbone + カスタム 0.5 - 2.9 Mb	Agilent	5190-8889	5190-8890	5190-8891
OneSeq SS Hi Res Backbone + カスタム 3.0 - 5.9 Mb	Agilent	5190-8892	5190-8893	5190-8894
OneSeq SS Hi Res Backbone + カスタム 6.0 - 11.9 Mb	Agilent	5190-8895	5190-8896	5190-8897
OneSeq SS 1Mb CNV Backbone+カスタム 1 - 499 kb,	Agilent	5190-9462	5190-9463	5190-9464
OneSeq SS 1Mb CNV Backbone+カスタム 0.5 - 2.9 Mb	Agilent	5190-9465	5190-9466	5190-9467
OneSeq SS 1Mb CNV Backbone+カスタム 3.0 - 5.9 Mb	Agilent	5190-9468	5190-9469	5190-9470
OneSeq SS 1Mb CNV Backbone+カスタム 6.0 - 11.9 Mb	Agilent	5190-9471	5190-9472	5190-9473
OneSeq SS 1Mb CNV Backbone+カスタム 12.0 - 24 Mb	Agilent	5190-9474	5190-9475	5190-9476

表 2 実験に必要な試薬

	î.	1	,			1
晶名	製造メーカー	品書	指定/ 推奨/ 相当品	必要量 /96反応 あたり	内容量	備考
SureSelect XT I試薬キット	1					,
SureSelect XT Reagents, イルミナHSQ/NSQ, 96 反応	Agilent	G9641B	-	1	96反応分	HiSeq用
SureSelect XT Reagents, イルミナMSQ, 96 反応	Agilent	G9642B	-	1	96反応分	MiSeq用
その他の試薬						
品名	製造メーカー	品書	指定/ 推奨/ 相当品	必要量 /96反応 あたり	内容量	備考
ヘラクレス (Herculase) II Fusion DNA Polymerase	Agilent	600679	指定	221	400 uL	dNTP溶液付きのタイプが必要で す。小容量タイプ(600677,200uL) もあります。
Dynabeads MyOne Streptavidin T1	Life Technologies (ベリタス)	65602	指定	5	10 mL	他の容量タイプ(65601 2mL)もあ ります。
AMPure XP Kit (SPRI beads)	Beckman Coulter	A63880 または A63881 または A63882	指定	93.696	A63880 - 5 mL x1, A63881 - 60 mL x1 A63882 - 450 mL x1	A63822 450mLタイブで計算
1xLow TE Buffer (10mM Tris-HCl, pH 8.0, 0.1mM EDTA)	Life Technologies	12090-015	相当	約120 uL	100 mL	
Nuclease-free water (not DEPC-treated)	Life Technologies	AM9930	相当	約180 mL	500 mL	DEPC処理ではないこと
99.5% Ethanol, molecular biology grade	Wako	054-07225	相当	約 231 mL		98%以上で、分子生物学用グレード 他の有機溶剤のコンタミネーションがないこと
70% Ethanol (for SPRI clean-up)、molecular biology grade				330 mL		上記のエタノールと水を使用して 作製
Qubit dsDNA BR Assay Kit	Life Technologies	Q32850				スタート時のgDNAをできるだけ正 確に定量するために用います。
オプション品となります。必要に応じてご利用ください						
Agilent NGS FFPE QC Kit	Agilent	G9700A (16反応) G9700B (96反応)			16反応分また は96反応分	FFPE 由来DNAサンプルを使用する際 のゲノムDNA QCに使用
Agilent QPCR NGSライブラリ定量キット(イルミナGA)	Agilent	G4880A	推奨	5	5ラン分	1ランで最大21サンプルまで定量す ることができます。
※お持ちの電気泳動装置に応じ、TapeStation用もしくはバイオアナライ	ザ用、いずれかの	の消耗品をご用意	下さい。			
Agilent 4200 / 2200 TapeStation消耗品						
Agilent TapeStation D1000 Screen Tape	Agilent	5067-5582	指定	12	7	1枚で16サンプル測定できます。
Agilent TapeStation D1000 試薬キット	Agilent	5067-5583	指定	12	7	
Agilent TapeStation High Sensitivity D1000 Screen Tape	Agilent	5067-5584	指定	6	7	1枚で16サンプル測定できます。
Agilent TapeStation High Sensitivity D1000 試薬キット	Agilent	5067-5585	指定	6	7	
Agilent TapeStation Genomic DNA ScreenTape	Agilent	5067-5365	推奨	6	7	1枚で最大15サンプル測定できます。
Agilent TapeStation Genomic DNA 試薬キット	Agilent	5067-5366	推奨	6	7	スタート時のgDNAの分解度評価 に、アガロースゲル電気泳動の代 わりに使用できます。
Agilent 2100 パイオアナライザ消耗品						
Agilent DNA 1000 kit	Agilent	5067-1504	指定	16	25ラン分	1ランで最大12サンプルまで流すこ とができます。
Agilent High Sensitivity DNA kit	Agilent	5067-4626	指定	9	10ラン分	1 ランで最大11サンプルまで流す ことができます。 Expert softwareVer B02.07 以降が 必要です

※大容量または小容量タイプがあるものはご利用いただけます。

1. はじめに

※【試薬・消耗品の保証期間について】

アジレント製品の保証期間は、箱やチューブの入った小袋あるいはボトルに記載の Expiration date(Exp. date)までです。保証期間を過ぎた製品については欠品等があった場合も交換ができない場合がありますので、製品が納品されたらすぐに内容物を確認して下さい。

保証期間を過ぎると性能の保証ができないため、保証期間内に使用するように計画して下さい。

※それぞれの試薬について、指定されている温度で保存ください。

※SureSelect オリゴキャプチャライブラリ(Bait)のカスタムデザインを SureDesign/eArray で行った場合は、デザイン ID(ELID)が、SureDesign/eArray でデザインし、オーダーしたものと同一であることを確認してください。オリゴキャプチャライブラリのデザイン ID は、チューブラベルおよびチューブの入った箱のラベルに記載されています。

実験に必要な装置、消耗品類

下記の表は以下の WEB-site から pdf ファイルをダウンロードいただくことができます。

http://agilentgenomics.jp

サポート ■ 実験前に必要な情報のダウンロードサイト をご参照ください。

表 3 実験に必要な装置、消耗品類

<必要な機器、消耗品類>						
晶名	製造メーカー	品書	指定/ 推奨/ 相当品	必要量	内容量	備考
いずれかの電気泳動装置をご利用下さい。	· · · · · · · · · · · · · · · · · · ·	· ·				·
Agilent 4200 TapeStation System	Agilent	G2991AA	指定			DNAの定性または定量に使用すること ができます。
Agilent 2200 TapeStation	Agilent	G2964AAまた はG2965AA	指定			キャプチャ前後のDNAライブラリ の定量とサイズ確認に必要です。
Agilent 2100 Bioanalyzer	Agilent	G2938C	指定			キャブチャ前後のDNAライブラリ の定量とサイズ確認に必要です。 Expert Control Software B.02.07 以 降のVersionである必要がありま す。
エアコンプレッサー	アズワン	アズワン型番 2-8141-01 ハンデコン P08P7S01	相当	1		オイルレスドライエアー、流量 34.0Lpm以上、供給圧力 0.65MPa(95psi)以上の仕様を満た すこと。ベンチセルとシーラーの 動作の一部に使用しています。
Covaris Sample Preparation System	Covaris (エムエス 横器)	Model LE220 or E220 or S2	指定			gDNAを再現性良く断片化するため に必要。ネブライザの使用は推奨 しません。S2はマニュアルで1検 体ずつの処理。E210は96検体を自 動処理できるが、1検体ずつの処 理。LE220は96検体を自動処理で きるが、8検体ずつの処理(E210 より8倍処理速度が上がる) LE220 はS2やE210と断片化のプロトコル が異なるので要注意。
Covaris 96 well plate for E220 or LE220	Covaris (エムエス 横器)	520069	指定	1	10	Model E220 or LE220用 Well Plate 1枚の製品は、520078 78,000円 S2用はチューブとなり、型番は 520045 です。
Qubit®2.0 Fluorometer	Life Technologies	Q32866	推奨			スタート時のgDNAをできるだけ正 確に定量するために用います。
サーマルサイクラー	Life Technologies	Verity Thermal Cycler	相当			65℃24hのハイブリで、27uLの液 が24uL以下まで蒸発しないこと (HotTop使用) かならず、指定 のMicroAmpの96ウェルプレートを 用いた時に蒸発が抑えられること を事前に確認ください。
ヒートブロック	Eppendorf	サーモミキサー コンフォート	相当	1		ハイブリダイゼーションミックス を調製後、65℃5分に加熱した 後、 25℃に保つのに必要です。65℃か ら25℃に戻すのに時間がかかる機 種の場合、ヒートブロックが2台必 要になることがあります。
Dynal DynaMag-15またはDynal DynaMag-50	Life Technologies (ベリタス)	12301D 12302D	相当			大容量のストレプトアビジンビー ズを一度に洗浄するために必要で す。 48サンプル以下のサンプル数を扱 う場合には、Dynal DynaMag-15が 便利です。
遠心分離機 ————————————————————————————————————	Eppendorf	5804	相当			96 Well Plate 対応タイブ、Deep Well(高さ31.35mm)が入るこ と。1,000g以上。
濃縮遠心機 (96well plate用ローター付き)	Savant	SC210A	相当			45 [°] C以下の低温で、96Well Plate に入れた30uLのDNA溶液が1~2 時間程度で濃縮できること。 専 用ロータ、冷却トラップと油回転 真空ポンプが必要です。TOMY精 エのCC-105の濃縮遠心機一式も使 用できます。SavantのDNA120と 96Well Plate用のローター (RD2MP)も使用できますが、 Deep Wellは入りません。

1. はじめに

品名	製造メーカー	品書	指定/ 推奨/ 相当品	必要量	内容量	備考
Robotic Pipetteing Tips (250uL)	Agilent	19477-022	指定	62	50	1ケース 96チップ入り、50ケース
Eppendorf twin.tec full-skirted 96-well PCR plates	Eppendorf	951020401	指定	11	25	951020619でも可
BioRad Hard-Shell® 96 ウェルスカート付き PCR プレート	BioRad	HSP9601	指定	3	50	PCR後のAMPureXP精製の溶出で AMPureXPビーズのコンタミネー ションを抑えるために使用しま す。
Thermo Scientific Reservoirs	Thermo Scientific	1064156	指定	10	20	
Nunc DeepWell Plate, sterile, 1.3 ml well volume	Thermo Scientific	260251	指定	14	50	
Axygen 96 Deep Well Plate, 2.0 mL, Square Well (Waste	Axygen	P-2ML-SQ-C	指定	5	25	E&K Scientific p/n EK-2440 でも可
MicroAmp Optical 96-well Reaction Plate, half-skirted	Life Technolgies	N801-0560	指定	3	10	このPlatelは指定なので、使用予定 のPCRで、65°C24hのハイブリを 事前に行い、27uLの液が24uL以下 まで蒸発しないことを確認くださ い。シールは下記のMicroAmpの Clearシールを2重貼りにするか、 BioMekのアルミシールと MicroAmpのClearシールを2重貼り にします。
MicroAmp 96-Well base(black adapter for MicroAmp plates)	Life	N801-0531	指定	3	10	
Biomek SEAL & SAMPLE Aluminium foil Lid	Beckman Coulter	538619	相当			ABIのMicroAm p 96Well plateを 65℃でハイブリする 際のシールに用います。下記のABI のAdhesiveフィルムとセットで用 います。 Adhesiveフィルムを2枚貼って、ハ イブリ液が蒸発しない場合は、特 にアルミシールを使用する必要は ありません。
MicroAmp Clear Adhesive Film	Life Technologies	4306311	推奨			ハイフリ時の密閉を確実にするために、2枚重ねて貼るか、もしくは 上記のアルミシールの上にさらに 貼るシールです。
MicroAmp Adhesive Film Applicator	Life Technologies	4333183	相当			上記のシールをWell Plateに密着さ せるための ツールです。
Compression Pad (Mat)	使用している サーマルサイク ラーに適したも の		相当	1		PCRの機種によって、ハイブリ中 の蒸発を防ぐために必要な場合が あります。機種によって適切なPad が異なります。MicroAmp Optical Film Compression Pad 4312639ま たはAgilent 410187など。
Peelable Clear Seal	Agilent	16985-001	指定	12	2000	シーラー用のシールです。 SureSelect XT 自動化システム購入 時には一巻き2000枚分が付属して います。
DNA LoBind チューブ, 1.5ml PCR clean, 250 pieces	Eppendorf	95295-0030 108.051	相当	約28本	250本	核酸の吸着が少ないLoBindタイプ を使用ください。
Qubit assay tubes	Life Technologies	Q32856				QubitでgDNAを正確に定量するた めに用います。
NucleoClean Decontamination Spray 500 mL	Millioire	3097S	相当			目動化システムの埃をとり、清掃するときに、キムワイプに浸みこませて使用します。
ピペット	Pipetman	P10,P20,P200, P1000	相当			
マルチチャンネルピペット	Rainin	L12-20	相当			
ピペットチップ 滅菌、Nuclease-Free、エアロゾルブロックフィルター付						
き パウダーフリー手袋 SAFE SKIN グローブ PRE (S, M, L サイズ)	Kimberly Clark	220, 330, 440 (S, M, Lサイズ)	相当			
アイスパケツ						
タイマー						
ボルテックスミキサー		エビカ・川	+= >*			
ギエルゼロ協会 オプション品となります。必要に応じてご利用ください	ローキミリホブ	ノーテンロ	们当			
AriaMx リアルタイム定量PCRシステム	Agilent	G8830A	相当			キャプチャされたDNAライブラリ を正確に定量するために用いま す。
AriaMx 96-well plates またはoptical Tube Strip	Agilent	401490 または 401493	相当	Plate 2枚	Strip Tubes	、。 定量PCRによるQCに用います。
Mx3000p optical strip caps (flat type)	Agilent	401425	相当	していた キャップ 4連	strip caps 120	定量PCRによるQCに用います。

- ※gDNA をロスなく再現性よく、かつ確実に 150-200 bp の長さに断片化するために、Covaris の使用が 指定されています。Covaris の詳細については、エムエス機器株式会社にお問い合わせください。
- ※65°C、16 時間もしくは 24 時間のハイブリダイゼーションに用いる PCR 装置、チューブまたは
 96well-plate とキャップは、必ず事前にハイブリダイゼーション液が 4 µL 以上、蒸発しないことを確認してから使用してください。
- ※自動化システムが使用する消耗品については、必ず指定の製品をご利用ください。指定の消耗品の 使用を前提として、1 mm 以下の精度でプロトコルが組まれています。指定以外の製品を利用すると 実験がうまくいかなくなる危険性があります。

2. Agilent SureSelect^{XT} 自動化システムを使用した SureSelect Target Enrichment

この章では、Agilent SureSelect^{XT} 自動化システムの紹介、SureSelect^{XT} Target Enrichment のプロト コルの概要、および Agilent SureSelect^{XT} 自動化システムを使った SureSelect 実験の計画を立てる際 に考慮すべきことについて説明しています。

Agilent SureSelect^{XT} 自動化システムについて

Agilent SureSelect^{XT} 自動化システム

Agilent SureSelect^{XT} 自動化システムは、多目的自動分注機の Bravo プラットフォーム、スタッカー付き マイクロプレート用自動ハンドラーの BenchCel、各種マイクロプレートハブステーションである MiniHub、 自動シーラーの PlateLoc から構成されています。Bravo プラットフォームのデッキのオプションである Inheco ヒートブロック(4番、6番)とチラー(9番)が Bravo に接続されています。さらに PlateLoc と BenchCel の動作に使用するエアコンプレッサー(または圧縮空気のライン)がシステムに接続されてい ます。

Bravoプラットフォームについて

Bravo プラットフォームは、96 ウェル、384 ウェルのプレートのハンドリングに適した 9 つのプラットフォー ムデッキがある多目的自動分注機です。Bravo プラットフォームは VWorks Automation Control ソフトウ ェアでコントロールします。交換可能な 7 種類の固定チップまたは使い捨てチップ用ピペットヘッドが選択 でき、0.1 µL から 250 µL までの液体を正確に分注できます。本プロトコルで使用しているピペットヘッド では、2 µL から 175 µL までの液体を正確に分注できます。

CAUTION はじめに、ご使用の Bravo プラットフォームの操作、メンテナンス、および安全上の注意 をよくお読みください。Bravo Platform User Guide(G5409-90004)および VWorks Software User Guide(G5415-90002)を参照してください。

Bravoプラットフォームデッキ

このプロトコルの以下のセクションでは、Bravo デッキの指定の場所にプレートや試薬リザーバーを設置 するための説明があります。Bravo プラットフォームデッキの番号については、図 1を参照してください。 正しく自動化システムを使用するために、このデッキの位置情報は非常に重要です。

図 1 Bravo プラットフォームデッキ

BenchCelについて

BenchCel のハンドラーが動作するスペースに、指定された以外のものを絶対に置かないように、また 動作の邪魔になるものがないように、注意してください。BenchCel のスタッカーに戻されたチップボック スは、使用済みのものなので、ラン終了後、チップボックスを取り除き、中のチップを廃棄するようにしてく ださい。

BenchCel の電源をオフすると、BenchCel のハンドラーは下方のホームポジションまで下がって止まります。指を挟まないように注意してください。

万一操作ミスなどで、BenchCelのハンドラーのアーム部分が曲がってしまった時には、専任のエンジニアによる位置調整が必要です。それ以上触らずに、本プロトコルの末尾に記載されているサポートお問い合わせ窓口にご連絡ください。

MiniHubについて

MiniHub にプレートをセットする際には、いつも43ページの図3の向き(A1の位置が MiniHub に正対して手前左の位置になる)でプレートを置いてください。Thermo Scientific Reservoir を MiniHub にセットする際は、かならず、切り欠きの部分が MiniHub の中心側を向くように置いてください。切り欠きをMiniHub の外側に向けないようにしてください。

MiniHub は最初に電源を入れた時には自由に動かすことができますが、一度初期化された後は、手で向きを変えることができません。無理に動かさないように注意してください。

[MiniHub のイニシャライズボタン追加]

MiniHubの横や後ろにスペースがなく、MiniHubにプレートをセットしにくい場合、MiniHubの電源をいったん OFF にして、手動で MiniHub を回転させて必要なプレートをセットし、セットが終わった後に MiniHub の電源を再び ON にして、Initialize MiniHub ボタンを押してイニシャライズをかけることができ るようになりました。

ただし、この機能は、上記の Initialize MiniHub のボタンがついた Form でのみ使用可能です。このボ タンがついていない Form を使用している場合、MiniHub の電源を切って MiniHub を手で回転させな いようにしてください。MiniHub の電源を OFF にして位置を変えた場合、必ず、MiniHub のイニシャ ライズ操作が必要です。イニシャライズを行わずに動作を進めると、エラーが発生します。

本ボタンをクリックして、MiniHubのイニシャライズを行うと、終了時に下記の画面が現れます。

OK ボタンを押してから、次の操作を行ってください。

MiniHubの棚の位置は高い精度でセットされています。もし万一無理な力を加えて、棚の位置が変わってしまった場合、専任のエンジニアによる位置調整が必要です。それ以上触らずに、本プロトコルの末尾に記載されているサポートお問い合わせ窓口にご連絡ください。

PlateLocについて

電源を入れて温度と空気圧が設定値に達するまではエラーの画面が出ます。温度と空気圧が設定値に 達すると、画面の右側にRUNのボタンが出て、動作できるようになります。PlateLoc用のシールは数種 類ありますが、SureSelect^{XT} 自動化システムでは、Clear Peelable Seal を使用しています。この Clear Peelable Seal でシールしたプレートは、数時間から1日までは 0 ℃から -80 ℃の低温で保存できま すが、それ以上の期間の保存には適していません。1日より長く保存する場合、シールではなく、適切な Strip キャップなどをはめて密閉した状態で保管ください。

電源オン

エアコンプレッサー、Bravo, BenchCel, MiniHub, PlateLoc, Inheco ヒートブロックの電源を入れます。 チラーはプロトコルを参照し、チラー電源をオンにすると指示されているプロトコルでのみ、電源を入れる ようにします。エアコンプレッサーは電源を入れる前に、排気口をクローズの状態にしていることを確認し てください。Bravo の電源は本体右側面に、BenchCel の電源は、本体右背面に、MiniHub の電源は、 MiniHub が接続されている電源ボックスの正面にあります。Inheco ヒートブロックの電源は背面に、チラ ーの電源は左側面にあります。PlateLoc は背面の Air スイッチが ON であることを確認します。最後に PC の電源を入れ、VWorks ソフトウェアを起動します。

電源オフ

VWorks ソフトウェアをクローズします。メソッドは変更したり、上書き保存しないようにしてください。 その後、Bravo, BenchCel, MiniHub, PlateLoc, Inheco ヒートブロック、チラーの電源を落としていきま す。BenchCel の電源を落とす時には、ハンドラーの下部に指を挟まないように注意してください。

エアコンプレッサーは電源を落とした後に、排気口を開けて、排気してください。その際、あまり勢いよ く排気口を Open すると、高い圧力で空気と水が飛び出すことがあるので、ご注意ください。動作中に内 部にたまった水も同時に排出されますので、排気口にキムタオルなどを置いて水が床に垂れないように ご注意ください。

PlateLoc は電源を単純にオフすると、プレートを載せるデッキが外に出た状態のままになります。デッ キが出ている状態が気にならない場合は、そのままでもかまいませんが、プレートを内部にしまいたい 場合は、エアコンプレッサーの電源をオフにした後、PlateLoc の背面の Air スイッチを OFF にしてくださ い。デッキを手で、内部に押しこむことができます。次に使用するときには、PlateLoc の背面の Air スイッ チを必ず ON にしてください。

Bravoデッキヒートブロックの温度設定

Bravo デッキ4番と6番には Inheco ヒートブロックが設置されており、ランの間に設定した温度でサンプ ルプレートをインキュベートするために使用しています。高温(85°C)または低温(4°C)でのインキュベー ションステップを含むランでは、ランを実行する前に使用するヒートブロックの温度をあらかじめ、Inheco Multi Tech Control 装置本体の画面で設定しておくと、操作時間を短縮できます。

Bravo デッキヒートブロックの温度は、以下に説明する手順で、Inheco Multi TEC Control 装置で変更す ることができます。Bravo のヒートブロック付きデッキの番号は、Inheco Multi TEC Control 装置で表 4 のように示されます。

表 4 Inheco Multi TEC Control タッチスクリーン表示

Bravo デッキの位置	Inheco Multi TEC Control Screen の表示
4	CPAC 2 1
6	CPAC 2 2

1. 矢印ボタンで適切なデッキ位置(CPAC 2 1 または CPAC 2 2)を選択します。

2. 選択したデッキ位置のヒートブロックの温度を設定するには、SET ボタンを押します。

2. Agilent SureSelectXT 自動化システムを使用した SureSelect Target Enrichment

テンキーパッドで目的とする温度を入力します。入力した温度は画面の左上に表示されます。正しい温度が表示されたら、その温度表示部分を押すと、その温度が入力されたことになります。(表示されただけでは入力したことにならないので、ご注意ください。)

4. Tempボタンを押して、新しく設定した温度がSETボタンに表示されることを確認してください。Tempボタンを押すと、Temp.ボタンの色が暗くなり、選択したヒートブロックが新しく設定した温度になるように加熱または冷却されます。このボタンを押さないと、実際に入力した温度にコントロールされないので、ご注意ください。

チラーの温度設定

Bravo デッキの 9 番にはチラーが接続されており、必要に応じてデッキを冷却または加熱するように なっています。プロトコルにチラーの温度設定の指定がある場合のみ、チラーは ON にします。それ以 外では電源を OFF にしておきます。

チラーの温度設定は、画面表示を見ながら Up もしくは Down ボタンで、表示温度が指定された温度 になるようにして、ENTER ボタンでその温度を決定し、さらに START ボタンを押して、指定した温度で 温度コントロールされるようにしてください。温度コントロールが実行されると、画面表示の左端の * マークが その時点の循環水の温度から上げる場合は+(プラス)マークに、温度を下げる場合は - (マイナス)マークに変わります。

VWorks Automation Controlソフトウェア

VWorks ソフトウェアはお使いの Agilent SureSelect^{XT} 自動化システムに含まれ、ロボットと周辺機器を パソコンで制御できます。Agilent SureSelect^{XT} 自動化システムには、SureSelect システムで必要な自 動分注プロトコルがすべて入った VWorks ソフトウェアがあらかじめインストールされています。VWorks ソフトウェアを使い始める際の一般的な取扱い方と含まれるプロトコルについて、以下に説明します。 SureSelect の各ステップの操作で指定された VWorks プロトコルを使用する際に、その VWorks プロト コルで必要となる設定については、プロトコルの各ステップで説明します。

NOTE このマニュアルは、VWorks software version 11.3.0.1195 に対応しています。 VWorks のバージョンについてのご質問は、email_japan@agilent.com までご連絡ください。

VWorksソフトウェアへのログイン

- 1. Windows のデスクトップにある VWorks アイコン、または SureSelect_XT_Illumina.VWForm ショ ートカットをダブルクリックして VWorks ソフトウェアを起動してください。
- User Authentication ダイアログボックスが現れない場合には、VWorks ウィンドウのツールバーの Log in をクリックしてください。
- 3. User Authentication ダイアログボックスでは、VWorks ユーザー名とパスワードを入力し、**OK** をク リックしてください。(ユーザーアカウントがない場合には、管理者に問い合わせてください。)

User Authentica	tion	×
C)	Please log in: User name: Password:	OK Cancel

VWorksソフトウェアでの User Authentication の設定(Administrator権限ユーザーのみ可能)

- 1. VWorks ソフトウェアの画面で Full Screen を off にしてください。
- 2. 画面上部のメニューバーから Tools をクリックし、その下の User Management をクリックしてください。
- Create New User を選択します。この画面で、適切な User Name と Password を設定してください。また適切な Security Level を設定ください。Administrator レベルおよび Technician レベルは、メソッドの書き換えが可能なので、Administrator 権限者以外の使用はお勧めしません。通常はメソッドの書き換えができない Operator レベルでの設定を推奨します。ただし、アクセスできる機能は制限されます。
- 4. Pass word の適切な有効期間など他の項目を設定し、VWorks の画面に戻ります。

VWorksプロトコルとランセットファイル

VWorks ソフトウェアの自動化プログラム実行のためのファイルには、.pro(プロトコル)ファイルと.rst(ラ ンセット)ファイルの 2 種類があります。ランセットファイルはワークステーションで複数の自動化プロトコ ルを組み合わせて一度に実行するために使用します。

SureSelect_XT_Illumina.v1.5.VWFormを使用したランの設定と開始

デスクトップには、SureSelect XT XT_Illumina_v1.5 3ug と XT_Illumina_v1.5 200ng の 2 種類の VWorks Form のショートカットが作成されています。3 ug の gDNA から実験をする時は SureSelect XT XT_Illumina_v1.5 3ug を、200 ng の gDNA から実験をする時は SureSelect XT XT_Illumina_v1.5 3ug を使って VWorks を起動して下さい。

VWorks を起動すると、下に示す SureSelect_XT_Illumina.v1.5.VWForm が画面に現れます。この画 面上で、各 SureSelect 自動化プロトコルまたはランセットの設定および開始を行います。 XT_Illumina_v1.5 3ug を起動した場合、以下図赤四角の箇所に「3 ug」、SureSelect XT XT_Illumina_v1.5 3ug を起動した場合以下図赤四角の箇所に「200 ng」と表示されています。

SureSelect ^{*/}	MiniHu	· · ·			
with on-bead PCR		MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniHub Cassette 4
For Hamina sequencers	Shelf 5				
200 ng Input JP.1.5.0	Shelf 4				
Parameters	Shelf 3		1	1	
1) Select Protocol to Run					
AMPureXP_XT_1lumina_v1.5.pro	Shelf 2				
2) Select additional Parameters ***AMPureXP_XT_Ellumina_v1.5.pro_Only****	Shelf 1				
a. Select DNA Product to Cleanup	·	1	1		1
Pre-Capture PCR Cleanup					
b.必ず適切な【サンブルブレート】を選択して下さい。		Bravo Deck			
O 96 ABI PCR half skirt in black carrier		0			<u></u>
96 Eppendorf Twin.tec PCR Plate or 96 Bio-Rad HSP9601 LoBind PCR Plate			-	, d	
		<position 1=""></position>	<position 2=""></position>	<position 3=""></position>	
3) Select Number of Columns of Samples*					
1 Columns selected					
"needs to be 1, 2, 3, 4, 6, or 12 columns		<pos 4:="" peltie<="" td=""><td>r> <pos 5:="" p="" shak<=""></pos></td><td>er> <pos 6:="" pelti<="" td=""><td>er></td></pos></td></pos>	r> <pos 5:="" p="" shak<=""></pos>	er> <pos 6:="" pelti<="" td=""><td>er></td></pos>	er>
 Click button below to Display Initial Workstation Setup 					
Setup Display Initial Clear Workstation Workstation Setup Setup Display					
		<pos 7:="" magn<="" td=""><td>etic> <position 8=""></position></td><td><pos 9:="" chil<="" td=""><td>ed></td></pos></td></pos>	etic> <position 8=""></position>	<pos 9:="" chil<="" td=""><td>ed></td></pos>	ed>
Controls					
※MiniHubiの電源とOFFにしてフレートセットした場合は 電源をONにした後に必ず下のIniHaltesボタンをクリックして下さい。					
ji Initialize MiniHub					
Once you have leaded labourg according to Weststation					
Setup on right, Click "Run Selected Protocol" to start run.	Ber	ndhCel			
Pause	Ber	chCel Stacker 1 Ber	nchCel Stacker 2 Be	nchCel Stacker 3 Be	inchCel Stacker 4
Full Screen ON/OFF Elapsed Time: 00:00:00					
	L				
			- Advanced S	Settings	
			Advanced S	iettinas	

- 1. デスクトップの SureSelect_XT_Illumina.v1.5.VWForm ショートカットを使ってこのフォームを開きま す。
- フォームのドロップダウンメニューから、適切な SureSelect ワークフローステップとサンプルのカラム数を選択します。サンプルのカラム数は1つのカラムが8サンプルに対応しています。2カラムは 16サンプル、3カラムは24サンプルとなり、最大12カラムとなります。

2. Agilent SureSelectXT 自動化システムを使用した SureSelect Target Enrichment

3. このフォームですべてのランのパラメータを決定したら、Display Initial Workstation Setup をクリ ックします。

Display Initial Workstation Setup

フォーム上の Workstation Setup の部分には、Bravo、BenchCel、MiniHub のそれぞれについて、決定 したランパラメータに応じて必要となる試薬と実験器具をセットする場所が示されます。この指定場所を 間違えると、自動化プロトコルは正常にランされませんので、必ずダブルチェックするようにしてください。

	Worksta	tion Setup				
SureSelect ^{XT}	MiniHu	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniHub Cassette 4	
with on-bead PCR	Shelf 5	Empty Nunc DeepWell Plate		_		
JP.1.5.0	Shelf 4					
arameters Select Protocol to Run	Shelf 3		Empty Eppendorf Twin.tec Plate			
AMPureXP_XT_Illumina_v1.5.pro	Shelf 2		Nuclease-free Water Reservoir	AmpureXP Beads in Nunc DeepWell		
Select additional Parameters ***AMPureXP_XT_Illumina_v1.5.pro Only***	Shelf 1		70% Ethanol Reservoir			
C 96 ABI PCR half skirt in black carrier	Be	<pre></pre> <position 1=""> Waste Reserv (Axygen 96DV <pos (set="" 2)="" 4:="" <="" cleanup="" dna="" for="" parameter="" pelbie="" plate="" pre=""> <pos 7:="" <="" magr="" p=""> <</pos></pos></position>	oir <position 2=""> oir <pos 5:="" shall<="" td=""> n <pos 5:="" shall<="" td=""> etic> <position 8=""> Empty Tip Bold</position></pos></pos></position>	<position 3=""> ker> <pos 6:="" p="" pelts<=""> xx <pos 9:="" chill<="" p=""> xx enchCel Stacker 3</pos></pos></position>	ed RT nchCel Stacker 4	

4. SureSelect^{XT} 自動化システムが正しくセットアップされたことを確認したら、**Run Selected Protocol** をクリックしてください。

Bravoの初期化

Bravo の電源を入れて最初に VWorks をスタートしたときには、Bravo の初期化の動作に伴い、必 ず画面に下記のエラーメッセージが 2 回出ます。必ず下記の指示に従って、操作してください。この 時点で選択を間違えると、初期化が正しく行われず、プロトコルをランしている途中にエラーで止ま ってしまいます。正しい選択を行うように注意ください。

1. 最初はグリッパーの初期化に伴う G axis のエラー表示が出ます。

このエラー表示が出たら、常時 Ignore and Continue, leaving device in current state を 選択してください。

There appears to be a plate present in, or in front of the gripper's plate presence sensor. - Choose "Retry" to check the plate presence sensor again. - Choose "Ignore" to continue to home the caxis. Please note that any plate currently held by the gripper will be dropped. - Choose "Abort" to cancel initialization.	<u> </u>
	Ŧ
<u>Diagnostics</u> <u>R</u> etry Income and Continue, leaving device in gurrent state	_
Abort	

2. 次に W-axis の初期化に伴うエラー表示が出ます。

このエラー表示が出たら、常時 Retry を選択してください。

Please verify that it is safe to home the <u>W-axis</u> the aspirate/dispense axis). If there is fluid in the tips you may want to manually home the W-axis in diagnostics over a waste position. - Choose "Retry" to continue homing the W-axis. - Choose "Ignore" to leave the W-axis unhomed. - Choose "Abort" to cancel initialization.	^ (\$)
	-
Diagnostics Retry Ignore and Continue, leaving device in current state	
Abort	

シミュレーション設定の確認

VWorks ソフトウェアはシミュレーションモードで実行することもでき、その間はスクリーンで入力したコマンドは SureSelect^{XT} 自動化システムでは実行されません。ランを開始してもワークステーションの装置が反応しない場合、以下の操作を行い、VWorks でのシミュレーションモードの状態を確認してください。

ステータスインジケータに Simulation is off と表示されていることを確認してください。(View > Control Toolbar とクリックするとステータスインジケータが表示されます。)

- そのインジケータに Simulation is on と表示されていたら、ステータスインジケータのボタンを押し てシミュレーションモードをオフにしてください。
- NOTE SureSelect_XT_Illumina VWorks フォームにツールバーが見えない場合、Full Screen on/off をクリックしてフルスクリーンモードを終了してください。それでもツールバーが見え ない場合には、フォーム上で右クリックし、メニューから Control Toolbar を選択してくださ い。

プロトコルまたはランセットの終了

下のウィンドウはランが完了すると表示されます。YesをクリックしてBenchCelラックを解放し、次の.pro または.rst でのランに備えるために使った試薬などを取り除いてください。ただしプロトコルによっては引 き続き使用するプレートやラックもありますので、各ステップでの指示に従ってください。

Protoco	l complete!		<
2	Release stacker racks used in protocols?		
	Yes	No	

VWorks の終了

Administrator もしくは Technician モードで VWorks を使用している場合は、VWorks を通常の操作で Close できますが、Operator モードで使用している場合、そのまま VWorks を close することができません。下記の手順で Close してください。

1. VWorks の Form の画面に出ている Full Screen on/off をクリックして、Full Screen off の状態にします。

2. 画面上部の Control Toll Bar から Log Out のアイコンをクリックします。

🚺 🚫 Log out 🚝 Compile 🌔 Start 🕕 Pause a

もし Control Tool Bar が画面に出ていない場合は、画面上部の View のメニューをクリックし、その中の Control Toll Bar を選択した状態にしてください。

3. Log out すると、このボタンが Log in に変わります。下記のユーザー名と password でログインしてく ださい。

User Name : administrator

Pass word : administrator

4. ログイン後ただちに、VWorksをCloseしてください。ここで万一プロトコルを変更してしまうと、上書き されてしまう怖れがあります。ログイン後は操作をせずに、ただちに Close してください。

SureSelect Target Enrichment Procedure の概要

イルミナ社のペアエンドシーケンスプラットフォームを用いてライブラリを調製する際の SureSelect ター ゲットエンリッチメントのワークフローを図 2 で説明します。シーケンスを行うためのサンプルは、まずそ れぞれ、個別にライブラリ調製、ハイブリダイゼーション、キャプチャを行います。キャプチャ後のサンプ ルを PCR 増幅するときに、あわせてインデックス(バーコード)シーケンスを各サンプルに付加します。 SureSelect でキャプチャするターゲット領域のサイズに応じて、1レーンあたり最大 96 サンプルまでプー ルして、マルチプレックスシーケンスが行えます。イルミナのマルチプレックスシーケンスでは、1ランに用 いる 1 フローセルのすべてのレーンをマルチプレックスシーケンスにする必要があります(ご使用のバー ジョンによっては、この制限がない場合もあります)。詳細はイルミナ社のプロトコルを参照ください。

表 5 には、SureSelect のワークフローの中で使われる VWorks のプロトコルがまとめてあります。サン プルを処理する際に使用される VWorks プロトコルの詳細な説明については、サンプル調製、ハイブリダ イゼーション、およびインデックスタグ付加の各章を参照してください。

図 2 サンプル調製ワークフロー

2. Agilent SureSelectXT 自動化システムを使用した SureSelect Target Enrichment

表 5 ワークフローで使用される VWorks プロトコルおよびランセットの概要

Works Form: SureSelect XT XT_IIIumina_v1.5 3ug 使用時

ワークフローステップ	ステップ	Agilent SureSelect ^{xT} 自動化システムで使
(プロトコルの章)		用される VWorks プロトコル
サンプル調製	AMPure XP ビーズを用いた	AMPureXP_XT_IIIumina_v1.5.pro
(3 ug DNA サンプル)	DNA 精製	
	アダプター付加 DNA の調製	LibraryPrep_XT_Illumina_v1.5.rst
	アダプター付加 DNA の増幅	Pre-CapturePCR_XT_Illumina_v1.5.pro
	AMPure XP ビーズを用いた	AMPureXP_XT_IIIumina_v1.5.pro
	DNA 精製	
ハイブリダイゼーション	750 ng のサンプルの分取	Aliquot_Libraries_v1.5.pro
	DNA のキャプチャライブラリ	Hybridization_v1.5.pro
	へのハイブリダイゼーション	
	DNA ハイブリッドのキャプチ	SureSelectCapture&Wash_v1.5.rst
	ャと洗浄	
インデックスタグの付加	PCR でのインデックスタグの	Post-CaptureIndexing_XT_Illumina_v1.5.pro
	付加	
	AMPure XP ビーズを用いた	AMPureXP_XT_IIIumina_v1.5.pro
	DNA 精製	

Works Form: SureSelect XT XT_Illumina_v1.5 200ng 使用時

ワークフローステップ	ステップ	- Agilent SureSelect ^{xT} 自動化システムで使
(プロトコルの章)		用される VWorks プロトコル
サンプル調製	アダプター付加 DNA の調製	LibraryPrep_XT_Illumina_v1.5.rst
(200 ng DNA サンプル)	アダプター付加 DNA の増幅	Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro
	AMPure XP ビーズを用いた	AMPureXP_XT_Illumina_v1.5.pro
	DNA 精製	
ハイブリダイゼーション	750 ng のサンプルの分取	Aliquot_Libraries_v1.5.pro
	DNA のキャプチャライブラリ	Hybridization_v1.5.pro
	へのハイブリダイゼーション	
	DNA ハイブリッドのキャプチ	SureSelectCapture&Wash_v1.5.rst
	ャと洗浄	
インデックスタグの付加	PCR でのインデックスタグの	Post-CaptureIndexing_XT_Illumina_v1.5.pro
	付加	
	AMPure XP ビーズを用いた	AMPureXP_XT_Illumina_v1.5.pro
	DNA 精製	

自動化ランを行う上での実験条件の検討

Agilent SureSelect^{XT} 自動化システムを用いて、Illumina プラットフォームでシーケンスするために処理 できる gDNA サンプルの数は、1、2、3、4、6、または 12 カラム(8、16、24、32、48、または 96 ウェルに 相当)から選択できます。ただし、自動化用の試薬は 24 検体単位で使用したときに過不足がないように 調整されているので、24 より少ない検体数でランしたときには、試薬が 96 検体分には足りなくなります。 できるだけ 24 検体単位で処理するように、実験計画を立ててください。

12 0		シンル致の対応我
カラム	数	総サンプル数
	1	8
	2	16
	3	24
	4	32
	6	48
	12	96

表 6 カラム数とサンプル数の対応表

各 96 反応分のキットは、1 ランあたり 3 カラム(24 検体分)の実験を 4 回行うために必要な試薬量を含んでいます。

2. Agilent SureSelectXT 自動化システムを使用した SureSelect Target Enrichment 自動化プロセスで96ウェルプレートに入れるgDNAサンプルの場所について

 Agilent SureSelect^{XT} 自動化システムは、サンプルの処理を常にカラム(Column、列)単位で行い、 カラム 1 がスタートポイントとなります。よって、gDNA サンプルは 96 ウェルプレートにカラム単位で セットし、A1 から H1 へ、次に A2 から H2 へ、最後に A12 から H12 という順番でセットするようにし ます。12 サンプルカラムより少ないカラム数でランを行うときには、サンプルカラム間に間を空けず、 つねに左のカラムから隙間のないように、サンプルをセットするようにします。

- ハイブリダイゼーションのステップ(図 2)では、プレートの各ロウ(Row、行)に異なる種類の SureSelect Capture Libraryをセットすることができます。調製したアダプター付き DNA ライブラリ が適切な SureSelect Capture Library と一致するように実験を計画してください。詳細はハイブリダ イゼーションの項目を参照ください。
- ハイブリダイゼーション後の SureSelect ライブラリへのインデックスタグ付加のステップ(図 2)では、 インデックスプライマーを別のプレートにセットする必要があります。実験デザインを立てる際に、適 切な番号のインデックスプライマーを適切なウェル(サンプル)をそれぞれ割り当てるようにしてくだ さい。

キャプチャ後の増幅ステップ(図 2)では、キャプチャターゲットのサイズの違いによって PCR 増幅 サイクル数が異なることがあります。同じ PCR サイクル数となるターゲットサイズの Capture Library を同じプレートで処理するようにしてください。詳細はキャプチャ後の増幅ステップの項目を 参照ください。
装置の設置について

- ワークフローのハイブリダイゼーションのステップでは、Bravo デッキとサーマルサイクラとの間でサンプルプレートを迅速に動かす必要があります。使用するサーマルサイクラを Agilent SureSelect^{XT} 自動化システムのできるだけ近くに設置し、迅速で効率的なプレート移動ができるようにしてください。
- ワークフローのステップの中には、サンプルプレートを PlateLoc サーマルマイクロプレートシーラー でシールした後、遠心してスピンダウンするステップがあります。効率をよくするために、遠心機を Agilent SureSelect^{XT} 自動化システムの近くに設置するようにしてください。

本プロトコルには、3 ug の DNA サンプル(標準 input 量)用のオプションと 200 ng の CAUTION DNA サンプル(Low input 量)用のオプションが記載されています。適切な章を参照し ていることを確認して下さい。 以下は 3 ug の DNA サンプル用プロトコルであり、200 ng の DNA サンプル用プロト コルは4章を参照して下さい。 スタート DNA 量が 3 ug 以上あるときには、3 ug の DNA サンプル用プロトコルをお 使いいただくことを推奨します。

Agilent Technologies

この章では、イルミナ社のペアエンドマルチプレックスシーケンスプラットフォームでランするための DNA ライブラリを、Agilent SureSelect^{XT} 自動化システムを用いて調製する方法を説明します。マ ルチプレックスシーケンスを行うサンプルは、96 ウェルプレートのウェルの中で個別に、ライブラリ調 製、ハイブリダイゼーション、およびキャプチャのステップが行われます。キャプチャ後のサンプルを PCR 増幅するときに、あわせてインデックス(バーコード)シーケンスを各サンプルに付加します。 SureSelect でキャプチャするターゲット領域のサイズに応じて、SureSelect^{XT} ターゲットエンリッチメ ントキットに含まれるイルミナシーケンサ用のインデックスタグを使って、1 レーンあたり最大 96 サン プルまでプールして、マルチプレックスシーケンスを行うことができます。イルミナのマルチプレック スシーケンスでは、1 ランに用いる 1 フローセルのすべてのレーンをマルチプレックスシーケンスに する必要がありますが、ご使用のシステムのバージョンによっても異なりますので、詳細はイルミナ 社のプロトコルを参照ください。

イルミナ社のオリジナルプロトコルとは、下記に加え、PCRの条件などが異なりますのでご注意くだ さい。

- 1. コバリスを用いて、150-200 bp をターゲットサイズとした gDNA の断片化を行います。
- 2. SureSelect^{XT} 自動化システム専用キットに含まれている試薬を使用します。
- 各ステップでの DNA の精製は、ベックマン・コールター社のビーズを使って行います。
 断片化サイズは、SureSelect のハイブリダイゼーションの効率に大きな影響を与えるため、gDNA の断片化について、コバリス以外の手法はバリデーションされていません。特にインデックスカスタ ムキットのプロトコルでは、ゲルによる精製とサイズ選択の代わりに、ビーズを使った核酸精製を行 いますので、コバリスで gDNA を確実に断片化することが重要なポイントです。他の手法を使用した 場合、保証およびサポートの対象外となります。

他の情報に関しては、イルミナのプロトコル Preparing Samples for Multiplexed Paired-End Sequencing (p/n 1005361 Rev. C)、または適切なイルミナのプロトコルを参照してください。

NOTE 実験には、OD260/280 の比が 1.8~2.0 の間にある高品質の gDNA を使用ください。できるだけ正確に DNA を定量するために、Qubit システムの使用を強くお勧めします。

STEP1. DNA の断片化

マルチプレックスシーケンスを行うDNAのサンプルそれぞれについて、アダプター付きDNAライブラリを 調製します。12 サンプルをシーケンスする場合は、12 ライブラリを調製することになります。

下記のプロトコルは、Covaris の Model S2 または S220 を使用して、gDNA を1サンプルずつ断片化す る場合のものです。96 サンプルを自動で処理するタイプの Covaris の使用方法については、Covaris 社 のプロトコルを参照してください。

- 1. Qubit dsDNA BR Assay キットを用いて、gDNA の濃度を測定します。実験には高品質の gDNA を用いるようにします。(分解しておらず、A260/A280 の比が 1.8-2.0 の間であること)
- DNA の吸着がおきない 1.5 mL の LoBind チューブを用いて、Qubit で定量した gDNA 3 μg を 1x Low TE Buffer で 130 μL の容量になるように溶解します。
- 3. コバリスを起動します。起動してから脱ガスが完了するまで、30分程度かかります。またこの段階 で次に使用する AMPure XP ビーズを室温に戻しておくと便利です。
 - a コバリスのウォーターバス内に、Milli-Q 水もしくは脱イオン水を注ぎます。水位はウォーター バス前面のラベルで「12」までとします。
 - b コバリスのウォーターバスの水位を、マイクロチューブ(p/n 520045)のキャップより下面のガ ラスチューブ全体が浸かるように調整してください。
 - c コバリスのウォーターバス内の水温が 5℃ 程度になるように、外部循環冷却装置の水温を 2℃~5℃ の間に設定し、循環水の温度の表示が 5℃ 以下になっているのを確認します。
 - d (オプション)外部循環冷却装置内の循環冷媒に、エチレングリコールを 20%[v/v]程度添加 すると、冷媒が凍結するのを防止することができます。
 - e ソフトウェアのメインスクリーンから、DEGAS ボタンをクリックして、最低 30 分以上 DEGAS を実行してください。

コバリスの操作の詳細は、コバリス社のユーザーズガイドを参照ください。

- マイクロチューブ(p/n 520045)を、ローディングステーション(p/n 500142)の上に載せます。
 キャップがされた状態であることを確認してください。
- 5. 先がテーパー状になったピペットチップを用い、コバリスのマイクロチューブのキャップ上面にある スリットにチップの先を差し込んで、サンプルの全量(130 µL)を入れます。マイクロチューブ内に泡 が残らないように注意してください。(泡は超音波による gDNA の断片化を阻害します。) 必ず Covaris 社指定のマイクロチューブを使用してください。
- サンプルを入れたマイクロチューブを、コバリスのマイクロチューブフォルダ (p/n 500114) にセット します。表 7 の設定により、gDNA の断片化を行います。ターゲットピークサイズは 150-200bp で す。

表 7 コバリス S220 の設定

設定	值
Duty Factor	10 %
Peak Power	175.0
Cycles / Burst	200
Treatment	360 sec
温度	4℃ から 7℃
コバリス S2 の設定	
設定	值
<mark>設定</mark> Duty Cycle	値 10%
設定 Duty Cycle Intensity	値 10% 5
設定 Duty Cycle Intensity Cycles per Burst	値 10% 5 200
<mark>設定</mark> Duty Cycle Intensity Cycles per Burst 時間	<mark>値</mark> 10% 5 200 60 秒、6 サイクル
<mark>設定</mark> Duty Cycle Intensity Cycles per Burst 時間 セットモード	値 10% 5 200 60 秒、6 サイクル Frequency sweeping

- 7. 断片化が終了したら、マイクロチューブをマイクロチューブフォルダから取り出し、ローディングステ ーションの上に再度載せます。
- マイクロチューブのふたはそのままの状態で、セプタからピペットチップの先を差し込み、中のサン プル全量を、ピペットを用いてゆっくり吸引します。
- 9. 引き続いて Agilent SureSelect^{XT} 自動化システムで処理するために、断片化されたサンプル全量 を、96 ウェル Eppendorf プレートのウェルにカラムごとに A1 から H1、A2 から H2、最後に A12 から H12 の順番で移します。
- NOTE SureSelect Automated Library Prep and Capture System のランはプレートの 1、2、3、4、 6、または 12 カラムで行います。サンプルを入れる場所の詳細については、SureSelect Target Enrichment のための Agilent SureSelectXT 自動化システムの使用を参照してくだ さい。
- 10. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 11. プレートを 30 秒間、1000g で遠心し、プレートの壁やプレートシールについた液をスピンダウンして、 気泡を除きます。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

STEP2. Agencourt AMPure XP ビーズによるサンプルの精製

このステップでは、Agilent SureSelect^{XT} 自動化システムは、AMPure XP ビーズとgDNA サンプルを Nunc DeepWell プレートに移して撹拌し、ビーズに結合した DNA を集め、洗浄して溶出する操作を実行 します。

ワークステーションと試薬の準備

- Labware MiniHub と BenchCel のプレートとチップボックスをすべて片付けます。チラーの電源は 入れないで OFF のままにして使用してください。
- NucleoClean decontamination スプレー溶液をキムワイプなどに含ませて、Labware MiniHub、 Bravo デッキ、および BenchCel をやさしく拭いてください。NucleoClean decontamination スプレ ー溶液が、使用する 96 プレート類に直接かからないようにご注意ください。
- 3. 使用する少なくとも 30 分以上前に、AMPure XPビーズ(4°C 保存)を室温に戻しておくようにします。最初の時点で1日に使用する量の AMPureXPビーズをファルコンチューブなどに分注して、室温で置いておくと便利です。24 検体を同時に処理する場合、アダプター付き DNA ライブラリ調製のステップ全体で、15.798mLの AMPureXPビーズを使用します。(この数値はピペットロス分を含んでいません。)
- ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- 5. 均一な状態にした AMPure XP ビーズ懸濁液 200 µL を、Nunc DeepWell ソースプレートの使用 する各ウェルに入れます。使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入れるようにしてください。
- 6. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 7. 45 mLの新しく調製した70%エタノールを入れた Thermo Scientific リザーバーを準備します。リザ
 ーバーの側面に nuclease-free 水と区別がつくように印をつけることをお勧めします。
 1日に使用する分の70%エタノールであれば、まとめて調製して密閉できる容器で保存して使用可
 能です。1日以上保存しないようにしてください。アダプター付き DNA ライブラリの増幅と精製まで
 1日で行う場合、必要量は240mL になります。(計量のロス分を含んでいません。)

8. 図 3に示すプレートの向きを参考に、表 8にしたがって Labware MiniHub に試薬をセットします。 必ず A1 の位置が下図に指定された向きでセットするように注意してください。この向きを間違える と、実験は正しく行われません。正しい位置に正しい向きで指定されたプレートを置くように十分に 注意してください。また nuclease-free 水と70%エタノールを入れたリザーバーには、切り欠きがあ ります。必ず切り欠きが MiniHub の内側を向くようにセットしてください。切り欠きを MiniHub の外 側に向けてセットしてしまうと、リザーバーの位置がずれ、BenchCel がリザーバーを運べなくなるト ラブルが発生する危険性があります。

Initialize MiniHub のボタンがついている Form を使用して、MiniHub の電源を切ってプレート類を セットした場合、MiniHub の電源を再び入れた後に必ず Initialize MiniHyb ボタンを押して、 MiniHub をイニシャライズしてください。

Shelf の位置	カセット 1	カセット 2	カセット 3	カセット 4
Shelf5(上)	空の Nunc DeepWell	空き	空き	空き
	プレート			
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空の Eppendorf	空き	空き
		プレート		
Shelf 2	空き	ステップ 6 の	ステップ 5 の AMPure	空き
		nuclease-free 水	XPビーズ懸濁液入り	
		リザーバー	${\cal O}$ Nunc DeepWell	
			プレート	
Shelf 1(下)	空き	ステップ 7 の 70%エタ	空き	空き
		ノールリザーバー		

表 8 AMPureXP XT Illumina v1.5.pro 用の MiniHub の初期配置

図 3 Agilent Labware MiniHub プレートの向き。Thermo Scientific リザーバーのときには、切り欠きのある角が MiniHub の中央に向くように置きます。

9. 表 9 に従って、チップボックスを BenchCel Microplate Handling Workstation にセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	2 チップボックス	空き	空き	空き
4	2 チップボックス	空き	空き	空き
6	3 チップボックス	空き	空き	空き
12	6 チップボックス	空き	空き	空き

表 9 AMPureXP_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

- 10. 表 9にしたがってBravo デッキにプレートをセットします。プレートはデッキの枠内にきちんとおさま るようにセットします。多少余裕がある場合は、デッキに正対して、左奥に向かって各プレートをき っちり押しつけるようにしてセットしてください。
- 表 10 AMPureXP_XT_Illumina_v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
4	断片化した gDNA サンプルを含む Eppendorf プレート。A1 が左上になるようにセット する。シールは注意してはがしておく。
8	空のチップボックス ここには、使用済みチップが入るので、あとでわかるようにボックス側面に印をつけ ておくと便利です。

VWorks プロトコル AMPureXP_XT_IIIumina_v1.5.pro の実行

- 11. デスクトップの SureSelect_XT_Illumina.v1.5.VWForm のショートカットをダブルクリックし、 SureSelect セットアップフォームを開きます。
- 12. VWorks ソフトウェアにログインします。

- 13. セットアップフォームの Select Protocol to Run の下の AMPureXP_XT_Illumina_v1.5.pro を 選択します。
- 1) Select Protocol to Run

	AMPureXP_XT_Illumina_v1.5.pro
	AMPureXP_XT_Illumina_v1.5.pro
2)	LibraryPrep_XT_Illumina_v1.5.rst
	Pre-CapturePCR_XT_Illumina_v1.5.pro
	Aliquot_Libraries_v1.5.pro
	Hybridization_v1.5.pro
	SureSelectCapture&Wash_v1.5.rst
	Post-CaptureIndexing_XT_Illumina_v1.5.pro
	Dilution for TapeStation_v1.0.pro

- 14. Select additional Parameters の下の、a. Select DNA Product to Cleanup のメニューから Covaris Shearing Cleanup を選択します。
- 2) Select additional Parameters

AMPureXP_XT_Illumina_v1.5.pro Only

a. Select DNA Product to Cleanup	
Covaris Shearing Cleanup	•
h Covaris Shearing Cleanup	
Pre-Capture PCR Cleanup	
Post-Capture PCR Cleanup	

 15. 続いて、Select additional Parameters の下の、b.必ず適切な[サンプルプレート]を選択してください。の選択肢から、ここでは 96 Eppendorf Twin.tec PCR Plate or 96 Bio-Rad HS9601
 LoBind PCR Plate を選択します。この選択を間違えると、動作が正常に行われなくなりますので、 注意してください。

•

2) Select additional Parameters

AMPureXP_XT_Illumina_v1.5.pro Only

a. Select DNA Product to Cleanup

Covaris Shearing Cleanup

- b.必ず適切な【サンプルプレート】を選択して下さい。
 - 96 ABI PCR half skirt in black carrier
 - 96 Eppendorf Twin.tec PCR Plate or
 96 Bio-Rad HSP9601 LoBind PCR Plate

NOTE AMPure_XT_Illumina_v1.5.pro は SureSelect 自動ワークフローの複数のステップで使用 します。自動プロトコルを始める時に正しいワークフローステップを選択しているか確認して ください。

- 1. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または12カラムが選択できます。 1カラムが8サンプル分に相当します。
 - 3) Select Number of Columns of Samples*

2. Display Initial Workstation Setup をクリックします。

3. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

1	-MiniHub)			
		MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Minii
	Shelf 5				

4. ミニハブの電源が入っていることを確認し、イニシャライズをまだ実行していない場合は、イニシャラ イズします。

5. 確認後 Run Selected Protocol をクリックしてください。

NOTE Bravoの電源が入って最初のランのときには、Bravoの初期化に伴うエラーメッセージが出 ます。グリッパー(G Axis)の確認メッセージが出た時には Ignore、続けて出る W-axis の 確認メッセージには Retry を選択して、そのまま続けてください。ここで選択を間違えると、 ランの最中にエラーで止まってしまうので、選択を間違えないように注意ください。 プロトコルを実行してもワークステーションの装置が反応していないが、Log には作動して いるように記録されている場合、VWorks がシミュレーションモードで作動していないかどうか を確認してください。詳細は 30 ページを参照してください。

AMPure_XT_Illumina_v1.5.pro の実行には約 45 分かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある Eppendorf のプレートの中に入っています。ここでの溶出容量は、各 50 uL です。 STEP3. DNA フラグメントサイズの品質(サイズ)チェック

Option 1: Agilent 2100バイオアナライザによる品質(サイズ)チェック

バイオアナライザの DNA 1000 チップと試薬キットを使います。バイオアナライザの和文ガイドブック は下記 Web サイトからダウンロードいただくことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

- バイオアナライザの電極を洗浄します。電極クリーナーチップに入れて電極を洗浄する水 350 µL は、複数回の測定を同日中に行う場合も、測定の度に交換して下さい。必要に応じて、バイオア ナライザのガイドブックに従い十分な洗浄を行ってください。
- Agilent 2100 expert ソフトウェア(version B.02.02 もしくはそれ以上)を起動し、バイオアナライ ザ本体とのコミュニケーションを確認します。
- 3. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 各ウェルのサンプルを混ぜるためプレートをボルテックスした後、30秒間遠心して壁やプレートシールについた液を落とします。
- 5. バイオアナライザの試薬ガイドに従い、チップ、サンプル、ラダーを調製します。
- 調製が終わったチップをバイオアナライザにセットします。チップ調製後、5分以内にランをスタートさせる必要があります。
- 7. バイオアナライザの assay のメニューから、適切な assay を選択します。
- ランをスタートさせます。データファイルへのリンクをクリックして、サンプル名およびコメントを書き 込みます。
- 9. 結果をチェックします。図4の泳動図のような分布が得られ、150-200 bp 付近の位置にピークトップがあることを確認します。また測定された濃度が 60 ng/uL(トータルの DNA 量が3 ug) から 大きくずれていないかどうか確認してください。
- **Stopping Point** 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

図 4 断片化した gDNA のバイオアナライザ DNA1000 アッセイ による泳動図。 150-200 bp 付近の位置にピークトップが見られます。

Option 2: Agilent TapeStationによる品質(サイズ)チェック

TapeStation の D1000 ScreenTape (p/n 5067-5582)と専用試薬キット(p/n 5067-5583)を使います。 TapeStation の操作マニュアルは下記 Web サイトからダウンロードいただくことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

- 1. 断片化した DNA サンプルが入ったプレートを PlateLoc Thermal Microplate Sealer でシールしま す。設定は、165℃、1.0 秒です。
- プレートの各ウェルに入っている DNA サンプルをボルテックスでよく撹拌します。30 秒間遠心して 壁やプレートシールについた液を落とします。
- 3. Agilent TapeStation の操作マニュアルに従い、1 uL の断片化 DNA サンプルを、3 uL の D1000 サンプルバッファで希釈し、よく混ぜます。
- CAUTION 正確な定量のために、DNAとD1000 サンプルバッファを混ぜたサンプルは、TapeStation 本体付属のボルテックスミキサで2000 rpm で1分、混合してください。付属のボルテックス ミキサをお持ちでない場合は Max で10秒の混合を2回繰り返して確実に混合してください。
 - 4. サンプルプレートもしくはサンプルチューブストリップを TapsStation にセットし、ランをスタートさせ ます。
 - 5. 結果をチェックします。図 5 の泳動図のような分布が得られ、150-200 bp 付近の位置にピークトッ プがあることを確認します。また測定された濃度が 60 ng/uL(トータルの DNA 量が 3 ug) から 大きくずれていないかどうか確認してください。
- **Stopping Point** 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

図 5 断片化した gDNA の TapeStaton D1000 アッセイ による泳動図。 150-200 bp 付近の位置にピークトップが見られます。

STEP4. ターゲットエンリッチメントのための DNA 末端修飾

このステップでは、Agilent SureSelect^{XT} 自動化システムは末端修復、A オーバーハング付加 (A-tailing)、およびアダプターライゲーションを含む SureSelect ターゲットエンリッチメントに必要な DNA 末端修飾を行います。各修飾ステップが終わる都度、Agilent SureSelect^{XT} 自動化システムは AMPure XP ビーズを用いた DNA 精製を行います。

ランを始める前にそれぞれのステップで使用する Master Mix(余剰を含みます)を作製する必要があり ます。(DNA サンプルを除く) 1、2、3、4、6、および 12 カラムに対応した各ランで必要な Master Mix が それぞれの表に示されています。

マスターミックスの調製は、氷上で行います。

ワークステーションの準備

- 1. チラーの電源を入れ、0°Cにセットします。Bravoデッキの9番が相当します。チラーリザーバーは 少なくとも 300 mL の 25%エタノールを含むことを確認してください。
- 2. Labware MiniHub と BenchCel 上のプレートとチップボックスをすべて片付けてください。
- 表 11 にしたがって適切な量の末端修復マスターミックスを調製してください。ボルテックスミキサ でよく撹拌し、氷上に置きます。

SureSelect ^{XT}	1 ライブラ	1カラム中	2カラム中	3カラム中	4カラム中	6 カラム中	12 カラム
試薬	リ中の量	の量	の量	の量	の量	の量	中の量
Nuclease-free	35.2 µL	448.8 µL	748.0 µL	1047.2 µL	1346.4 µL	1944.8 µL	3889.6 µL
water							
10X End-Repair	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 µL	552.5 µL	1105.0 µL
Buffer							
dNTP mix	1.6 µL	20.4 µL	34.0 µL	47.6 µL	61.2 µL	88.4 µL	176.8 µL
T4 DNA	1.0 µL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
polymerase							
Klenow DNA	2.0 µL	25.5 µL	42.5 µL	59.5 µL	76.5 µL	110.5 µL	221.0 µL
polymerase							
T4	2.2 µL	28.1 µL	46.8 µL	65.5 µL	84.2 µL	121.6 µL	243.1 µL
Polynucleotide							
Kinase							
トータル量	52 µL	663 µL	1105 µL	1547 μL	1989 µL	2873 μL	5746 µL

表 11 末端修復マスターミックスの調製

Aオーバーハング付加マスターミックスの調製

4. 表 12にしたがって適切な量のAオーバーハング付加マスターミックスを調製してください。ボルテ ックスミキサでよく撹拌し、氷上に置きます。

表 12 A オーバーハング付加マスターミックスの調製

SureSelect ^{XT}	1 ライブラ	1 カラム	2 カラム	3 カラム	4 カラム	6 カラム	12 カラム中
試薬	リ中の量	中の量	中の量	中の量	中の量	中の量	の量
Nuclease-free	11.0 µL	187.0 µL	280.5 µL	374.0 µL	467.5 µL	654.5 µL	1306.25 µL
water							
10X Klenow DNA	5.0 µL	85.0 µL	127.5 µL	170.0 µL	212.5 µL	297.5 µL	593.75 µL
Polymerase Buffer							
dATP	1.0 µL	17.0 µL	25.5 µL	34.0 µL	42.5 µL	59.5 µL	118.75 µL
Exo (-) Klenow	3.0 µL	51.0 µL	76.5 µL	102.0 µL	127.5 µL	178.5 µL	356.25 µL
DNA Polymerase							
トータル量	20 µL	340 µL	510 µL	680 µL	850 µL	1190 µL	2375 µL

アダプターライゲーションマスターミックスの調製

5. 表 13 にしたがって適切な量のアダプターライゲーションマスターミックスを調製してください。ボル テックスミキサでよく撹拌し、氷上に置きます。

表 13 アダプターライゲーションマスターミックスの調製

SureSelect ^{XT}	1 ライブラ	1カラム中	2 カラム中	3カラム中	4カラム中	6 カラム中	12 カラム
試楽	リ中の量	の量	の量	の量	の量	の量	中の量
Nuclease-free water	15.5 µL	197.6 µL	329.4 µL	461.1 µL	592.9 µL	856.4 µL	1712.8 µL
5X T4 DNA Ligase Buffer	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 µL	552.5 μL	1105.0 μL
SureSelect Adaptor oligo mix	10.0 µL	127.5 μL	212.5 μL	297.5 μL	382.5 μL	552.5 μL	1105.0 μL
T4 DNA ligase	1.5 µL	19.1 µL	31.9 µL	44.6 µL	57.4 µL	82.9 µL	165.8 µL
トータル量	37.0 μL	471.7 μL	786.3 µL	1100.7 μL	1415.3 µL	2044.3 µL	4088.6 µL

6. Nunc DeepWell プレートにステップ3から5で調製したマスターミックスを含むマスターミックスソ ースプレートを調製します。

マスター	ソース	Nunc DeepWe	Nunc DeepWell ソースプレートの 1 ウェル中に加えるマスターミックスの量				
ミックス	プレート	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン
	の位置						
末端修復マス	カラム 1	78 µL	130 µL	182 µL	234 µL	338 µL	676 µL
ターミックス	(A1-H1)						
Aオーバーハン	カラム 2	40 µL	60 µL	80 µL	100 µL	140 µL	280 µL
グ付加マスター	(A2-H2)						
ミックス							
アダプターライ	カラム 3	55.5 µL	92.5 µL	129.5 µL	166.5 µL	240.5 µL	481 µL
ゲーションマス	(A3-H3)						
ターミックス							

表 14 LibraryPrep_XT_Illumina_v1.5.rst のためのマスターミックスソースプレートの調製

LibraryPrep_XT_Illumina_v1.5.rstのためのマスターミックスソースプレートの位置

- 3. サンプルの調製 (3 ug DNA サンプル)
 - マスターミックスソースプレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
 - プレートを 30 秒間、1000g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。マスターミックスソースプレートは氷上に置いておきます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がはねないように注意してください。
 - NOTE ソースプレートの溶液に泡があるとBravo液体分注プラットフォームで正確に容量が測れないことがあります。必ずソースプレートをランの前にシールし、遠心してください。

精製試薬の調製

- 9. AMPure XP ビーズ懸濁液が 30 分以上室温に置かれていたことを確認してください。
- 10. ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- 均一な状態にした AMPure XP ビーズ懸濁液 370 μL を、新しい Nunc DeepWell ソースプレートの使用する各ウェルに入れます。使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入れるようにしてください。
- 12. 30 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 13. 150 mL の新しく調製した 70%エタノールを入れた Thermo Scientific リザーバーを準備します。

Agilent SureSelect^{XT} 自動化システムにセット

14. 表 15 にしたがって Labware MiniHub に試薬をセットします。

表	15	LibraryPrep_	_XT_	_Illumina_	_v1.5.rst	用の	MiniHub	の初期配置
---	----	--------------	------	------------	-----------	----	---------	-------

Shelf の位置		 カセット 2	カセット 3	カセット 4
Shelf 5(上)	空の Nunc	空の Eppendorf プレ	空の Nunc	空き
	DeepWell プレート	− ト	DeepWell プレート	
Shelf 4	空き	空のEppendorfプレー	空のEppendorfプレ	空き
		F	− ト	
Shelf 3	空き	空き	空き	空のEppendorfプレ
				− ト
Shelf 2	空のチップボック	ステップ 12 の	ステップ 11 の	空き
	ス	nuclease-free 水リザ	AMPure XP ビーズ	
		—/Ň—	懸濁液入りのNunc	
			DeepWell プレート	
Shelf 1(下)	新しいチップボック	ステップ 13 の 70%エ	空き	空のチップボック
	ス	タノールリザーバー		ス

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向けてセットします。リザーバーの切り欠きは MiniHub の内側に向けてセットします。

15. 表 16 のように BenchCel Microplate Handling Workstation にチップボックスをセットします。

<u>,</u>				
使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	2 チップボックス	空き	空き	空き
2	4 チップボックス	空き	空き	空き
3	5 チップボックス	空き	空き	空き
4	7 チップボックス	空き	空き	空き
6	10 チップボックス	空き	空き	空き
12	11 チップボックス	8 チップボックス	空き	空き

表 16 LibraryPrep XT Illumina v1.5.rst 用の BenchCel の初期配置

16. 表 17 にしたがって Bravo デッキにプレートをセットします。

表 17 LibraryPrep_XT_Illumina_v1.5.rst 用の Bravo デッキの初期配置

デッキの	
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
6	空の Eppendorf プレート。A1 が左上になるように。
7	精製した gDNA サンプルを含む Eppendorf プレート。A1 が左上になるように。
9	DNA 末端修復マスターミックスソースプレート。A1 が左上になるように。
N77 N	

※シールをはがしていることを確認してください。

VWorks ランセット LibraryPrep_XT_IIIumina_v1.5.rst の実行

17. SureSelect セットアップフォームの Select Protocol to Run の下の LibraryPrep_XT_Illumina_v1.5.rstを選択します。

18. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できま

す。

3) Select Number of Columns of Samples*

19. Display Initial Workstation Setup をクリックします。

	Display Initial
\mathbf{v}	Workstation Setup

20. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか**必ず**確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

い。

−Mini	Hub			
	MiniHub Cassette	1 MiniHub Case	sette 2 MiniHub Ca	ssette 3 Minii
Shel	f 5			

- 21. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 22. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

23. ランの準備が完了しましたら、次のウィンドウの OK をクリックしてください。

LibraryPrep_XT_Illumina_v1.5.rst の実行には約 3.5~4 時間かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある Eppendorf のプレートの中に入った状態になります。ここ での溶出容量は、各 30 µL です。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

STEP5. アダプター付き DNA ライブラリの増幅

このステップでは、Agilent SureSelect^{xT} 自動化システムはアダプター付き DNA サンプルの増幅のための溶液分注ステップを行います。

このプロトコルでは、前項で調製した、両端にアダプターが付加された DNA 断片の半分の量を使用しま す。残りの半量は 4°C で保存し、必要であれば後で使用することや、増幅のトラブルシューティングに使 用することができます。長期保存の場合には-20°C で保存してください。

CAUTION ライブラリのクロスコンタミネーションを防ぐために、PCR反応液の調製はラボで決めら れたクリーンエリアか、UV ランプを備えた PCR フードにて陽圧の環境下で実施してくだ さい。

ワークステーションの準備

- 1. チラーの電源を入れ、0°Cにセットします。Bravoデッキの9番が相当します。チラーリザーバーは 少なくとも 300 mL の 25%エタノールを含むことを確認してください。
- 前の LibraryPrep_XT_Illumina_v1.5.rst ラン後に残った Labware MiniHub のカセット1の Shelf1 と Shelf2 にあるチップボックスは、次のステップで使用するので、そのまま MiniHub 上に残してお いてください。また、デッキの上に残った DNA 末端修復マスターミックスソースプレートは、以下の ステップで再び使用します。ただし、梅雨の時期など湿度の高いラボではマスターミックスソースプ レートのウェル中に、結露が生じることがあります。もしウェル内部に結露が生じていることが確認 された場合は、新しいプレートを使用してください。その際、新しいプレートでも指定されたウェル に試薬を入れるようにしてください。その他の Labware MiniHub と BenchCel 上のプレートとチッ プボックスは、すべて片付けてください。
- Bravo デッキヒートブロックの温度設定を参照し、Inheco Multi TEC Control タッチスクリーンを使って Bravo デッキ 6 番の温度をあらかじめ 4°C に設定してください。Bravo デッキ 6 番は Inheco Multi TEC Control タッチスクリーンで CPAC 2 2 に相当します。

キャプチャ前 PCR マスターミックスとマスターミックスソースプレートの準備

4. 適切な量のキャプチャ前 PCR マスターミックスを調製します。

SureSelect ^x T 試薬	1 ライブラ リ中の量	1カラム中 の量	2 カラム中 の量	3カラム中 の量	4カラム中 の量	6 カラム中 の量	12 カラム 中の量
Nuclease-free water	21.0 µL	267.8 µL	446.3 µL	624.8 µL	803.3 µL	1160.3 µL	2320.5 µL
Herculase II 5X Reaction Buffer*	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 μL	552.5 μL	1105 µL
dNTP mix*	0.5 µL	6.4 µL	10.6 µL	14.9 µL	19.1 µL	27.6 µL	55.3 µL
SureSelect Primer (Forward)**	1.25 µL	15.9 µL	26.6 µL	37.2 µL	47.8 µL	69.1 µL	138.1 µL
SureSelect Indexing Pre-Capture PCR (Reverse) Primer***	1.25 μL	15.9 μL	26.6 µL	37.2 μL	47.8 μL	69.1 µL	138.1 µL
Herculase II polymerase	1.0 µL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
トータル量	35 µL	446.3 µL	743.8 µL	1041.3 µL	1338.8 µL	1933.8 µL	3867.5 µL

表	18	キャプチャ前 PCR マスターミックスの調製	
---	----	------------------------	--

* dNTP mix は Herculase II Fusion DNA Polymerase に含まれます。他のキットの buffer と dNTP を 使用しないでください。

** SureSelect Primer (Forward)は Library Prep Kit に含まれています。

*** SureSelect indexing Pre-capture PCR(Reverse) Primer は-20℃保存のハイブリダイゼーションキットに含まれています。

- 5. LibraryPrep_XT_Illumina_v1.5.rst ランで使った同じ Nunc DeepWell マスターミックスソースプレ ートを使い(ウェル内に結露がみられた場合は新しいプレートを使用)、表 19 に示された量の PCR マスターミックスをマスターミックスソースプレートのカラム 4 のすべてのウェルに加えます。 マスターミックスソースプレートの最終的な状態は図 7 のようになります。
 - Pre-CapturePCR XT Illumina v1.5.pro 用マスターミックスソースプレートの調製 表 19

マスターミック	ソースプ	Nunc DeepWell ソースプレートの 1 ウェル中に加えるマスターミックスの量					
ス	レートの	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン
	位置						
キャプチャ前	カラム 4	52.5 µL	87.5 µL	122.5 µL	157.5 µL	227.5 µL	455 µL
PCR マスターミ	(A4-H4)						
ックス							

NOTE キャプチャ前 PCR ソースプレートのために新しい DeepWell プレートを使う場合(たとえば、 ウェル内に結露が生じていたり、すでに前ステップで使用した DeepWell プレートを捨ててし まっていたり、残りのアダプター付き DNA サンプルを増幅する場合)、カラム 1-3 は必ず空 にしておき、カラム 4 に PCR マスターミックスを入れてください。

Pre-CapturePCR XT Illumina v1.5.pro 用マスターミックスソースプレートの状態。カラム 1-3 は前のプロトコルでマスターミックスを分注する際にすでに使用しています。

- マスターミックスソースプレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
- プレートを30秒間遠心し、壁やプレートシールについた液を落とし、気泡を除きます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がはねないように注意してください。
- NOTE ソースプレートの溶液に泡があると Bravo 液体分注プラットフォームで正確に容量が測れ ないことがあります。必ずソースプレートをランの前にシールし、遠心してください。

Agilent SureSelect^{XT} 自動化システムにセット

8. 図 3 に示すプレートの向きを参考に、表 20 にしたがって Labware MiniHub に試薬をセットします。

表 20 Pre-CapturePCR_XT_Illumina_v1.5.pro 用の MiniHub の初期配置

Shelf の位置	カセット 1	カセット 2	カセット 3	カセット 4
Shelf 5(上)	空き	空き	空き	黒いアダプターに
				載せた空の ABI
				MicroAmp プレート
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空き	空き	空き
Shelf 2	廃棄用チップボッ	空き	空き	空き
	クス*			
Shelf 1(下)	未使用のチップが	空き	空き	空のチップボック
	入ったチップボック			ス
	ス* カラム 1-3 が			
	空の状態。			

* 廃棄用チップボックス(カセット 1、Shelf 2)と未使用のチップが入ったチップボックス(カセット 1、Shelf 1) は、前のステップである LibraryPrep_XT_Illumina_v1.5.rst ランで使用した残りで、ここでも使用します。 ※プレートを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向け てセットします。

NOTE カセット1の Shelf1に新しいチップボックスを使う場合(たとえば、MiniHub上のチップボック スをすべて処分してしまったか、残りのアダプター付き DNA サンプルを増幅するとき)、チッ プボックスのカラム 1-3 のチップを必ず手で取り除いてください。チップボックスのカラム 1-3 にチップが残っていると Bravo プラットフォームのピペットヘッドにぶつかってしまい、自動 プロセスステップを阻害する危険性があります。 9. 表 21 のように BenchCel Microplate Handling Workstation にチップボックスをセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	1 チップボックス	空き	空き	空き
4	1 チップボックス	空き	空き	空き
6	1 チップボックス	空き	空き	空き
12	1 チップボックス	空き	空き	空き

表 21 Pre-CapturePCR_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

10. Bravo デッキにプレートをセットします。

表 22 Pre-CapturePCR_XT_Illumina_v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	内容
7	アダプター付き DNA サンプルを含む Eppendorf プレート。A1 が左上になるように。
9	PCR マスターミックスがカラム 4 に入ったマスターミックスプレート。A1 が左上になる
	ように。

※シールをはがしていることを確認してください。

CAUTION ここで使用する VWorks Form は、SureSelect XT XT_IIIumina_v1.5 3ug であること

を確認して下さい。XT_IIIumina_v1.5 200ngにはこのステップで使用するプロトコルが存在しません。

VWorks プロトコル Pre-CapturePCR_XT_Illumina_v1.5.pro の実行

11. セットアップフォームの Select Protocol to Run の下の

Pre-CapturePCR_XT_Illumina_v1.5.pro を選択します。

Parameters	
1) Select Protocol to Run	
LibraryPrep_XT_Illumina_v1.5.rst	•
AMPureXP_XT_Illumina_v1.5.pro	
 LibraryPrep_XT_Illumina_v1.5.rst 	
Pre-CapturePCR_XT_Illumina_v1.5.pro	
Aliquot_Libraries_v1.5.pro	-
Hybridization_v1.5.pro	
SureSelectCapture&Wash_v1.5.rst	
Post-CaptureIndexing_XT_Illumina_v1.5.pro	
Dilution for TapeStation_v1.0.pro	16

- 12. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できま す。
- 3) Select Number of Columns of Samples*

13. Display Initial Workstation Setup をクリックします。

	Display Initial
\mathbf{v}	Workstation Setup

14. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか**必ず**確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

い。

MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Minii
			· [
	MiniHub Cassette 1	MiniHub Cassette 1 MiniHub Cassette 2	MiniHub Cassette 1 MiniHub Cassette 2 MiniHub Cassette 3

- 15. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 16. 確認後 Run Selected Protocol をクリックしてください。

Pre-CapturePCR_XT_Illumina_v1.5.pro の実行には約 15 分かかります。完了すると、調製した DNA と PCR マスターミックスが混合した、PCR にかけるだけのサンプルが Bravo デッキの 5 番の ABI MicroAmp プレートに入った状態になります。容量は 50 uL です。 Bravo デッキの 7 番にある Eppendorf プレートには調製した DNA サンプルの残りがあり、4°C で一晩、または-20°C で長期保存が できます。

- 17. Bravo デッキの 5 番の上にある MicroAmp Plate を PlateLoc Thermal Microplate Sealer でシー ルします。シールした後、PCR プレートをとります。
- 18. プレートを 30 秒間、1000 g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。
- 19. PCR プレートをサーマルサイクラにセットし、PCR 増幅プログラムを実行します。必ず適切な Compression Pad を挟むようにしてください。

セグメント	サイクル数	温度	時間
1	1	98°C	2 minutes
2	4から6	98°C	30 seconds
		65°C	30 seconds
		72°C	1 minutes
3	1	72°C	10 minutes
4	1	4°C	Hold

表 23 Pre-Capture PCR サイクルプログラム

NOTE

用いる DNA の品質の違いにより、ライブラリ調製の結果は、サンプルごとに少し異なりま す。ほとんどのケースでは、5 サイクルの増幅により、バイアスを抑え、かつ非特異的な増 幅がない状態で、引き続くシーケンスキャプチャに足りる収量を得ることができます。もし収 量が低すぎるか、より大きな分子量の非特異的増幅が見られる場合は、増幅に用いなかっ た残りの半量のライブラリのテンプレートを使って、サイクル数を最適化して増幅してくださ い。

STEP6. Agencourt AMPure XP ビーズによるサンプルの精製

このステップでは、Agilent SureSelect^{XT} 自動化システムは、AMPure XP ビーズと増幅したアダプター 付き DNA を Nunc DeepWell プレートに移して撹拌し、ビーズに結合した DNA を集め、洗浄して溶出す る操作を実行します。

ワークステーションと試薬の準備

- 1. Labware MiniHubとBenchCel のプレートとチップボックスをすべて片付けます。チラーは OFF に してください。
- AMPure XP ビーズが室温であることを確認してください。(使用する少なくとも 30 分以上前に、 AMPure XP ビーズ(4°C 保存)を室温に戻しておくようにします。)
- 3. ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- 均一な状態にした AMPure XPビーズ懸濁液 92 µLを、Nunc DeepWell ソースプレートの使用する各ウェルに入れます。使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入れるようにしてください。
- 5. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 6. 45 mL の新しく調製した 70%エタノールを入れた Thermo Scientific リザーバーを準備します。
- 7. 図 3 に示すプレートの向きを参考に、表 24 にしたがって Labware MiniHub に試薬をセットします。

			初新記旦	
Shelf の位置	ታセット 1	カセット 2	カセット 3	カセット 4
Shelf 5(上)	空の Nunc DeepWell プ	空き	空き	空き
	レート			
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空の BioRad HSP9601	空き	空き
		LoBind PCR プレート		
Shelf 2	空き	ステップ 5 の	ステップ 4 の AMPure	空き
		nuclease-free 水リザー	XP ビーズ懸濁液入り	
		バー	の Nunc DeepWell プレ	
			- F	
Shelf 1(下)	空き	ステップ 6 の 70%エタ	空き	空き
		ノールリザーバー		

表 24 AMPureXP_XT_Illumina_v1.5.pro 用の MiniHub の初期配置

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向けてセットします。リザーバーの切り欠きは MiniHub の内側に向けてセットします。

8. 表 25 のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	2 チップボックス	空き	空き	空き
4	2 チップボックス	空き	空き	空き
6	3 チップボックス	空き	空き	空き
12	6 チップボックス	空き	空き	空き

表 25 AMPureXP_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

9. 表 26 にしたがって Bravo デッキにプレートをセットします。

表 26 AMPureXP_XT_Illumina_v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	- 内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
4	黒いアダプターに載せた増幅した DNA ライブラリを含む ABI MicroAmp プレート。
	プレートシールははがした状態で。
8	空のチップボックス

VWorks プロトコル AMPureXP_XT_IIIumina_v1.5.pro の実行

10. セットアップフォームの Select Protocol to Run の下の AMPureXP_XT_Illumina_v1.5.pro を

選択します。

11. Select additional Parameters の下から、

Pre-Capture PCR Cleanup を選択します。

2) Select additional Parameters

AMPureXP_XT_Illumina_v1.5.pro Only

a. S	elect DNA Product to Cleanup	
	Pre-Capture PCR Cleanup	-
h vě	Covaris Shearing Cleanup	
0.7	Pre-Capture PCR Cleanup	Ĭ
	Post-Capture PCR Cleanup	

プレートの種類は 96 ABI PCR half skirt in black carrier を選択します。プレートの種類を間違

えないようにご注意ください。

b.必ず適切な【サンプルプレート】を選択して下さい。

- 96 ABI PCR half skirt in black carrier
- O 96 Eppendorf Twin.tec PCR Plate or
- 96 Bio-Rad HSP9601 LoBind PCR Plate
- NOTE AMPure_XT_Illumina_v1.5.proはSureSelect自動ワークフローの複数のステップで使用 します。自動プロトコルを始める時に正しいワークフローステップを選択しているか確認して ください。

12. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または12カラムが選択できます。

3) Select Number of Columns of Samples*

13. Display Initial Workstation Setup をクリックします。

14. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

[V	Vorksta MiniHub	tion Setup			4
	1-III III IUU	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
	Shelf 5				
	Shelf 4	ا سىرىسى بەسىلىر	ا. المسي من مد الم	- manan man	

- 15. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 16. 確認後 Run Selected Protocol をクリックしてください。

AMPure_XT_Illumina_v1.5.pro の実行には約 45 分かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある BioRad HSP9601 のプレートの中に入った状態になります。ここでの溶出容 量は、各 30 µL です。

STEP7. DNA サンプルのサイズチェックと定量

SureSelect のハイブリダイゼーションには 750 ng のアダプター付き DNA ライブラリが必要です。 ベイトライブラリとアダプター付き DNA ライブラリの量のバランスは重要なので、できるだけ 750ng の量 をハイブリダイゼーションに用いるようにしてください。次の式を使ってハイブリダイゼーションに用いるラ イブラリの容量を計算してください。

容量(µL) = 750 ng/濃度(ng/µL)

ハイブリダイゼーションに用いる量が250 ng以下になると、シーケンスの結果に悪影響を与えます。

Option 1: Agilent 2100バイオアナライザによる品質チェック

バイオアナライザ DNA 1000 チップと試薬アッセイを用いて測定します。

- 1. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 各ウェルのサンプルを均一にするためプレートを5秒ボルテックスした後、30秒間遠心して壁やプレートシールについた液を落とします。
- バイオアナライザの電極を洗浄します。電極クリーナーチップに入れて電極を洗浄する水 350µL は、複数回の測定を同日中に行う場合も、測定の度に交換して下さい。必要に応じて、バイオア ナライザのガイドブックに従い十分な洗浄を行ってください。
- 4. Agilent 2100 expert ソフトウェア(version B.02.02 もしくはそれ以上) を起動し、バイオアナライ ザ本体とのコミュニケーションを確認します。
- 5. バイオアナライザの試薬ガイドに従い、チップ、サンプル、ラダーを調製します。1 µL のサンプルを 分析に使います。
- 調製が終わったチップをバイオアナライザにセットします。チップ調製後、5分以内にランをスター トさせる必要があります。
- 7. バイオアナライザの assay のメニューから、DNA 1000 assay を選択します。
- ランをスタートさせます。データファイルへのリンクをクリックして、サンプル名およびコメントを書き 込みます。
- 9. 結果をチェックします。図 8 の泳動図のような分布が得られ、225-275 bp 付近の位置にピークト ップがあることを確認します。
- 10. ピークを積分してライブラリの濃度(ng/µL)を測定します。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

図 8 増幅されたアダプター付き DNA ライブラリの DNA1000 アッセイの泳動図。泳動図から 225 bp-275 bp の位置に、シングルスメアピークのピークトップが観察される。

Option 2: Agilent TapeStationによる品質チェック

TapeStation の D1000 ScreenTape (p/n 5067-5582)と専用試薬キット(p/n 5067-5583)を使います。 TapeStation の操作マニュアルは下記 Web サイトからダウンロードいただくことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

TapeStation を使用する場合、典型的に得られるアダプター付きライブラリの濃度だと、TapeStation の 定量範囲を超えてしまい、定量値が不正確になる危険性があります。得られたライブラリの一部(2 uL 程 度)をとり、5 倍に希釈して、TapeStation で測定することをお勧めします。

この5倍希釈の操作は、NGS 自動化システムを使用して行うことができます。

<TapeStation の品質チェック用 5 倍希釈サンプルの調製>

ワークステーションと試薬の準備

- 1. Labware MiniHub と BenchCel のプレートとチップボックスをすべて片付けます。チラーは OFF に してください。
- 2. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 3. 表 26 のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	- ラック 1	- ラック 2	- ラック 3	- ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	1 チップボックス	空き	空き	空き
4	1 チップボックス	空き	空き	空き
6	1 チップボックス	空き	空き	空き
12	2 チップボックス	空き	空き	空き

表 27 Dilution_for_TapeStation_v1.0.pro 用の BenchCel の初期配置

4. 表 27 にしたがって Bravo デッキにプレートをセットします。

デッキの位置	内容
5	空の BioRad HSP9601 LoBind PCR plate
6	Nuclease Free 水を入れたリザーバー
7	BioRad HSP9601 LoBind PCR plate に入ったアダプター付き DNA ライブラリ原液
8	空のチップボックス

表 27 Dilution_for_TapeStation_v1.0.pro 用の Bravo デッキの初期配置

※このステップでは、TapeStation で測定する希釈液への AMPureXP ビーズのコンタミネーションをでき るだけ抑制するため、Eppendorf ではなく、BioRad の HSP9601 LoBind PCR plate を使用します。 ※シールをはがしていることを確認してください。

VWorks プロトコル Dilution_for_TapeStation_v1.0.pro の実行

1. セットアップフォームの Select Protocol to Run の下の Dilution_for_TapeStation_v1.0.pro を選択します。

Pa	arameters	
1)	Select Protocol to Run	
	AMPureXP_XT_Illumina_v1.5.pro	
	AMPureXP_XT_Illumina_v1.5.pro	
2)	LibraryPrep_XT_Illumina_v1.5.rst	
	Pre-CapturePCR_XT_Illumina_v1.5.pro	
	Aliquot_Libraries_v1.5.pro	<u> </u>
	Hybridization_v1.5.pro	
	SureSelectCapture&Wash_v1.5.rst	
	Post-CaptureIndexing_XT_Illumina_v1.5.pro	
	Dilution for TapeStation_v1.0.pro	•

- 2. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できま す。
- 3) Select Number of Columns of Samples*

3. Display Initial Workstation Setup をクリックします。

Display Initial Workstation Setup 4. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

Minilad	nion Setup			1
minimut	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Minit
Shelf 5				i d

- 5. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 6. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

Dilution_for_TapeStation_v1.0.pro の実行には約 10 分かかります。完成したアダプター付き DNA ライ ブラリ 2 uL を、Nuclease Free 水 8 uL で 5 倍希釈します。完了すると TapeStation の測定用に 5 倍希 釈された DNA サンプルは Bravo デッキの **5** 番にある BioRad HSP9601 のプレートの中に入った状態 になります。10uL の量となります。

ハイブリダイゼーションに用いるアダプター付き DNA ライブラリは、Bravo デッキの 7 番にある BioRad HSP9601 のプレートの中に入った状態になっています。約 28 uL の量となります。このサンプルは、下 記を参照に保存してください。(間違えて処分しないように、十分に注意してください。)

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

5 倍希釈 DNA サンプルの TapeStation による測定

- Agilent TapeStation の操作マニュアルに従い、1 uL のアダプター付き増幅 DNA 希釈サンプルを、 3 uL の D1000 サンプルバッファで希釈し、よく混ぜます。
- CAUTION 正確な定量のために、DNAとD1000 サンプルバッファを混ぜたサンプルは、TapeStation 本体付属のボルテックスミキサで 2000 rpm で 1 分、混合してください。 付属のボルテックスミキサ をお持ちでない場合は Max で 10 秒の混合を 2 回繰り返して確実に混合してください。
 - 2. サンプルプレートもしくはサンプルチューブストリップを TapsStation にセットし、ランをスタートさせます。
 - 結果をチェックします。図9の泳動図のような分布が得られ、250-275 bp 付近の位置にピークトップがあることを確認します。
 - 4. ピークを積分してライブラリの濃度(ng/µL)を測定します。

- 図 9 増幅されたアダプター付き DNA ライブラリの TapeStaton D1000 アッセイ による泳動図。 225-275 bp 付近の位置にピークトップが見られます。
- NOTE この後のステップのハイブリダイゼーションでは、ターゲット領域のサイズによらず、最低 750 ng のアダプター付き DNA ライブラリが必要です。また濃度は 221 ng/µL 以上である 必要があります。濃度は、221 ng/µL より低い値が得られる場合がほとんどですので、濃 縮遠心機を用いて、サンプルを濃縮してください。濃縮遠心を行う場合、45°C 以上の高い 温度をかけないようにしてください。(トミー精工社の濃縮遠心機を使用する場合は、温度 は Low,40°C で濃縮遠心します。)750 ngに相当する容量を96 ウェルプレートに分注す る作業は自動化できますので、実際の操作については、次の章を参考にしてください。

CAUTION

本プロトコルには、3 ug の DNA サンプル(標準 input 量)用のオプションと 200 ng の DNA サンプル(Low input 量)用のオプションが記載されています。 適切な章を参照し ていることを確認して下さい。

以下は 200 ng の DNA サンプル用プロトコルであり、3 ug の DNA サンプル用プロト コルは 3 章を参照して下さい。

200 ng のプロトコルは、コバリスの断片化の液量が少ない、キャプチャ前の PCR に サンプルの全量を使ってしまうなどのリスクファクターがあります。 DNA サンプルが 3 ug 以上ある場合は、3 ug のプロトコルをお使いいただくようお勧めします。

CAUTION

本章に従って Low Input 量で実験をする場合、200 ng のスタート量で最適化された プロトコルであるため、200 ng より多い量の DNA サンプルから実験を始めないよう にご注意下さい。Qubit などの二本鎖 DNA 特異的検法で DNA サンプルの濃度を正 確に測り、そこから 200 ng を取り分けて実験をするようにして下さい。DNA サンプル の量が 200 ng を超えて多すぎる場合、PCR 後の電気泳動で高分子量の副生成物 が見られることがあります。

CAUTION

本章に従って Low Input 量で実験をする場合、3 ug の DNA サンプルを用いる標準 プロトコルと異なり、キャプチャ前の PCR にサンプルの全量を使用するため、PCR サ イクルの最適化を行うことが出来ません。サーマルサイクラによっては、プロトコルに 記載のサイクル数では Over Amplification が起きて、PCR 後の電気泳動で高分子 量の副生成物が見られることがあります。理想的な結果のためには、使用予定の装 置・器具類を用いて、予備のある DNA サンプル 200 ng で予備実験を行い、高分子 量の副生成物ができないか確認して下さい。正確に 200 ng の DNA サンプルからス タートしてもプロトコルに記載のサイクル数で副生成物が見られる場合、PCR サイク ルを1減らして実験することをお勧めします。

この章では、イルミナ社のペアエンドマルチプレックスシーケンスプラットフォームでランするための DNA ライブラリを、Agilent SureSelect^{XT} 自動化システムを用いて調製する方法を説明します。マ ルチプレックスシーケンスを行うサンプルは、96 ウェルプレートのウェルの中で個別に、ライブラリ調 製、ハイブリダイゼーション、およびキャプチャのステップが行われます。キャプチャ後のサンプルを PCR 増幅するときに、あわせてインデックス(バーコード)シーケンスを各サンプルに付加します。 SureSelect でキャプチャするターゲット領域のサイズに応じて、SureSelect^{XT} ターゲットエンリッチメ ントキットに含まれるイルミナシーケンサ用のインデックスタグを使って、1 レーンあたり最大 96 サン プルまでプールして、マルチプレックスシーケンスを行うことができます。イルミナのマルチプレック スシーケンスでは、1 ランに用いる 1 フローセルのすべてのレーンをマルチプレックスシーケンスに する必要がありますが、ご使用のシステムのバージョンによっても異なりますので、詳細はイルミナ 社のプロトコルを参照ください。

イルミナ社のオリジナルプロトコルとは、下記に加え、PCRの条件などが異なりますのでご注意くだ さい。

- 1. コバリスを用いて、150-200 bp をターゲットサイズとした gDNA の断片化を行います。
- 2. SureSelect^{XT} 自動化システム専用キットに含まれている試薬を使用します。
- 各ステップでの DNA の精製は、ベックマン・コールター社のビーズを使って行います。
 断片化サイズは、SureSelect のハイブリダイゼーションの効率に大きな影響を与えるため、gDNA の断片化について、コバリス以外の手法はバリデーションされていません。特にインデックスカスタ ムキットのプロトコルでは、ゲルによる精製とサイズ選択の代わりに、ビーズを使った核酸精製を行 いますので、コバリスで gDNA を確実に断片化することが重要なポイントです。他の手法を使用した 場合、保証およびサポートの対象外となります。

他の情報に関しては、イルミナのプロトコル Preparing Samples for Multiplexed Paired-End Sequencing (p/n 1005361 Rev. C)、または適切なイルミナのプロトコルを参照してください。

NOTE 実験には、OD260/280 の比が 1.8~2.0 の間にある高品質の gDNA を使用ください。できるだけ正確に DNA を定量するために、Qubit システムの使用を強くお勧めします。

STEP1. DNA の断片化

マルチプレックスシーケンスを行うDNAのサンプルそれぞれについて、アダプター付きDNAライブラリを 調製します。12 サンプルをシーケンスする場合は、12 ライブラリを調製することになります。

下記のプロトコルは、Covaris の Model S2 または S220 を使用して、gDNA を1サンプルずつ断片化す る場合のものです。96 サンプルを自動で処理するタイプの Covaris の使用方法については、Covaris 社 のプロトコルを参照してください。

- 1. Qubit dsDNA Assay キットを用いて、gDNA の濃度を測定します。実験には高品質の gDNA を用 いるようにします。(分解しておらず、A260/A280 の比が 1.8-2.0 の間であること)
- DNAの吸着がおきない 1.5 mLの LoBind チューブを用いて、Qubit で定量した gDNA 200 ng を 1x Low TE Buffer で 50 µL の容量になるように溶解します。
- 3. コバリスを起動します。起動してから脱ガスが完了するまで、30分程度かかります。またこの段階 で次に使用する AMPure XP ビーズを室温に戻しておくと便利です。
 - f コバリスのウォーターバス内に、Milli-Q水もしくは脱イオン水を注ぎます。使用する機種、チ ューブ、プレートなどにあわせ、コバリス社の推奨にしたがった水位とします。
 - g コバリスのウォーターバスの水位を、マイクロチューブ(p/n 520045)のキャップより下面のガ ラスチューブ全体が浸かるように調整してください。
 - h コバリスのウォーターバス内の水温が 5℃ 程度になるように、外部循環冷却装置の水温を 2℃~5℃ の間に設定し、循環水の温度の表示が 5℃ 以下になっているのを確認します。
 - i (オプション)外部循環冷却装置内の循環冷媒に、エチレングリコールを20%[v/v]程度添加 すると、冷媒が凍結するのを防止することができます。
 - j ソフトウェアのメインスクリーンから、DEGAS ボタンをクリックして、最低 30 分以上 DEGAS を実行してください。

コバリスの操作の詳細は、コバリス社のユーザーズガイドを参照ください。

- マイクロチューブ(p/n 520045)を、ローディングステーション(p/n 500142)の上に載せます。
 キャップがされた状態であることを確認してください。
- 5. 先がテーパー状になったピペットチップを用い、コバリスのマイクロチューブのキャップ上面にある スリットにチップの先を差し込んで、サンプルの全量(50 µL)を入れます。マイクロチューブ内に泡 が残らないように注意してください。(泡は超音波による gDNA の断片化を阻害します。)必ず Covaris 社指定のマイクロチューブを使用してください。
- サンプルを入れたマイクロチューブを、コバリスのマイクロチューブフォルダ (p/n 500114)にセットします。の設定により、gDNAの断片化を行います。ターゲットピークサイズは 150-200bp です。

表 28 コバリス S220 の設定

設定	值
Duty Factor	10%
Peak Power	175.0
Cycles / Burst	200
Treatment	360 sec <mark>注)</mark>
温度	4°C から 8°C

コバリス S2 の設定

設定	值
Duty Cycle	10%
Intensity	5
Cycles per Burst	200
時間	60 秒、6 サイクル <mark>注)</mark>
セットモード	Frequency sweeping
温度	4°C から 7°C

- 注) 180 秒の断片化ののち、マイクロチューブをスピンダウンして溶液を底に集め、再び 180 秒の 断片化を行うことで、不完全な断片化を回避することができます。
- 7. 断片化が終了したら、マイクロチューブをマイクロチューブフォルダから取り出し、ローディングステ ーションの上に再度載せます。
- マイクロチューブのふたはそのままの状態で、セプタからピペットチップの先を差し込み、中のサン プル全量を、ピペットを用いてゆっくり吸引します。
- この後 Agilent SureSelect^{XT} 自動化システムで処理するために、断片化されたサンプル全量を、 96 ウェル Eppendorf プレートのウェルにカラムごとに A1 から H1、A2 から H2、最後に A12 から H12 の順番で移します。
- NOTE SureSelect Automated Library Prep and Capture System のランはプレートの 1、2、3、4、 6、または 12 カラムで行います。サンプルを入れる場所の詳細については、SureSelect Target Enrichment のための Agilent SureSelectXT 自動化システムの使用を参照してくだ さい。
- 10. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 11. プレートを 30 秒間、1000g で遠心し、プレートの壁やプレートシールについた液をスピンダウンして、 気泡を除きます。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。 STEP2. DNA フラグメントサイズの品質(サイズ)チェック Option 1: Agilent 2100パイオアナライザによる品質(サイズ)チェック

バイオアナライザの High Sensitivity DNA チップと試薬キットを使います。バイオアナライザの和文ガ イドブックは次の Web サイトからダウンロードいただくことができます。 <u>http://Agilentgenomics.jp</u> 初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

- 1. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 各ウェルのサンプルを均一にするためプレートを5秒ボルテックスした後、30秒間遠心して壁やプレートシールについた液を落とします。
- バイオアナライザの電極を洗浄します。正確に定量を行うため、電極クリーナーチップに入れて電 極を洗浄する水 350 µL は、複数回の測定を同日中に行う場合も、測定の度に交換して下さい。 必要に応じて、バイオアナライザのガイドブックに従い十分な洗浄を行ってください。
- 4. Agilent 2100 expert ソフトウェア(version B.02.07 もしくはそれ以上) を起動し、バイオアナライ ザ本体とのコミュニケーションを確認します。
- 5. バイオアナライザの試薬ガイドに従い、チップ、サンプル、ラダーを調製します。
- NOTE High Sensitivity DNA キットはサンプルの塩濃度が極端に低いとベースライン不安定を引き起こすことがあります。この時点でのサンプルは水で溶出されているため、測定前にサン プル1µLに1xTEを加えて数倍に希釈することで塩を含んだ状態にし、ボルテックスミキサ でよく混合して後、その希釈液から1µLとって測定することをお勧めします。希釈倍率は濃 度の計算に必要なので、必ず記録をとってください。
- 調製が終わったチップをバイオアナライザにセットします。チップ調製後、5分以内にランをスタートさせる必要があります。
- 7. バイオアナライザの assay のメニューから、適切な assay を選択します。
- ランをスタートさせます。データファイルへのリンクをクリックして、サンプル名およびコメントを書き 込みます。
- 9. 結果をチェックします。図 10 のように、120-150 bp 付近の位置にピークトップがあることを確認し ます。また測定された濃度が4 ng/uL(トータルの DNA 量が200 ng)を大きく超えていないかど うか確認してください。

図 10 断片化した gDNA のバイオアナライザ 高感度 DNA アッセイ による泳動図。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

Option 2: Agilent TapeStationによる品質(サイズ)チェック

TapeStation の High Sensitivity D1000 ScreenTape (p/n 5067-5584)と専用試薬キット(p/n 5067-5585)を使います。TapeStation の操作マニュアルは下記 Web サイトからダウンロードいただく ことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

- 1. 断片化した DNA サンプルが入ったプレートを PlateLoc Thermal Microplate Sealer でシールし ます。設定は、165°C、1.0 秒です。
- プレートの各ウェルに入っている DNA サンプルをボルテックスでよく撹拌します。30 秒間遠心して壁やプレートシールについた液を落とします。
- Agilent TapeStation の操作マニュアルに従い、2 uL のアダプター付き増幅 DNA サンプルを、2 uL の High Sensitivity D1000 サンプルバッファで希釈し、よく混ぜます。

CAUTION 正確な定量のために、DNAとHigh Sensitivity D1000 サンプルバッファを混ぜた サンプルは,TapeStation 本体付属のボルテックスミキサで 2000 rpm で1分、混合してください。 付属のボルテックスミキサをお持ちでない場合は Max で10 秒の混合を2 回繰り返して確実に 混合してください。

- 4. サンプルプレートもしくはサンプルチューブストリップを TapsStation にセットし、ランをスタートさせます。
- 5. 結果をチェックします。図 11 の泳動図のような分布が得られ、120-150 bp 付近の位置にピーク トップがあることを確認します。

図 11 断片化した gDNA の TapeStaton High Sensitivity D1000 アッセイ による泳動図

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

STEP3. ターゲットエンリッチメントのための DNA 末端修飾

このステップでは、Agilent SureSelect^{XT} 自動化システムは末端修復、A オーバーハング付加 (A-tailing)、およびアダプターライゲーションを含む SureSelect ターゲットエンリッチメントに必要な DNA 末端修飾を行います。各修飾ステップが終わる都度、Agilent SureSelect^{XT} 自動化システムは AMPure XP ビーズを用いた DNA 精製を行います。

ランを始める前にそれぞれのステップで使用する Master Mix(余剰を含みます)を作製する必要があり ます。(DNA サンプルを除く) 1、2、3、4、6、および 12 カラムに対応した各ランで必要な Master Mix が それぞれの表に示されています。

各マスターミックスの調製は、氷上で行います。

CAUTION 200 ng DNA サンプルの自動化ライブラリ調製プロトコルは、3 ug DNA サンプルのライ ブラリ調製と、アダプターライゲーションマスターミックス中の SureSelect Adaptor Oligo Mix の 使用量が異なります。必ず 200 ng DNA サンプル用のアダプターライゲーションマスターミック スの組成を参照するように注意して下さい。

ワークステーションの準備

- 1. チラーの電源を入れ、0°Cにセットします。Bravoデッキの9番が相当します。チラーリザーバーは 少なくとも 300 mL の 25%エタノールを含むことを確認してください。
- 2. Labware MiniHub と BenchCel 上のプレートとチップボックスをすべて片付けてください。
- 3. 表 29 にしたがって適切な量の末端修復マスターミックスを調製してください。ボルテックスミキサ でよく撹拌し、氷上に置きます。

表 29 末端修復マスターミックスの調製

SureSelect ^{XT}	1 ライブラ	1カラム中	2カラム中	3カラム中	4カラム中	6 カラム中	12 カラム
試薬	リ中の量	の量	の量	の量	の量	の量	中の量
Nuclease-free	35.2 µL	448.8 µL	748.0 µL	1047.2 µL	1346.4 µL	1944.8 µL	3889.6 µL
water							
10X End-Repair	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 µL	552.5 µL	1105.0 µL
Buffer							
dNTP mix	1.6 µL	20.4 µL	34.0 µL	47.6 µL	61.2 µL	88.4 µL	176.8 µL
T4 DNA	1.0 µL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
polymerase							
Klenow DNA	2.0 µL	25.5 µL	42.5 µL	59.5 µL	76.5 µL	110.5 µL	221.0 µL
polymerase							
T4	2.2 µL	28.1 µL	46.8 µL	65.5 µL	84.2 μL	121.6 µL	243.1 µL
Polynucleotide							
Kinase							
トータル量	52 µL	663 µL	1105 µL	1547 µL	1989 µL	2873 µL	5746 µL

Aオーバーハング付加マスターミックスの調製

4. 表 30にしたがって適切な量のAオーバーハング付加マスターミックスを調製してください。ボルテ ックスミキサでよく撹拌し、氷上に置きます。

表 30 Aオーバーハング付加マスターミックスの調製

SureSelect ^{XT}	1 ライブラ	1 カラム	2 カラム	3 カラム	4 カラム	6 カラム	12 カラム中
試薬	リ中の量	中の量	中の量	中の量	中の量	中の量	の量
Nuclease-free	11.0 µL	187.0 µL	280.5 µL	374.0 µL	467.5 μL	654.5 µL	1306.25 µL
water							
10X Klenow DNA	5.0 µL	85.0 µL	127.5 µL	170.0 µL	212.5 µL	297.5 µL	593.75 µL
Polymerase Buffer							
dATP	1.0 µL	17.0 µL	25.5 µL	34.0 µL	42.5 µL	59.5 µL	118.75 µL
Exo (-) Klenow	3.0 µL	51.0 µL	76.5 µL	102.0 µL	127.5 µL	178.5 µL	356.25 µL
DNA Polymerase							
トータル量	20 µL	340 µL	510 µL	680 µL	850 µL	1190 µL	2375 µL

アダプターライゲーションマスターミックスの調製

5. 表 31 にしたがって適切な量のアダプターライゲーションマスターミックスを調製してください。ボル テックスミキサでよく撹拌し、氷上に置きます。

SureSelect ^{x⊤} 試薬	1 ライブラ リ中の量	1 カラム中 の量	2 カラム中 の量	3 カラム中 の量	4 カラム中 の量	6 カラム中 の量	12 カラム 中の量
Nuclease-free water	24.5 µL	312.4 µL	520.6 µL	728.9 µL	937.1 µL	1353.6 µL	2707.3 µL
5X T4 DNA Ligase Buffer	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 µL	552.5 µL	1105.0 μL
SureSelect Adaptor oligo mix	1.0 μL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
T4 DNA ligase	1.5 µL	19.1 µL	31.9 µL	44.6 µL	57.4 µL	82.9 µL	165.8 µL
トータル量	37.0 μL	471.7 μL	786.3 µL	1100.8 μL	1415.3 μL	2044.3 µL	4088.5 µL

表 31 アダプターライゲーションマスターミックスの調製

マスターミックスソースプレートの調製

6. Nunc DeepWell プレートにステップ 3 から 5 で調製したマスターミックスを含むマスターミックスソ ースプレートを調製します。

表 32 LibraryPrep_XT_Illumina_v1.5.rst のためのマスターミックスソースプレートの調製

マスター	ソース	Nunc DeepWel	lunc DeepWell ソースプレートの 1 ウェル中に加えるマスターミックスの量						
ミックス	プレート	1カラムラン	2 カラムラン	3カラムラン	4 カラムラン	6 カラムラン	12 カラムラン		
	の位置								
末端修復マス	カラム 1	78 µL	130 µL	182 µL	234 µL	338 µL	676 µL		
ターミックス	(A1-H1)								
Aオーバーハン	カラム 2	40 µL	60 µL	80 µL	100 µL	140 µL	280 µL		
グ付加マスター	(A2-H2)								
ミックス									
アダプターライ	カラム 3	55.5 µL	92.5 µL	129.5 µL	166.5 µL	240.5 µL	481 µL		
ゲーションマス	(A3-H3)								
ターミックス									

図 12 LibraryPrep_XT_Illumina_v1.5.rst のためのマスターミックスソースプレートの位置

- マスターミックスソースプレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
- プレートを 30 秒間、1000g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。マスターミックスソースプレートは氷上に置いておきます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がはねないように注意してください。
- NOTE ソースプレートの溶液に泡があるとBravo液体分注プラットフォームで正確に容量が測れないことがあります。必ずソースプレートをランの前にシールし、遠心してください。

精製試薬の調製

- 9. AMPure XP ビーズ懸濁液が 30 分以上室温に置かれていたことを確認してください。
- 10. ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- 均一な状態にした AMPure XP ビーズ懸濁液 370 μL を、新しい Nunc DeepWell ソースプレートの使用する各ウェルに入れます。使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入れるようにしてください。
- 12. 30 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 13. 150 mL の新しく調製した 70%エタノールを入れた Thermo Scientific リザーバーを準備します。

Agilent SureSelect^{XT} 自動化システムにセット

MiniHub をイニシャライズしてください。

 図 13 に示すプレートの向きを参考に、表 33 にしたがって Labware MiniHub に試薬をセット します。必ず A1の位置が下図に指定された向きでセットするように注意してください。この向きを間 違えると、実験はただしく行われません。正しい位置に正しい向きで指定されたプレートを置くよう に十分に注意してください。また nuclease-free 水と70%エタノールを入れたリザーバーには、切り 欠きがあります。必ず切り欠きが MiniHub の内側を向くようにセットしてください。切り欠きを MiniHub の外側に向けてセットしてしまうと、リザーバーの位置がずれ、BenchCel がリザーバーを 運べなくなるトラブルが発生する危険性があります。 Initialize MiniHub のボタンがついている Form を使用して、MiniHub の電源を切ってプレート類を セットした場合、MiniHub の電源を再び入れた後に必ず Initialize MiniHyb ボタンを押して、

カセット 1	カセット 2	カセット 3	カセット 4
空の Nunc	空の Eppendorf プレ	空の Nunc	空き
DeepWell プレート	— ト	DeepWell プレート	
空き	空のEppendorfプレー	空のEppendorfプレ	空き
	۲	− ト	
空き	空き	空き	空のEppendorfプレ
			- F
空のチップボック	ステップ 12 の	ステップ 11 の	空き
ス	nuclease-free 水リザ	AMPure XP ビーズ	
	- <i>i</i> i-	懸濁液入りのNunc	
		DeepWell プレート	
新しいチップボック	ステップ 13 の 70%エ	空き	空のチップボック
ス	タノールリザーバー		ス
	 カセット 1 空の Nunc DeepWell プレート 空き 空き 空のチップボック ス 新しいチップボック ス 	カセット1カセット2空の Nunc空の Eppendorf プレDeepWell プレートート空き空の Eppendorf プレードアの Eppendorf プレー空き空き空のチップボックステップ 12 のスnuclease-free 水リザーバーーバー新しいチップボックステップ 13 の 70%エスタノールリザーバー	カセット1カセット2カセット3空の Nunc空の Eppendorf プレ空の NuncDeep Well プレートートDeep Well プレート空き空の Eppendorf プレ空の Eppendorf プレアき空き空き空き空の チップ パンのステップ 12 のステップ 11 のスハレートメロック 10 のシロック 10 のスハートシロック 10 のシロック 10 のスステップ 12 のステップ 11 のシロック 10 のスハートシロック 10 のシロック 10 のスエシロック 10 のシロック 10 のスエシロック 10 のシロック 10 の新しいチップボックステップ 13 の 70% エ空きスシノールリザーバーシールリザーバー

表 33 LibraryPrep XT Illumina v1.5.rst 用の MiniHub の初期配置

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向けてセットします。リザーバーの切り欠きは MiniHub の内側に向けてセットします。

図 13 Agilent Labware MiniHub プレートの向き。Thermo Scientific リザーバーのときには、切り欠きのある角が MiniHub の中央に向くように置きます。

14. 表 34 のように BenchCel Microplate Handling Workstation にチップボックスをセットします。

使用カラム数	- ラック 1	 ラック 2	ラック 3	ラック 4
1	2 チップボックス	空き	空き	空き
2	4 チップボックス	空き	空き	空き
3	5 チップボックス	空き	空き	空き
4	7 チップボックス	空き	空き	空き
6	10 チップボックス	空き	空き	空き
12	11 チップボックス	8 チップボックス	空き	空き

表 34 LibraryPrep_XT_Illumina_v1.5.rst 用の BenchCel の初期配置

15. 表 35 にしたがって Bravo デッキにプレートをセットします。

表 35 LibraryPrep_XT_Illumina_v1.5.rst 用の Bravo デッキの初期配置

デッキの位置	内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
6	空の Eppendorf プレート。A1 が左上になるように。
7	精製した gDNA サンプルを含む Eppendorf プレート。A1 が左上になるように。
9	DNA 末端修復マスターミックスソースプレート。A1 が左上になるように。

※シールをはがしていることを確認してください。

VWorks ランセット LibraryPrep_XT_IIIumina_v1.5.rst の実行

16. SureSelect セットアップフォームの Select Protocol to Run の下の LibraryPrep_XT_Illumina_v1.5.rstを選択します。

17. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できま

す。

3) Select Number of Columns of Samples*
4 Columns selected
1 r 12 columns
4) Click 3
4) Click 3
6
12
Clear Workstation Setup
Clear Workstation Setup Display

18. Display Initial Workstation Setup をクリックします。

19. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか**必ず**確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

Worksta	ition Setup			
Mininut	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Mini
Shelf 5				· [
Shelf 5				

- 20. ミニハブの電源が入っていることを確認し、イニシャライズをまだ実行していない場合は、イニシャ ライズします。
- 21. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

NOTE Bravoの電源が入って最初のランのときには、Bravoの初期化に伴うエラーメッセージが出 ます。グリッパー(G Axis)の確認メッセージが出た時には Ignore、続けて出る W-axis の 確認メッセージには Retry を選択して、そのまま続けてください。ここで選択を間違えると、 ランの最中にエラーで止まってしまうので、選択を間違えないように注意ください。 プロトコルを実行してもワークステーションの装置が反応していないが、Log には作動して いるように記録されている場合、VWorks がシミュレーションモードで作動していないかどうか を確認してください。詳細は 30 ページを参照してください。

22. ランの準備が完了しましたら、次のウィンドウの OK をクリックしてください。

VWorks	X
0	This runset contains protocols that will start running as soon as possible. Before you click OK, verify that the system is ready for the runs to start. If you are not ready to start a run immediately, click Cancel.
	OK Cancel

LibraryPrep_XT_Illumina_v1.5.rst の実行には約 3.5~4 時間かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある Eppendorf のプレートの中に入った状態になります。ここ での溶出容量は、各 30 µL です。

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

STEP4. アダプター付き DNA ライブラリの増幅

このステップでは、Agilent SureSelect^{XT} 自動化システムはアダプター付き DNA サンプルの増幅のための溶液分注ステップを行います。

CAUTION この 200 ng DNA サンプルプロトコルでは、前項で調製した、両端にアダプターが付加された DNA 断片の全量を使用します。3 ug DNA サンプルプロトコルでは半量を使用し、残りの半量は 4°C で保存し、PCR のやり直しなどに残りの半量を用いることが出来ますが、200 ng DNA サンプルプロトコルではやり直しが出来ませんのでご注意下さい。
 CAUTION ライブラリのクロスコンタミネーションを防ぐために、PCR 反応液の調製はラボで決められたクリーンエリアか、UV ランプを備えた PCR フードにて陽圧の環境下で実施し

てください。

ワークステーションの準備

- 1. チラーの電源を入れ、0°Cにセットします。Bravoデッキの9番が相当します。チラーリザーバーは 少なくとも 300 mL の 25%エタノールを含むことを確認してください。
- 2. 前のLibraryPrep_XT_Illumina_v1.5.rstラン後に残ったLabware MiniHubのカセット1のShelf1 とShelf2にあるチップボックスは、次のステップで使用するので、そのまま MiniHub上に残してお いてください。また、デッキの上に残った DNA 末端修復マスターミックスソースプレートは、以下の ステップで再び使用します。ただし、梅雨の時期など湿度の高いラボではマスターミックスソースプ レートのウェル中に、結露が生じることがあります。もしウェル内部に結露が生じていることが確認 された場合は、新しいプレートを使用してください。その際、新しいプレートでも指定されたウェル に試薬を入れるようにしてください。その他のLabware MiniHubとBenchCel上のプレートとチッ プボックスは、すべて片付けてください。
- Bravo デッキヒートブロックの温度設定を参照し、Inheco Multi TEC Control タッチスクリーンを使って Bravo デッキ 6 番の温度をあらかじめ 4°C に設定してください。Bravo デッキ 6 番は Inheco Multi TEC Control タッチスクリーンで CPAC 2 2 に相当します。

キャプチャ前 PCR マスターミックスとマスターミックスソースプレートの準備

4. 適切な量のキャプチャ前 PCR マスターミックスを調製します。

SureSelect ^{x⊤} 試薬	1 ライブラ リ中の量	1カラム中 の量	2 カラム中 の量	3カラム中 の量	4カラム中 の量	6 カラム中 の量	12 カラム 中の量
Nuclease-free water	6.0 µL	99.0 µL	147.0 µL	195.0 µL	243.0 µL	339.0 µL	675.0 μL
Herculase II 5X Reaction Buffer*	10.0 µL	165.0 μL	244.9 µL	324.9 µL	405.0 µL	564.9 µL	1125.0 µL
dNTP mix*	0.5 µL	8.3 µL	12.2 µL	16.3 µL	20.2 µL	28.2 µL	56.3 µL
SureSelect Primer (Forward)**	1.25 µL	20.6 µL	30.7 µL	40.6 µL	50.6 µL	70.7 µL	140.6 µL
SureSelect Indexing Pre-Capture PCR (Reverse) Primer***	1.25 μL	20.6 µL	30.7 μL	40.6 µL	50.6 µL	70.7 µL	140.6 µL
Herculase II polymerase	1.0 µL	16.6 μL	24.6 µL	32.5 µL	40.6 µL	56.6 µL	112.5 µL
トータル量	20 µL	330 µL	490 µL	650 µL	810 µL	1130 µL	2250µL

表 36 キャプチャ前 PCR マスターミックスの調製 (200 ng DNA プロトコル用)

* dNTP mix は Herculase II Fusion DNA Polymerase に含まれます。他のキットの buffer と dNTP を 使用しないでください。

** SureSelect Primer (Forward)は Library Prep Kit に含まれています。

*** SureSelect indexing Pre-capture PCR(Reverse) Primer は-20℃保存のハイブリダイゼーションキットに含まれています。

5. LibraryPrep_XT_Illumina_v1.5.rst ランで使った同じ Nunc DeepWell マスターミックスソースプレ ートを使い(ウェル内に結露がみられた場合は新しいプレートを使用)、表 37 に示された量の PCR マスターミックスをマスターミックスソースプレートのカラム 4 のすべてのウェルに加えます。 マスターミックスソースプレートの最終的な状態は図 14 のようになります。

表 37 Pre-CapturePCR XT Illumina v1.5 200ng.pro 用マスターミックスソースプレートの調製

マスターミック	ソースプ	Nunc DeepWel	リノースプレート	-の1ウェル中(こ加えるマスター	ーミックスの量	
ス	レートの	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン
	位置						
キャプチャ前	カラム 4	38.0 µL	58.0 µL	78.0 µL	98.0 µL	138.0 µL	278.0 µL
PCR マスターミ	(A4-H4)						
ックス							

NOTE キャプチャ前 PCR ソースプレートのために新しい DeepWell プレートを使う場合 (たとえば、 ウェル内に結露が生じていたり、すでに前ステップで使用した DeepWell プレートを捨ててし まっていたり、残りのアダプター付き DNA サンプルを増幅する場合)、カラム 1-3 は必ず空 にしておき、カラム4に PCR マスターミックスを入れてください。

図 14 Pre-CapturePCR XT Illumina v1.5.pro 用マスターミックスソースプレートの状態。カラム 1-3は前のプロトコルでマスターミックスを分注する際にすでに使用しています。

- マスターミックスソースプレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
- プレートを30秒間遠心し、壁やプレートシールについた液を落とし、気泡を除きます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がはねないように注意してください。
- NOTE ソースプレートの溶液に泡があると Bravo 液体分注プラットフォームで正確に容量が測れ ないことがあります。必ずソースプレートをランの前にシールし、遠心してください。

Agilent SureSelect^{XT} 自動化システムにセット

8. 図 13 に示すプレートの向きを参考に、表 38 にしたがって Labware MiniHub に試薬をセットします。

表 38 Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro 用の MiniHub の初期配置

Shelf の位置	カセット 1	カセット 2	カセット 3	カセット 4
Shelf 5(上)	空き	空き	空き	黒いアダプターに
				載せた空の ABI
				MicroAmp プレート
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空き	空き	空き
Shelf 2	廃棄用チップボッ	空き	空き	空き
	クス*			
Shelf 1(下)	未使用のチップが	空き	空き	空のチップボック
	入ったチップボック			ス
	ス* カラム 1-3 が			
	空の状態。			

* 廃棄用チップボックス(カセット 1、Shelf 2)と未使用のチップが入ったチップボックス(カセット 1、Shelf 1) は、前のステップである LibraryPrep_XT_Illumina_v1.5.rst ランで使用した残りで、ここでも使用します。 ※プレートを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向け てセットします。

NOTE カセット1の Shelf 1 に新しいチップボックスを使う場合(たとえば、MiniHub 上のチップボック スをすべて処分してしまったか、残りのアダプター付き DNA サンプルを増幅するとき)、チッ プボックスのカラム 1-3 のチップを必ず手で取り除いてください。チップボックスのカラム 1-3 にチップが残っていると Bravo プラットフォームのピペットヘッドにぶつかってしまい、自動 プロセスステップを阻害する危険性があります。

9. 表 39 のように BenchCel Microplate Handling Workstation にチップボックスをセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	1 チップボックス	空き	空き	空き
4	1 チップボックス	空き	空き	空き
6	1 チップボックス	空き	空き	空き
12	1 チップボックス	空き	空き	空き

表 39 Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro 用の BenchCel の初期配置

10. Bravo デッキにプレートをセットします。

表 40 Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro 用の Bravo デッキの初期配置

デッキの位置	内容
7	アダプター付き DNA サンプルを含む Eppendorf プレート。A1 が左上になるように。
9	PCR マスターミックスがカラム 4 に入ったマスターミックスプレート。A1 が左上になる
	ように。

※シールをはがしていることを確認してください。

CAUTION ここで使用する VWorks Form は、XT_IIIumina_v1.5 200ng であることを確認して

下さい。SureSelect XT XT_Illumina_v1.5 3ug にはこのステップで使用するプロトコルが存在しません。

VWorks プロトコル Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro の実行

11. セットアップフォームの Select Protocol to Run の下の

Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro を選択します。

P	arameters		
1)	Select Protocol to Run		
	AMPureXP_XT_Illumina_v1.5.pro	•	
	AMPureXP_XT_Illumina_v1.5.pro		
2)	LibraryPren XT Illumina v1.5.rst		
	Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro		
	Aliquot_Libraries_v1.5.pro		
	Hybridization_v1.5.pro		
	SureSelectCapture&Wash_v1.5.rst		
	Post-CaptureIndexing_XT_Illumina_v1.5.pro		
	Dilution for TapeStation_v1.0.pro		

12. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できます。

13. Display Initial Workstation Setup をクリックします。

14. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

い。

				MiniHub
Minii	MiniHub Cassette 3	MiniHub Cassette 2	MiniHub Cassette 1	
				Shelf 5
-	MiniHub Cassette 3	MiniHub Cassette 2	MiniHub Cassette 1	Shelf 5

15. ミニハブの電源が入っていることを確認し、イニシャライズします。

16. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

Pre-CapturePCR_XT_Illumina_v1.5_200ng.pro の実行には約 15 分かかります。完了すると、調製 した DNA と PCR マスターミックスが混合した、PCR にかけるだけのサンプルが Bravo デッキの 5 番の ABI MicroAmp プレートに入った状態になります。容量は 50 uL です。

- 17. Bravo デッキの 5 番の上にある MicroAmp Plate を PlateLoc Thermal Microplate Sealer でシー ルします。シールした後、PCR プレートをとります。
- 18. プレートを 30 秒間、1000g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。
- 20. PCR プレートをサーマルサイクラにセットし、PCR 増幅プログラムを実行します。必ず適切な Compression Pad を挟むようにしてください。

セグメント	サイクル数	温度	時間
1	1	98°C	2 minutes
2	10	98°C	30 seconds
		65°C	30 seconds
		72°C	1 minutes
3	1	72°C	10 minutes
4	1	4°C	Hold

表 41 Pre-Capture PCR サイクルプログラム

NOTE 予備実験で 10 サイクルの PCR で高分子量の副生成物が見られる場合、PCR サイクルを 9 に減らして下さい。

STEP5. Agencourt AMPure XP ビーズによるサンプルの精製

このステップでは、Agilent SureSelect^{XT} 自動化システムは、AMPure XPビーズと増幅したアダプター 付き DNA を Nunc DeepWell プレートに移して撹拌し、ビーズに結合した DNA を集め、洗浄して溶出す る操作を実行します。

ワークステーションと試薬の準備

- 1. Labware MiniHubとBenchCel のプレートとチップボックスをすべて片付けます。チラーは OFF に してください。
- AMPure XP ビーズが室温であることを確認してください。(使用する少なくとも 30 分以上前に、 AMPure XP ビーズ(4°C 保存)を室温に戻しておくようにします。)
- ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- 均一な状態にした AMPure XPビーズ懸濁液 92 µLを、Nunc DeepWell ソースプレートの使用す る各ウェルに入れます。使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入れるようにしてください。
- 5. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 6. 45 mL の新しく調製した 70%エタノールを入れた Thermo Scientific リザーバーを準備します。
- 7. 図 13 に示すプレートの向きを参考に、表 42 にしたがって Labware MiniHub に試薬をセットします。

Shelf の位置	ታセット 1	ታセット 2	ታセット 3	カセット 4
Shelf 5(上)	空の Nunc DeepWell プ	空き	空き	空き
	レート			
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空の BioRad HSP9601	空き	空き
		LoBind PCR プレート		
Shelf 2	空き	ステップ 5 の	ステップ 4 の AMPure	空き
		nuclease-free 水リザー	XP ビーズ懸濁液入り	
		バー	の Nunc DeepWell プレ	
Shelf 1(下)	空き	ステップ 6 の 70%エタ	空き	空き
		ノールリザーバー		

表 42 AMPureXP XT Illumina v1.5.pro 用の MiniHub の初期配置

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジションを決められた方に向けてセットします。リザーバーの切り欠きは MiniHub の内側に向けてセットします。

8. 表 43 のように BenchCel Microplate Handling Workstation にセットします。

		•		
使用カラム数	 ラック 1	- ラック 2	- ラック 3	- ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	2 チップボックス	空き	空き	空き
4	2 チップボックス	空き	空き	空き
6	3 チップボックス	空き	空き	空き
12	6 チップボックス	空き	空き	空き

表 43 AMPureXP_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

9. 表 44 にしたがって Bravo デッキにプレートをセットします。

表 44 AMPureXP_XT_Illumina_v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
4	黒いアダプターに載せた増幅した DNA ライブラリを含む ABI MicroAmp プレート。
	プレートシールははがした状態で。
8	空のチップボックス

VWorks プロトコル AMPureXP_XT_IIIumina_v1.5.pro の実行

10. セットアップフォームの Select Protocol to Run の下の AMPureXP_XT_Illumina_v1.5.pro を

選択します。

11. Select additional Parameters の下から、

Pre-Capture PCR Cleanup を選択します。

2) Select additional Parameters

AMPureXP_XT_Illumina_v1.5.pro Only

a. S	elect DNA Product to Cleanup	
	Pre-Capture PCR Cleanup	-
b. V	Covaris Shearing Cleanup	
0.70	Pre-Capture PCR Cleanup	, in the second s
	Post-Capture PCR Cleanup	

プレートの種類は 96 ABI PCR half skirt in black carrier を選択します。プレートの種類を間違

えないようにご注意ください。

b.必ず適切な【サンプルプレート】を選択して下さい。

- 96 ABI PCR half skirt in black carrier
- 96 Eppendorf Twin.tec PCR Plate or
- 96 Bio-Rad HSP9601 LoBind PCR Plate
- NOTE AMPure_XT_Illumina_v1.5.pro は SureSelect 自動ワークフローの複数のステップで使用 します。自動プロトコルを始める時に正しいワークフローステップを選択しているか確認して ください。

12. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または12カラムが選択できます。

3) Select Number of Columns of Samples*

13. Display Initial Workstation Setup をクリックします。

	Display Initial
\mathbf{v}	Workstation Setup

14. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

-0	/orksta	tion Setup			-
Γ	MiniHub		(
		MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Minik
	Shelf 5				

- 15. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 16. 確認後 Run Selected Protocol をクリックしてください。

AMPure_XT_IIIumina_v1.5.pro の実行には約 45 分かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある BioRad HSP9601 のプレートの中に入った状態になります。ここでの溶出容 量は、各 30 µL です。

STEP6. DNA サンプルのサイズチェックと定量

SureSelect のハイブリダイゼーションには 750 ng のアダプター付き DNA ライブラリが必要です。 ベイトライブラリとアダプター付き DNA ライブラリの量のバランスは重要なので、できるだけ 750ng の量 をハイブリダイゼーションに用いるようにしてください。次の式を使ってハイブリダイゼーションに用いるラ イブラリの容量を計算してください。

容量(µL) = 750 ng/濃度(ng/µL)

ハイブリダイゼーションに用いる量が250 ng以下になると、シーケンスの結果に悪影響を与えます。

Option 1: Agilent 2100バイオアナライザによる品質チェック

バイオアナライザ DNA 1000 チップと試薬アッセイを用いて測定します。

- 1. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 各ウェルのサンプルを均一にするためプレートを5秒ボルテックスした後、30秒間遠心して壁やプレートシールについた液を落とします。
- バイオアナライザの電極を洗浄します。電極クリーナーチップに入れて電極を洗浄する水 350µL は、複数回の測定を同日中に行う場合も、測定の度に交換して下さい。必要に応じて、バイオア ナライザのガイドブックに従い十分な洗浄を行ってください。
- 4. Agilent 2100 expert ソフトウェア(version B.02.02 もしくはそれ以上) を起動し、バイオアナライ ザ本体とのコミュニケーションを確認します。
- バイオアナライザの試薬ガイドに従い、チップ、サンプル、ラダーを調製します。1 µL のサンプルを 分析に使います。
- 調製が終わったチップをバイオアナライザにセットします。チップ調製後、5分以内にランをスター トさせる必要があります。
- 7. バイオアナライザの assay のメニューから、DNA 1000 assay を選択します。
- ランをスタートさせます。データファイルへのリンクをクリックして、サンプル名およびコメントを書き 込みます。
- 9. 結果をチェックします。図 15 の泳動図のような分布が得られ、250-275 bp 付近の位置にピークト ップがあることを確認します。
- 10. ピークを積分してライブラリの濃度(ng/µL)を測定します。
- Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

図 15 増幅されたアダプター付き DNA ライブラリの DNA1000 アッセイの泳動図。泳動図から 225 bp-275bp の位置に、シングルスメアピークのピークトップが観察される。

Option 2: Agilent TapeStationによる品質チェック

TapeStation の D1000 ScreenTape (p/n 5067-5582)と専用試薬キット(p/n 5067-5583)を使います。 TapeStation の操作マニュアルは下記 Web サイトからダウンロードいただくことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

TapeStation を使用する場合、典型的に得られるアダプター付きライブラリの濃度だと、TapeStation の 定量範囲を超えてしまい、定量値が不正確になる危険性があります。得られたライブラリの一部(2 uL 程 度)をとり、5 倍に希釈して、TapeStation で測定することをお勧めします。

この5倍希釈の操作は、NGS 自動化システムを使用して行うことができます。

<TapeStation の品質チェック用 5 倍希釈サンプルの調製>

ワークステーションと試薬の準備

- 1. Labware MiniHub と BenchCel のプレートとチップボックスをすべて片付けます。チラーは OFF に してください。
- 2. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 3. 表 45 のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	 ラック 1	- ラック 2	- ラック 3	- ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	1 チップボックス	空き	空き	空き
4	1 チップボックス	空き	空き	空き
6	1 チップボックス	空き	空き	空き
12	2 チップボックス	空き	空き	空き

表 45 Dilution_for_TapeStation_v1.0.pro 用の BenchCel の初期配置

4. 表 46 にしたがって Bravo デッキにプレートをセットします。

—	
デッキの位置	内容
5	空の BioRad HSP9601 LoBind PCR plate
6	Nuclease Free 水を入れたリザーバー
7	BioRad HSP9601 LoBind PCR plate に入ったアダプター付き DNA ライブラリ原液
8	空のチップボックス

表 46 Dilution_for_TapeStation_v1.0.pro 用の Bravo デッキの初期配置

※このステップでは、TapeStation で測定する希釈液への AMPureXP ビーズのコンタミネーションをでき るだけ抑制するため、Eppendorf ではなく、BioRad の HSP9601 LoBind PCR plate を使用します。 ※シールをはがしていることを確認してください。

VWorks プロトコル Dilution_for_TapeStation_v1.0.pro の実行

5. セットアップフォームの Select Protocol to Run の下の Dilution_for_TapeStation_v1.0.pro を選択します。

Pa	arameters	
1)	Select Protocol to Run	
	AMPureXP_XT_Illumina_v1.5.pro	
	AMPureXP_XT_Illumina_v1.5.pro	
2)	LibraryPrep_XT_Illumina_v1.5.rst	
	Pre-CapturePCR_XT_Illumina_v1.5.pro	
	Aliquot_Libraries_v1.5.pro	
	Hybridization_v1.5.pro	
	SureSelectCapture&Wash_v1.5.rst	
	Post-CaptureIndexing_XT_Illumina_v1.5.pro	
	Dilution for TapeStation_v1.0.pro	•

- 6. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できま す。
- 3) Select Number of Columns of Samples*

7. Display Initial Workstation Setup をクリックします。

Display Initial Workstation Setup 8. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

-MiniHub)			
	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Min
Shelf 5				

- 9. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 10. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

Dilution_for_TapeStation_v1.0.pro の実行には約 10 分かかります。完成したアダプター付き DNA ライ ブラリ 2 uL を、Nuclease Free 水 8 uL で 5 倍希釈します。完了すると TapeStation の測定用に 5 倍希 釈された DNA サンプルは Bravo デッキの **5** 番にある BioRad HSP9601 のプレートの中に入った状態 になります。10uL の量となります。

ハイブリダイゼーションに用いるアダプター付き DNA ライブラリは、Bravo デッキの 7 番にある BioRad HSP9601 のプレートの中に入った状態になっています。約 28 uL の量となります。このサンプルは、下 記を参照に保存してください。(間違えて処分しないように、十分に注意してください。)

Stopping Point 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

5 倍希釈 DNA サンプルの TapeStation による測定

- Agilent TapeStation の操作マニュアルに従い、1 uL のアダプター付き増幅 DNA 希釈サンプルを、 3 uL の D1000 サンプルバッファで希釈し、よく混ぜます。
- CAUTION 正確な定量のために、DNAとD1000 サンプルバッファを混ぜたサンプルは、TapeStation 本体付属のボルテックスミキサで2000 rpm で1分、混合してください。付属のボルテックスミキサ をお持ちでない場合は Max で 10 秒の混合を2回繰り返して確実に混合してください。
 - 2. サンプルプレートもしくはサンプルチューブストリップを TapsStation にセットし、ランをスタートさせ ます。

- 4. サンプルの調製 (200 ng DNA サンプル)
 - 3. 結果をチェックします。図 16 の泳動図のような分布が得られ、225-275 bp 付近の位置にピークト ップがあることを確認します。
 - 4. ピークを積分してライブラリの濃度(ng/µL)を測定します。

図 16 増幅されたアダプター付きライブラリの TapeStaton D1000 アッセイ による泳動図。 225-275 bp 付近の位置にピークトップが見られます。

NOTE この後のステップのハイブリダイゼーションでは、ターゲット領域のサイズによらず、最低 750 ng のアダプター付き DNA ライブラリが必要です。また濃度は 221 ng/µL 以上である 必要があります。濃度は、221 ng/µL より低い値が得られる場合がほとんどですので、濃 縮遠心機を用いて、サンプルを濃縮してください。濃縮遠心を行う場合、45°C 以上の高い 温度をかけないようにしてください。(トミー精工社の濃縮遠心機を使用する場合は、温度 はLow,40°C で濃縮遠心します。)750 ngに相当する容量を96 ウェルプレートに分注す る作業は自動化できますので、実際の操作については、次の章を参考にしてください。

5. ハイブリダイゼーション

この章では、前章で調製したイルミナ社のペアエンドアダプター付き DNA ライブラリと、アジレント社 の SureSelect オリゴキャプチャライブラリをハイブリダイゼーション試薬とブロッキング試薬とともに ハイブリダイズします。

CAUTION SureSelect オリゴキャプチャライブラリとアダプター付き DNA ライブラリの比は、高い Capture 効率を得るために極めて重要です。プロトコル記載の量に従って、ハイブリダイ ゼーションを行ってください。

CAUTION capture のためのハイブリダイゼーションは 16 時間または 24 時間(以上)行いますが、 この間に少量のハイブリ溶液の蒸発を防ぐ必要があります。

実験を行う前に、必ず、実験で使用する予定のサーマルサイクラ装置(Hot lid 付き)、プレート、シール方法の組み合わせで、オリゴキャプチャライブラリとアダプター付き DNA ライブラリを入れない状態で、水 35 µL をハイブリ溶液の代わりに用意し、65°C で 24 時間(以上)、事前テストを行ってください。必ず使用する予定のウェルポジションに、テストサンプルをセットして試験するようにしてください。(ウェルによっては、端と中央で、蒸発が異なるものがあります。)

キャップもしくはシールによる密閉を確実に行うことが重要です。

蒸発量は 3-4 µL を超えないようにしてください。

本実験で使用する AB MicroAmp Optical 96-well plate では、Biomek Seal & Sample Aluminum for Lid でシールした後、さらに MicroAmp Adhesive Film を貼るか、もしくは MicroAmp Adhesive Film を 2 枚貼りにすることで、蒸発を効果的に抑えることができま す。その場合、最初に貼る Biomek Seal & Sample Aluminum for Lid のアルミシール は、AB MicroAmp Optical 96-well plate の Half Skirt の内側に貼りこむように、事前に ハサミで切って幅を調整してください。ウェルはきちんと覆って、かつ half skirt にかから ないように注意して切ってください。ウェルはきちんと覆って、かつ half skirt にかから ないように注意して切ってください。内側に貼るアルミシールが、Skirt にかかった状態で シールすると、端のウェルが蒸発しやすくなります。さらに貼りこんだ後、Skirt にかかる 部分をカッターで切り、とり除いてください。さらにそのうえから MicroAmp Adhesive Film を、アルミシールを覆うように貼り付けます。また使用する PCR の機種によっては、 適切な Compression Mat が必要となる場合があります。自動シーラーのシールは、こ のステップでは使用しないようにしてください。

図 17 SureSelect ターゲットエンリッチメントシステムのキャプチャプロセス 概略
STEP1. ハイブリダイゼーションのための調製した DNA サンプルの分取

各サンプルのアダプター付きDNAライブラリに対して、個別にハイブリダイゼーションとキャプチャを行い ます。この段階ではサンプルをプールしないでください。

各ハイブリダイゼーション反応はターゲット領域のサイズによらず、750 ng の調製したアダプター付き DNAライブラリを含むようにします。ハイブリダイゼーションステップを始める前に、750 ng 分取に必要な サンプル量を Agilent SureSelect^{XT} 自動化システムに指示するための表を作成する必要があります。

- 図 18 に示すヘッダーをつけた.csv(comma separated value)ファイルを作成します。ヘッダーの文字にはスペースを含まないようにしてください。この表は Microsoft の Excel などのスプレッドシート作成アプリケーションを使って作り、保存する際に.csv フォーマットにすることもできます。このファイルはプレートの全96 ウェル分の行(Rows)を含む必要があります。Excel を使用する場合、csv 以外の形式でこのファイルを保存して使用すると、使用中にエラーが出て止まってしまいます。必ず csv 形式で保存して使用するように注意してください。
- 2. 各 DNA サンプルについてヘッダーの項目の情報を入力します。
 - SourceBC の列には、サンプルプレートの内容またはバーコードを入力します。SourceBC の 列は、すべての Row で同じになります。
 - SourceWellとDestinationWellの列には、プレートでのそれぞれのウェルの位置を入力します。
 SourceWellとDestinationWellに書かれた内容は各サンプルについて同じになります。
 - Volume の列には、それぞれのサンプルの 750 ng の DNA に相当するサンプル量(µL)を入力 します。

	A	B	C	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	SamplePlateXYZ	A1	A1	5.35
3	SamplePlateXYZ	B1	B1	4.28
4	SamplePlateXYZ	C1	C1	4.76
5	SamplePlateXYZ	D1	D1	5.19
6	SamplePlateXYZ	E1	E1	5.49
7	SamplePlateXYZ	F1	F1	4.86
8	SamplePlateXYZ	G1	G1	5.05
9	SamplePlateXYZ	H1	H1	4.37
10	SamplePlateXYZ	A2	A2	0
11	SamplePlateXYZ	B2	82	0
12	SamplePlateXYZ	C2	C2	0
.13.	SamelePlateV/Z	02. 10.10. 10.0	Block Barrier	Biguna

図 18 1カラムラン用のサンプル分取のためのサンプルスプレッドシート

- NOTE サンプルスプレッドシートは C: > VWorks Workspace > NGS Option B > XT_illumina1.5 > Aliquot Library Input Files にコピーする必要があります。 750ng_transfer_full_plate_template.csv ファイルをこのフォルダにコピーし、テンプレート として Aliquot_Libraries_v1.5.pro ランの.csv ファイルを作成するために使用できます。12 カラム(96 サンプル)より少ないランのテンプレートとして使用する場合、96 ウェル分の行が あることと、使用しないウェルの Volume の列は 0 とするように注意してください。
- Works ソフトウェアがインストールされている PC の次のフォルダに.csv ファイルをロードします。
 VWorks Workspace > NGS Option B > XT_illumina1.5 > Aliquot Library Input Files
- 4. 表 47 のように Bravo デッキを準備します。

表 47 Aliquot Libraries v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	内容
5	黒アダプターにのった空の ABI MicroAmp プレート。A1 が左上になるように。
6	空のチップボックス
8	新しいチップボックス
9	調製したライブラリを含む BioRad HSP9601 LoBind PCR Plate プレート。A1 が左上にな
	るように。シールははがす。

5. セットアップフォームの Select Protocol to Run の下の Aliquot_Libraries_v1.5.pro を選択し ます。

6. Display Initial Workstation Setup をクリックします。

ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできているか 必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてください。

٢	Norksta ⊂MiniHub	tion Setup			
		MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
	Shelf 5				
~	ShelfA	سيرسى باستعل	بمسيمت منام	- manan me	فسرا

7. 確認後 Run Selected Protocol をクリックしてください。

Run Selected Protocol

8. 下のダイアログボックスが出てきたらこのランのソースプレートのために作成した.csvファイルを指定し、**OK**をクリックしてランを開始します。

Select Hit Pick Input File	· · · · · · · · · · · · · · · · · · ·	×
Please select the hit pick input file for the hit subprocess "Aliquot Libraries".	pick replication task at tas	sk "5" of
C:\VWorks Workspace\WGS Option B\XT_Illu	mina_1.5\Aliquot Library]	input
	ОК	Cancel

この分取プロトコルは96 サンプルで約1時間かかります。完了時には750 ng のサンプルはBravo デッキの5番にある ABI MicroAmp プレートの中に入った状態になります。

- 750 ng のサンプルのプレートを Bravo デッキからとり、濃縮遠心機で 45°C 以下の温度でサンプ ルを乾燥させます。
- 10. 乾燥したサンプルそれぞれに 3.4 µL の nuclease-free 水を加えて、最終濃度 221 ng/µL にしま す。サンプルが 96 より少ない場合は、必要量の nuclease-free 水をプレートの空いた位置に入れ て置き、マルチピペットを用いて、この操作を効率的に行うことが可能です。96 サンプルを操作す るときには、同様に必要量の nuclease-free 水を他の Strip Tube などに準備し、マルチピペットを 用いて再溶解することができます。各ウェルの内壁に沿ってピペッティングすることでサンプルをよ く再溶解させるよう、十分に注意してピペッティングしてください。
- 11. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 12. プレートを30秒間ボルテックスして乾燥させたサンプルを完全に溶解させ、その後1分間遠心し、 壁やプレートシールについた液をスピンダウンして気泡を除きます。Bravo にセットするときにシー ルをはがしてください。はがすときに反動で液がはねないように注意してください。

STEP2. DNA ライブラリと SureSelect Capture Library のハイブリダイゼーション

このステップでは Agilent SureSelect^{XT} 自動化システムは調製した DNA サンプルと1 つまたは複数の SureSelect キャプチャライブラリのハイブリダイゼーションを準備する際の溶液分注ステップを行います。 その後、サンプルプレートをサーマルサイクラに移して 65°C で保温し、DNA サンプルを SureSelect キャ プチャライブラリとハイブリダイズさせます。なお、室温 20°C以下の低温でハイブリバッファは析出し、結 果としてライブラリの収量を著しく下げます。ハイブリバッファの析出を抑えるため、以下のプロトコルは 英文のオリジナルから改変されています。本プロトコルをご参照ください。

ワークステーションと試薬の準備

- 1. Labware MiniHub と BenchCel のプレートとチップボックスをすべて片付けます。
- 2. デッキ9番のチラーの上に、赤いアルミニウムインサートを載せます。
- 3. **チラーを 26°Cに設定します。**チラーが 0°Cだと、ハイブリダイゼーションバッファが析出し、結果に 悪影響を与える怖れがありますので、温度設定を間違えないように十分に注意ください。
- NucleoClean decontamination スプレー溶液をキムワイプなどに含ませて、Labware MiniHub、 Bravo デッキ、および BenchCel をやさしく拭いてください。NucleoClean decontamination スプレ ー溶液が、使用する 96 プレート類に直接かからないようにご注意ください。
- 5. Bravo デッキ 4 番の温度を Inheco Multi TEC コントロールタッチスクリーンで 85°C に設定します (Bravo デッキヒートブロックの温度設定を参照してください)。Bravo デッキ 4 番は Inheco Multi TEC コントロールタッチスクリーンで CPAC 2 1 に相当します。さらに Bravo デッキ 6 番の温度を Inheco Multi TEC コントロールタッチスクリーンで 26°C に設定します。Bravo デッキ 6 番は Inheco Multi TEC コントロールタッチスクリーンで CPAC 2 2 に相当します。
- 16 または 24 時間の Hybridization に用いるシールの準備をします。最初に貼るシール (MicroAmp Adhesive Film または Biomek Seal & Sample Aluminum for Lid のアルミシール) は、AB MicroAmp Optical 96-well plate の Half Skirt の内側に貼りこむように、ハサミで切って幅 を調整してください。ウェルはきちんと覆って、かつ half skirt にかからないように注意して切ってく ださい。内側に貼る Adhesive Film またはアルミシールが、Skirt にかかった状態でシールすると、 端のウェルが蒸発しやすくなります。

Hybridization Buffer マスターミックスの調製

1. 以下表にしたがって室温で Hybridization Buffer マスターミックスを調製してください。

SureSelect ^x T 試薬	- 1 カラム中の	- 2 カラム中の	- 3 カラム中の	4 カラム中の	- 6 カラム中の	- 12 カラム中の
	±	±	±	±	±	±
SureSelect Hyb #1	234 µL	234 µL	234 µL	468.0 µL	468.0 µL	850.0 μL
SureSelect Hyb #2 (red cap)	9.4 µL	9.4 µL	9.4 µL	18.7 µL	18.7 µL	34.0 µL
SureSelect Hyb #3 (yellow cap)	93.5 µL	93.5 µL	93.5 µL	187.0 µL	187.0 µL	340.0 µL
SureSelect Hyb #4	122 µL	122 µL	122 µL	243.0 µL	243.0 µL	442.0 µL
トータル量	458.9 µL	458.9 μL	458.9 µL	916.7 µL	916.7 µL	1666 µL

表 48 Hybridization Buffer	マスターミックスの調製
---------------------------	-------------

 Hybridization Buffer マスターミックスは調製後すぐに、サーモブロックで、65°C で 5 分間加熱して ください。加熱後、マスターミックス溶液に沈殿がないことを確認してください。加熱後の Hybridization Buffer マスターミックスは 25°Cに設定したサーモブロック中に置いておきます。マス ターミックスを置いたまま、65°Cの加熱に利用したサーモブロックの温度を 25°Cまで下げて使用し てもかまいません。もう1台のサーモブロックを用意し、65°Cから 25°Cに Hybridization Buffer マス ターミックスを移す場合は、25°C未満の温度で放置しないようにしてください。Hybridization Buffer マスターミックスは 20°C以下の温度で沈殿を析出します。沈殿は結果に著しい悪影響を与えます。 再度沈殿してしまった場合、上記の加熱ステップからやり直してください。

SureSelect Block マスターミックスの調製

3. 氷上で以下表のように SureSelect Block マスターミックスを適量調製してください。

SureSelect ^x T 武	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	6.0 µL	76.5 µL	127.5 µL	178.5 µL	229.5 µL	331.5 µL	663.0 µL
water							
SureSelect	2.5 µL	31.9 µL	53.1 µL	74.4 µL	95.6 µL	138.1 µL	276.3 µL
Indexing Block #1							
(green cap)							
SureSelect Block	2.5 µL	31.9 µL	53.1 µL	74.4 µL	95.6 µL	138.1 µL	276.3 µL
#2 (blue cap)							
SureSelect	0.6 µL	7.7 µL	12.8 µL	17.9 µL	23.0 µL	33.2 µL	66.3 µL
Indexing Block #3							
(brown cap)							
トータル量	11.6 µL	147.9 µL	246.5 µL	345.1 µL	443.7 µL	640.9 μL	1281.9 µL

表 49 SureSelect Bloo	*マスターミックスの調製
----------------------	--------------

1 つまたは複数の SureSelect Capture Library マスターミックスの調製

- SureSelect キャプチャライブラリマスターミックスを、表 50 から表 53 に示されているようにハイブ リダイゼーションに使用するそれぞれのキャプチャライブラリについて適量調製します。溶液はピペ ッティングで混合してください。マスターミックスは調製中および分取中には氷上におくようにしてく ださい。
- NOTE 調製した DNA サンプルプレートのそれぞれの Row に異なる SureSelect Capture Library をハイブリダイズさせることができます。しかし、キャプチャライブラリのサイズが異なると、 キャプチャ後増幅でのサイクル数が異なります。同じプレートには同じ PCR サイクル数とな るターゲットサイズのライブラリをハイブリダイズさせるように実験計画を立ててください。 プレートのすべての Row で 1 種類のキャプチャライブラリを使用するランの場合、下のステ ップ a(表 50 または表 51)にしたがってマスターミックスを調製してください。 個々の Row で異なるキャプチャライブラリを使用するランの場合、下のステップ b(表 52 ま たは表 53)にしたがってマスターミックスを調製してください。

a. **すべての Row で1つのキャプチャライブラリを使用するランの場合**、デザインしたターゲットサ イズによって以下表にしたがって Capture Library を調製してください。

ターゲットサイズ 3.0 Mb 未満							
SureSelect ^{xt} 試	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	4.5 µL	76.5 µL	114.8 µL	153.0 µL	191.2 µL	267.8 µL	516.4 µL
water							
RNase Block	0.5 µL	8.5 µL	12.8 µL	17.0 µL	21.2 µL	29.8 µL	57.4 µL
(purple cap)							
Capture Library	2.0 µL	34.0 µL	51.0 µL	68.0 µL	85.0 µL	119.0 µL	229.5 µL
トータル量	7.0 μL	119.0 µL	178.6 µL	238.0 µL	297.4 µL	416.6 µL	803.3 µL

表 50 ターゲットサイズが 3.0 Mb 未満のときの Capture Library マスターミックスの調製、8 Row 分

表 51 ターゲットサイズが 3.0 Mb 以上のときの Capture Library マスターミックスの調製、8 Row 分

ターゲットサイズ 3.0 Mb 以上							
SureSelect ^x T 試	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	1.5 µL	25.5 µL	38.2 µL	51.0 µL	63.8 µL	89.2 µL	172.1 µL
water							
RNase Block	0.5 µL	8.5 µL	12.8 µL	17.0 µL	21.2 µL	29.8 µL	57.4 µL
(purple cap)							
Capture Library	5.0 µL	85.0 µL	127.5 µL	170.0 µL	212.5 µL	297.5 µL	573.8 µL
トータル量	7.0 µL	119.0 µL	178.5 µL	238.0 µL	297.5 µL	416.5 µL	803.3 µL

b. 個々の Row で異なるキャプチャライブラリを使用するランの場合、デザインしたターゲットサイズによって以下表にしたがって Capture Library を調製してください。以下表の容量はサンプルウェル 1Row 分です。複数の Row で同じキャプチャライブラリをハイブリダイズさせる場合、示した数値にそのキャプチャライブラリを使用予定の Row 数をかけて、さらにピペットロス分を考慮してください。

表 52 ターゲットサイズが 3.0 Mb 未満のときの Capture Library マスターミックスの調製、1Row 分

ターゲットサイズ 3.0 Mb 未満							
SureSelect ^{xt} 試	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	4.5 µL	9.3 µL	14.0 µL	18.8 µL	23.7 µL	33.1 µL	64.3 µL
water							
RNase Block	0.5 µL	1.0 µL	1.6 µL	2.1 µL	2.6 µL	3.7 µL	7.1 µL
(purple cap)							
Capture Library	2.0 µL	4.1 µL	6.3 µL	8.4 µL	10.5 µL	14.8 µL	28.6 µL
トータル量	7.0 μL	14.4 µL	21.9 µL	29.3 µL	36.8 µL	51.6 µL	100 µL

表 53	ターゲットサイズが 3.0 Mb 以上のときの Capture Librar	yマスターミックスの調製、1Row分
------	--	--------------------

ターゲットサイズ 3.0 Mb 以上							
SureSelect ^x T 試	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	1.5 µL	3.1 µL	4.7 µL	6.3 µL	7.9 µL	11.0 µL	21.5 µL
water							
RNase Block	0.5 µL	1.0 µL	1.6 µL	2.1 µL	2.6 µL	3.7 µL	7.1 µL
(purple cap)							
Capture Library	5.0 µL	10.3 µL	15.6 µL	20.9 µL	26.3 µL	36.9 µL	71.4 µL
トータル量	7.0 µL	14.4 µL	21.9µL	29.3 µL	36.8 µL	51.6 µL	100 µL

マスターミックスソースプレートの調製

5. ステップ3から4で調製したマスターミックスをエッペンドルフプレートに入れてマスターミックスソー スプレートを調製します。このマスターミックスの調製は、実際にこのステップのランを始める直前 に行うようにしてください。

表 54 にしたがって各マスターミックスをエッペンドルフプレートの指定されたカラムの各ウェルに加 えます。エッペンドルフプレートは室温に置いて操作してください。1 回のランで複数のキャプチャラ イブラリを使用する場合には、Capture Library マスターミックスをエッペンドルフプレートの適切な Row に加えてください。マスターミックスソースプレートは最終的に図 19 のようになります。なお、 ここでは Hybridization Buffer マスターミックスはまだソースプレートに入れません。

表 54 Hybridization_v1.5.pro 用のマスターミックスソースプレートの調製

マスターミック	ソースプ	エッペンドルフ	エッペンドルフソースプレートの1ウェル中に加えるマスターミックスの量						
ス	レートの	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン		
	位置								
Block マスター	カラム 1	17.4 µL	29.0 µL	40.6 µL	52.2 µL	75.4 µL	150.8 µL		
ミックス	(A1-H1)								
Capture	カラム 2	14.0 µL	21.0 µL	28.0 µL	35.0 µL	49.0 µL	94.5 µL		
Library マスタ	(A2-H2)								
ーミックス									

図 19 Hybridization_v1.5.pro 用マスターミックスソースプレートにおけるマスターミックスの配置

6. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。

 プレートを30秒間1000gで遠心し、壁やプレートシールについた液をスピンダウンして気泡を除きます。エッペンドルフのマスターミックスプレートはプレートシールをはがしてBravoのデッキ9番の チラーの上に置いた赤いアルミニウムインサートの上に置きます。チラーの温度が26°Cになっていることを再確認してください。

Agilent SureSelect^{XT} 自動化システムにセット

- 8. プレートの向きに注意して、表 55 にしたがって Labware MiniHub に試薬をセットします。
- 表 55 Hybridization_v1.5.pro 用の MiniHub の初期配置

Shelf の位置	 カセット 1	カセット 2	カセット 3	カセット 4
Shelf 5(上)	空き	空き	空き	空き
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空き	空き	空き
Shelf 2	空のチップボック	空き	空き	空き
	ス			
Shelf 1(下)	空き	空き	空き	空き

9. 表 56 のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	- ラック 1	 ラック 2		 ラック 4
1	2 チップボックス	空き	空き	空き
2	2 チップボックス	空き	空き	空き
3	2 チップボックス	空き	空き	空き
4	3 チップボックス	空き	空き	空き
6	3 チップボックス	空き	空き	空き
12	5 チップボックス	空き	空き	空き

表 56 Hybridization_v1.5.pro 用の BenchCel の初期配置

10. 表 57 にしたがって Bravo デッキにプレートをセットします。

表	57	Hybridization	_v1.5.pro 用の)Bravo デッキの初期配置
---	----	---------------	--------------	-----------------

デッキの位置	内容
5	STEP1 で 3.4 µL の水に溶解した調製済みライブラリ 500 ng もしくは 750 ng の入った
	ABI MicroAmp プレートを黒いアダプターにのせたもの、A1 を左上に
6	空のエッペンドルフプレート
8	空のチップボックス
9	ハイブリダイゼーション マスターミックスソースエッペンドルフプレート 赤いアルミ
	ニウムインサートの上、チラーは 26℃

VWorks プロトコル Hybridization_v1.5.pro の実行

11. セットアップフォームの Select Protocol to Run の下の Hybridization_v1.5.pro を選択します。

Pa	arameters	
1)	Select Protocol to Run	
	Hybridization_v1.5.pro	•
	AMPureXP_XT_Illumina_v1.5.pro	
2)	LibraryPrep_XT_Illumina_v1.5.rst	
	Pre-CapturePCR_XT_Illumina_v1.5.pro	
	Aliquot_Libraries_v1.5.pro	
	Hybridization_v1.5.pro	
	SureSelectCapture&Wash_v1.5.rst	
	Post-CaptureIndexing_XT_Illumina_v1.5.pro	
	Dilution for TapeStation_v1.0.pro	

12. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または12カラムが選択できます。

3) Select Number of Columns of Samples*

13. Display Initial Workstation Setup をクリックします。

14. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ

- 15. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 16. 確認後 Run Selected Protocol をクリックしてください。

Agilent SureSelect^{XT} 自動化システムは SureSelect Block マスターミックスを調製されたアダプター 付き DNA ライブラリを含む ABI MicroAmp プレートのウェルに移します。この作業が完了するとハイ ブリダイゼーション前のサンプル熱変性のためにプレートをサーマルサイクラに移すように指示がで ますので、自動化システムのそばを離れないようにしてください。

- 17. 開始後しばらくすると、下に示す指示が VWorks 画面上に表示されます。Bravo デッキ 5 番にある ABI MicroAmp プレートを**黒いアダプターは残したまま**でとります。プレートをとるときに、中身をこ ぼさないように十分に注意してください。
- 18. ABI MicroAmp プレートを、 PlateLoc Thermal Microplate Sealer でシールします。

Remove plate	
Remove plate from carrie thermocycler.	r, seal and place in
Pause and Diagnose	Continue

19. PlateLoc Thermal Microplate Sealer でシールしたプレートをサーマルサイクラに移し、表 58 に 示したプログラムを実行します。プレートをサーマルライクラに移したら VWorks スクリーンで **Continue** をクリックしてください。

表 58 ハイブリダイゼーション前のサンプル変性に使うサーマルサイクラプログラム

ステップ	温度	時間
ステップ 1	95°C	5 minutes
ステップ 2	65°C	Hold

サンプルプレートがサーマルサイクラ上でインキュベートされている間に Agilent SureSelect^{XT} 自動化 システムは分取した Capture Library マスターミックスを Deck6 の上の Eppendorf プレートに分注します。 この作業が終わり、次の作業のためのピペットチップを準備しているときに、次のメッセージが画面に出 ます。

Please wait for Bravo sto Confirm Bravo at rest, Av into Column 3 (A3-H3) of Twin.tec Plate on Deck9, Carefully. After add hyb mix into Co Continue.	pping, After dd Hyb Buffer Mix Eppendorf Avoid Bubble olumn3, Click
User data entry:	

図 20

この画面が出ている際にも、まだ Bravo が動いている場合があります。 Bravoの動きがとまったことを確認した後、以下の作業を行います。

20. 25°Cのサーモブロックに置いてある Hybridization Buffer マスターミックスを、Bravo のデッキ 9 番のチラー上に置いた赤いアルミニウムインサートの上のエッペンドルフのソースプレートの Column3(A3-H3)に、下記の量を、泡を入れないように注意しながらそっと入れます。ソースプレー トは 26°Cのチラーの上に置いたまま、Hybridization Buffer マスターミックスを入れるようにしてくだ さい。またこの操作中に Hybridization Buffer マスターミックスが 20°C以下に冷えないことが重要 です。できるだけ25°Cのサーモブロック上からHybridization Buffer マスターミックスを、赤いアルミ ニウムインサートの上のエッペンドルフプレートに直接入れるようにしてください。冷たい手でチュー ブをにぎって、チューブを冷やさないように注意してください。また入れる場所を間違えないようにご 注意ください。入れ終わった後、泡がソースプレートの底にないかどうか目視で確認します。

表 59 Hybridiz	ation v1.5.prc	用のマスターミック	クスソースプレー	トの調製
---------------	----------------	-----------	----------	------

マスターミック	ソースプ	エッペンドルフソースプレートの1ウェル中に加えるマスターミックスの量					
ス	レートの	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン
	位置						
Hybridization	カラム 3	50 µL	50 µL	50 µL	104 µL	104 µL	196 µL
Buffer マスター	(A3-H3)						
ミックス							

Column3(A3-H3)に Hybridization Buffer マスターミックスを入れ終わったら、画面の Continue のボタン をクリックします。

Bravo は Deck9 の上のソースプレートに入れた Hybridization Buffer マスターミックスを、Deck6 の Eppendorf プレートに分注し、Capture Library マスターミックスと混ぜます。

CAUTION

以下のステップ 21 から 24 を迅速に、VWorks ソフトウェアの指示が出たらすぐに行わ なければなりません。自動化システムのそばを離れないようにしてください。Agilent SureSelect^{XT} 自動化システムとサーマルサイクラの間でプレートを移動させる間に、プ レートに入ったサンプルの温度を約 65°C に保つことが非常に重要です。 ワークステーションが Capture Library と Hybridization Buffer マスターミックスの分取が 完了したら、VWorks に次の指示が出ます。サーマルサイクラが 65°C、Hold のステップ になっていることを確認し(まだ Hold になっていなかったら、Hold になるまで待ってから) **Continue** をクリックします。プレートを動かすように指示があるまでは、サーマルサイク ラにサンプルプレートを入れておいてください。

W	ait for plate in thermocycler
	When thermocycler has reached hold step at 65C, click Continue.
	Leave DNA plate in thermocycler until you are prompted to transfer the plate.
	Pause and Diagnose

21. VWorks に下に示す指示が出たら、迅速にサンプルプレートをサーマルサイクラから取り出し、 Bravo デッキの 4 番の上の黒い ABI アダプターにのせ、溶液が飛び散らないように注意してシー ルを剥がします。4 番のデッキは熱くなっているので、注意してください。 Continue をクリックしま す。

Ρ	lace DNA plate on Bravo
	Complete the following steps as quickly as possible:
	Retrieve DNA plate from thermocycler, and place on carrier at Bravo position 4 and unseal.
	Click Continue to resume protocol.
	*Use Caution: Position 4 will be hot.
	Pause and Diagnose
-	

WARNING Bravo デッキ4番は高温です。 高温のデッキに接触しているものを扱う際には注意してください。

Agilent SureSelect^{XT} 自動化システムは、キャプチャライブラリとハイブリダイゼーションバッファの混合 液を、アダプター付き DNA ライブラリとブロッキング試薬の混合液を含む ABI MicroAmp プレートのウェ ルに移します。

22. VWorks に下に示す指示が出たら、迅速に Bravo デッキの4番の ABI MicroAmp サンプルプレートを、まず Beckman Coulter の Biomek のアルミシール(あらかじめ MicroAmp サンプルプレートの内側に納まるように幅を調整したシール)できっちりシールをして、プレートの Half Skirt にかかるアルミシールをカッターで切り取り(ウェルはきちんと覆うように注意してください。)その上にさらにMicroAmpのAdhesive Filmを貼ります。もしくはアルミシールを使わずに MicroAmpの Adhesive Filmを2枚貼ってシールすることもできます。その場合も、最初に貼るシールは、96Wellを完全に覆って、かつふちがプレートの内部におさまるようにあらかじめ小さなサイズに切ってご使用ください。上にかぶせるシールが下のシールを完全に覆うようにします。このシールがきちんとされていないと、24時間のハイブリダイゼーション中にサンプルが蒸発してしまうので、十分に注意してください。また4番のデッキは高温になっているので、気を付けて操作してください。

- 24. すぐにプレートをサーマルサイクラに戻し、65°C で保温します。プレートを移したら VWorks スクリ ーンの Continue をクリックします。
- 25. VWorks プロトコルを終了させるため、Unused Tips と Empty Tip box ダイアログボックスの Continue をクリックし、その後 Protocol Complete ダイアログボックスの Yes をクリックします。

CAUTION サーマルサイクラでのプレートの温度は 105°C の加温式の蓋(heat lid)を用いて、65°C で使用します。サーマルサイクラの蓋は熱く、火傷を起こすことがあります。蓋の近くで 作業するときには気をつけてください。

26. Heat lid(ふた)を 105 °Cに加熱した状態で、65 °Cで 16 時間もしくは 24 時間以上、ハイブリダイ ゼーションします。溶液の蒸発を防ぐために、ふたは必ず 105 °Cに加熱してください。

16 時間のハイブリダイゼーションを行う場合、必ず、オンビーズ PCR 法に対応した本プロトコルを 参照して実験を行ってください。

実験の日程に応じて、週末を入れて 72 時間のハイブリダイゼーションを行うことは可能ですが、 溶液が蒸発してしまう危険性が高くなるので、推奨しません。必ず事前にテストして、4 µL 以上の 蒸発がないことを確認した条件で実施してください。ハイブリダイゼーションは最低 16 時間以上必 要です。

STEP3. SureSelect オリゴライブラリにキャプチャされた DNA の回収

このステップでは、アダプター付き DNA ライブラリとキャプチャライブラリのハイブリッドを、ストレプトアビジン結合ビーズを使ってキャプチャします。このステップは 16 時間もしくは 24 時間のハイブリダイゼーション後すぐに行います。

このステップは SureSelect^{XT} 自動化システムにより SureSelectCapture&Wash_v1.5.rst ランセットを 使用して自動化され、計約 3.2 時間かかります。ワークステーションのオペレータは下の表に示す 3 つの 作業を行う必要があります。表の時間は目安です。各作業はランセット中の適切なときに VWorks から 指示が出ますので、その時点で行ってください。

表 60

ラン開始後の時間の目安
5分以内
5-10 分

ワークステーションと試薬の準備

- Labware MiniHub と BenchCel のプレートとチップボックスをすべて片付けます。チラーは OFF の 状態であることを確認してください。
- NucleoClean decontamination スプレー溶液をキムワイプなどに含ませて、Labware MiniHub、 Bravo デッキ、および BenchCel をやさしく拭いてください。NucleoClean decontamination スプレ ー溶液が、使用する 96 プレート類に直接かからないようにご注意ください。
- Bravo デッキ 4 番の温度を Inheco Multi TEC コントロールタッチスクリーンで 85°C に設定します (Bravo デッキヒートブロックの温度設定を参照してください)。Bravo デッキ 4 番は Inheco Multi TEC コントロールタッチスクリーンで CPAC 2 1 に相当します。

Dynal MyOne Streptavidin ビーズの準備

- 4. Dynabeads MyOne Streptavidin T1(Invitrogen)磁性ビーズをボルテックスミキサでよく混ぜま す。
- 5. 磁性ビーズを下記に示す手順で洗浄します。
 - a. コニカルチューブ中で表 61の試薬を混ぜます。下に示す容量は余剰量を含みます。

表 61 磁性ビーズ洗浄作業で使用する試薬

莱斌	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
	中の量	の量	の量	の量	の量	の量	の量
Dynabeads	50 µL	425 µL	825 µL	1225 µL	1.65 mL	2.5 mL	5.0 mL
MyOne							
Streptavidin T1							
ビーズ懸濁液							
SureSelect	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL
Binding Buffer							
トータル量	0.25 mL	2.125 mL	4.125 mL	6.125 mL	8.25 mL	12.5 mL	25 mL

b. ビーズをボルテックスミキサに5秒間かけます。

- c. Dynal magnetic separator(Invitrogen Dynamag-15 または-50)のマグネットにビーズの入っ たコニカルチューブをセットします。
- d. 上清を取り除き、捨てます。
- e. ステップ a から d までの洗浄を合計 3 回繰り返します。(各洗浄ではビーズを残し、表に示した量の SureSelect Binding Buffer を新しく分注し、混ぜます。)

6. 下の表 62 にしたがってビーズを SureSelect Binding Buffer に懸濁します。

試薬	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
	中の量	の量	の量	の量	の量	の量	の量
SureSelect	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL
Binding Buffer							

表 62 SureSelectCapture&Wash_v1.5.rst 用の磁性ビーズの調製

 Nunc DeepWell ソースプレートを洗浄した Dynal ビーズ懸濁液のために準備します。Nunc DeepWell プレートの使用するウェルそれぞれに 200 µL の均一なビーズ懸濁液を加えます。使用 するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズを入 れるようにしてください。

8. Dynal ビーズが入ったソースプレートを Bravo デッキの5番に置いてください。

キャプチャおよび洗浄溶液ソースプレートの調製

使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、各溶液を指定のプレートに入れるようにしてください。なお、オンビーズ法ではハイブリダイゼーションの室温のキット に含まれている Elution Buffer と Neutralization Buffer は使用しません。

- 9. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 10. Wash #1 と書いた Eppendorf ソースプレートを準備します。使用する各ウェルに 160 µL,の SureSelect Wash Buffer #1 を加えます。
- 11. Wash #2 と書いた Nunc DeepWell ソースプレートを準備します。使用する各ウェルに 1150 μL の SureSelect Wash Buffer #2 を加えます。
- 12. Bravo デッキの 6 番にシルバーの Nunc DeepWell プレートインサートを置きます。このインサート は Capture&Wash ランセットの間に DeepWell ソースプレートのウェルに熱を伝えやすくするため に必要です。
- 13. Wash #2 ソースプレートを Bravo デッキ 6 番のシルバーのインサートの上に置きます。プレートが シルバーの DeepWell インサートの上に正しく載っているか確認してください。

Agilent SureSelect^{XT} 自動化システムにセット

14. 図 13 に示すプレートの向きを参考に、表 63 にしたがって Labware MiniHub に試薬をセットします。

_	F 1	-			
	Shelf の位置	 カセット 1	カセット 2		カセット 4
	Shelf 5(上)	空き	空き	空き	空き
	Shelf 4	空き	空き	空き	空き
	Shelf 3	空の Eppendorf プレ	空き	Wash #1 Eppendorf	空き
		− ト		ソースプレート	
	Shelf 2	空き	ステップ 9 の	空き	空き
			nuclease-free 水リ		
			ザーバー		
	Shelf 1(下)	空き	空き	空き	空のチップボック
					ス

表 63 SureSelectCapture&Wash_v1.5.rst 用の MiniHub の初期配置

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジショ ンを決められた方に向けてセットします。

15. 以下表のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	2 チップボックス	空き	空き	空き
2	3 チップボックス	空き	空き	空き
3	4 チップボックス	空き	空き	空き
4	5 チップボックス	空き	空き	空き
6	7 チップボックス	空き	空き	空き
12	10 チップボックス	3 チップボックス	空き	空き

表 64 SureSelectCapture&Wash_v1.5.rst 用の BenchCel の初期配置

16. 表 65 にしたがって Bravo デッキにプレートをセットします。

デッキの位置	内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
4	空の黒い ABI アダプター
5	Dynal ビーズを入れた DeepWell ソースプレート。A1 が左上になるように。
6	シルバーのインサートにのせた Wash #2 DeepWell ソースプレート。A1 が左上になる
	ように。

表 65 SureSelectCapture&Wash v1.5.rst 用の Bravo デッキの初期配置

VWorks プロトコル SureSelectCapture&Wash_v1.5.rst の実行

17. セットアップフォームの Select Protocol to Run の下の SureSelectCapture&Wash_v1.5.rst

を選択します。

18. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または12カラムが選択できます。

3) Select Number of Columns of Samples*

19. Display Initial Workstation Setup をクリックします。

20. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか必ず確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

MINIMU)			
	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Minii
Shelf 5				

- 21. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 22. 確認後 Run Selected Protocol をクリックしてください。

23. ランを開始する準備が整ったら下に示すウィンドウの OK をクリックしてください。Bravo デッキ4番の温度を85°C になっていなければ、4番がその温度になるまでランセットは開始しません。数分後 に操作が必要なので、自動化システムのそばを離れないようにしてください。

VWorks	\mathbf{X}
٩	This runset contains protocols that will start running as soon as possible. Before you click OK, verify that the system is ready for the runs to start. If you are not ready to start a run immediately, click Cancel.
	OK Cancel

CAUTION 次のステップ 24 を迅速かつ注意して行うことが重要です。サンプルプレートの温度を 65°C に保ったまますばやく Bravo プラットフォームに移します。プレートのシールをは がす際にはサンプルが飛び散るのを防ぐために傾けたり急に動かしたりしないでくださ い。サンプルプレートを Bravo デッキに移す前に、デッキプラットフォームの温度と試薬 の位置が正しくセットされ、Agilent SureSelect^{XT} 自動化システムの準備が完了してい ることを確認してください。 24. 下に示す指示が VWorks の画面に表示されたら、65°C に保たれているハイブリダイゼーション反応液が入った ABI MicroAmp プレートをサーマルサイクラから取り出して、できるだけ速く Bravo デッキ 4 番の黒い ABI アダプターの上に置きます。その際、プレートを下から見て、中の溶液が蒸発してしまっているウェルがないかどうか素早く確認してください。溶液が飛び散らないように注意してシールをはがします。4 番のデッキは高温になっているので、十分に注意してください。シールをはがしたら、ランセットを再開させるために Continue をクリックします。

Complete the following s possible:	teps as quickly as
Retrieve Hybridization pl thermocycler, and place position 4 and unseal.	late from on carrier at Bravo
Click Continue to resume	protocol.
*Use Caution: Position 4	will be hot.

WARNING Bravo デッキ4番は高温です。

高温のデッキに接触していたものを扱う際には注意してください。

25. 続けて、下に示す指示が VWorks 画面に表示されたら、デッキ4番に載っているサンプルプレート を取り除き、赤いアルミニウムインサートを取り付けます。デッキ4番は高温なので、注意してくださ い。終わったらランセットを再開させるために Continue をクリックします。

Remove PCR plate an 4.	d carrier from position
Place red aluminum in next protocol.	sert at position 4 for

SureSelectCapture&Wash_v1.5.rst ランセットの完了までには、この後約3時間かかります。ランセット が完了したらキャプチャした DNA は Bravo デッキ 9番の Eppendorf プレートに入った状態になります。 液量は 30 uL です。

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

この章では、前章で調製したキャプチャ後のライブラリを、オンビーズで増幅する過程で同時にイン デックスバーコードタグを付けた後、精製し、定量および品質確認を行うステップを説明します。

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

STEP1. キャプチャライブラリの増幅とインデックスタグの付加

このステップでは、Agilent SureSelect^{XT} 自動化システムは SureSelect で濃縮した DNA サンプルにイ ンデックスタグをオンビーズ PCR で付加するステップを実行します。Agilent SureSelect^{XT} 自動化シス テムが PCR プレートを調製した後、増幅のためにプレートをサーマルサイクラに移す必要があります。

ランでの配置とサンプルへのインデックスタグ付加のための実験計画

お使いの SureSelect Capture Library のサイズにより、インデックスタグ付加の際の増幅のサイクル数 と、増幅後のシーケンシングのときに組み合わせるインデックスタグの数の両方が決まります。 必要な増幅サイクル数については、表 74 を参照してください。

 CAUTION
 2014年12月のある時点から、SureSelect XTの試薬キットに含まれるインデックス プライマーが8bpの長さに変更になりました。インデックスプライマーの長さの違い により、インデックス試薬の使用量が異なります。お使いになるインデックスプライマーの長さを確認の上、それぞれの長さのインデックスに適合したプロトコルをご使用 ください。
 8 bpのインデックスの見分け方
 96反応用は、5500-0133のボックス中の青色96ウェルプレート中に入っています。
 6 bpのインデックスの見分け方
 96反応用は、5500-0075のボックス中の透明キャップのチューブ中に入っています。
 す。透明96ウェルプレートをお持ちの方は、別途お問い合わせください。 同じレーンでは、シーケンスされるサンプルそれぞれに異なるインデックスプライマーを使用します。表 66を参照して、各サンプルレーンに適切な数のサンプルを混合するようにしてください。

キャプチャサイズ	- 1サンプルごとのシーケンス量の目安*
1kb から 0.5 Mb	0.1 – 50 Mb*
0.5 から 2.9 Mb	50 – 290 Mb*
3 から 5.9 Mb	300 – 590 Mb*
6 から 11.9 Mb	600 – 1190 Mb*
12 から 24 Mb	1.2 – 2.4 Gb*
Human All-Exon v5	4 Gb
Human All-Exon v4+UTRs	6 Gb
Human All-Exon 50Mb	5 Gb
Human DNA Kinome	320 Mb
Mouse All-Exon	5 Gb

表 66 1レーンに混合することができるサンプル量の目安

* カスタムライブラリの場合、最初はそれぞれのサンプルについてカスタムライブラリのターゲットキャプ チャサイズの 100-200 倍の量をシーケンスされることを推奨しています。お手持ちのシーケンサで、期待 される1レーンのシーケンス量を考慮して、プールするサンプル数を決定ください。

ワークステーションの準備

- 1. チラーの電源を入れ、0°C にセットします。Bravo デッキの 9 番が相当します。チラーリザーバーに は少なくとも 300 mL の 25%エタノールが入っていることを確認してください。
- 2. Labware MiniHubとBenchCelのプレートとチップボックスをすべて片付けてください。
- NucleoClean decontamination スプレー溶液をキムワイプなどに含ませて、Labware MiniHub、 Bravo デッキ、および BenchCel をやさしく拭いてください。NucleoClean decontamination スプレ 一溶液が、使用する 96 プレート類に直接かからないようにご注意ください。
- 4. Bravo デッキ 4 番の温度を Inheco Multi TEC コントロールタッチスクリーンで 4 °C に設定します (Bravo デッキヒートブロックの温度設定を参照してください)。Bravo デッキ 4 番は Inheco Multi TEC コントロールタッチスクリーンで CPAC 2 1 に相当します。さらに Bravo デッキ 6 番の温度を Inheco Multi TEC コントロールタッチスクリーンで 4 °C に設定します。Bravo デッキ 6 番は Inheco Multi TEC コントロールタッチスクリーンで CPAC 2 2 に相当します。

インデックスプライマーと PCR マスターミックスの調製

CAUTION ここに指定されている Herculase II Fusion DNA Polymerase 以外の酵素を使用しないでください。他の DNA Polymerase については、バリデーションされていません。

CAUTION ライブラリのクロスコンタミネーションを防ぐために、PCR 反応液の調製はラボで決めら れたクリーンエリアか、UV ランプを備えた PCR フード中にて陽圧の環境下で実施してく ださい。

5. 表 67 にしたがってランで使用するインデックスプライマーを希釈します。使用するインデックスの 長さにより、調製方法が異なりますので、十分に注意してください。

表 67 インデックスプライマー希釈液の調製

Reagent	8-bp Indexes A01–H12 (obtained from blue plate)	6-bp Indexes 1–16 (obtained from clear-capped tubes)
Nuclease-free water	4.0 μL	8.0 μL
Indexing PCR primer (reverse)	5.0 μL	1.0 µL
Total Volume	9.0 µL	9.0 µL

8 bp のインデックス(A01-H12)は、5500-0133 の試薬ボックスの青色 96 ウェルプレートに 入っています。

6 bp のインデックス(1-16) は、5500-0075 の試薬ボックスの透明チューブに入っています。

- 6. ABI MicroAmpプレートに、前項で調製した9µLの適切なインデックスプライマー希釈液を使用予定のサンプルインデックスウェルの位置に分注します。実験計画を注意して参照してください。プレートは氷上におきます。
- インデックスプライマープレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
- プレートを 30 秒間、1000 g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がはねないように注意してください。

9. 表 68 にしたがって適切な量の PCR マスターミックスを調製してください。ボルテックスミキサで混合し、氷上におきます。

SureSelect ^{XT} 試	1 ライブラリ	1 カラム中	2 カラム中	3 カラム中	4 カラム中	6 カラム中	12 カラム中
薬	中の量	の量	の量	の量	の量	の量	の量
Nuclease-free	14.5 µL	184.9 µL	308.1 µL	431.4 µL	554.6 µL	801.1 µL	1602.3 µL
water							
Herculase II 5X	10.0 µL	127.5 µL	212.5 µL	297.5 µL	382.5 µL	552.5 µL	1105.0 µL
Reaction Buffer*							
SureSelect	1.0 µL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
Indexing							
Post-Capture PCR							
(Forward) Primer							
dNTP mix*	0.5 µL	6.4 µL	10.6 µL	14.9 µL	19.1 µL	27.6 µL	55.3 µL
Herculase II	1.0 µL	12.8 µL	21.3 µL	29.8 µL	38.3 µL	55.3 µL	110.5 µL
polymerase							
トータル量	27.0 µL	344.3 µL	573.8 µL	803.3 µL	1032.8 μL	1491.8 µL	2983.5 µL

表 68	Post-CaptureIndexing	_XT_IIIumina	_v1.5.pro 用の P	CR マスターミックスの調製
------	----------------------	--------------	----------------	----------------

* Herculase II Fusion DNA Polymerase に含まれます。他のキットの buffer と dNTP を使用しないでく ださい。

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

10. 表 69 に示された量の PCR マスターミックスを Nunc Deep Well プレートのカラム 4 のすべての ウェルに加えます。カラム 1 ではなくカラム 4 に加える点に注意してください。マスターミックスソー スプレートの最終的な状態は図 21 のようになります。

A 66 1 660	ouptaronn			0.010 /1103 (1 ••• 1/1] 32
マスターミック	ソースプ	Nunc DeepWe	∥ソースプレーI	~の 1 ウェル中(こ加えるマスター	ーミックスの量	
ス	レートの 位置	1 カラムラン	2 カラムラン	3 カラムラン	4 カラムラン	6 カラムラン	12 カラムラン
PCR マスターミ	カラム 4	40.5 µL	67.5 μL	94.5 µL	121.5 µL	175.5 µL	351 µL
ックス	(A4-H4)						

表 69 Post-CaptureIndexing_XT_Illumina_v1.5.pro 用のマスターミックスソースプレートの調製

NOTE

カラム 1-3 は空にしておき、カラム 4 に PCR マスターミックスを入れてください。

図 21 Post-CaptureIndexing_XT_Illumina_v1.5.pro 用のマスターミックスソースプレートの状態。

- マスターミックスソースプレートを PlateLoc Thermal Microplate Sealer でプレートをシールします。
 設定は、165°C、1.0 秒です。
- 12. プレートを 30 秒間、1000 g で遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。プレートシールは Bravo デッキにセットする前にはがします。はがすときに反動で液がは ねないように注意してください。

Agilent SureSelect^{XT} 自動化システムにセット

13. 図 13 に示すプレートの向きを参考に、以下表にしたがって Labware MiniHub に試薬をセットします。

表 70 Post-CaptureIndexing_XT_Illumina_v1.5.pro 用の MiniHub の初期配置

Shelf の位置	カセット 1	カセット 2	カセット 3	カセット 4
Shelf 5(上)	空き	空き	空き	インデックスプライ
				マーを含む黒いア
				ダプターに載せた
				ABI MicroAmp プレ
				− ト
Shelf 4	空き	空き	空き	空き
Shelf 3	空き	空き	空き	空き
Shelf 2	空のチップボック	空き	空き	空き
	ス			
Shelf1(下)	新しいチップボック	空き	空き	空のチップボック
	ス			ス

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジショ ンを決められた方に向けてセットします。

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

13. 表 71 のように BenchCel Microplate Handling Workstation にセットします。

使用カラム数	ラック 1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	1 チップボックス	空き	空き	空き
4	1 チップボックス	空き	空き	空き
6	1 チップボックス	空き	空き	空き
12	1 チップボックス	空き	空き	空き

表 71 Post-CaptureIndexing_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

14. Bravo デッキにプレートをセットします。

表 72 Post-CaptureIndexing_XT_IIIumina_v1.5.pro 用の Bravo デッキの初期配置

デッキの位置	内容
4	キャプチャした DNA サンプルを含む Eppendorf プレート。A1 が左上になるように。
9	PCR マスターミックスがカラム 4 に入ったマスターミックスプレート。A1 が左上になる
	ように。チラーが 0℃であることを確認。

VWorks プロトコル Post-CaptureIndexing_XT_Illumina_v1.5.pro の実行

15. SureSelect セットアップフォームの Select Protocol to Run から Post-CaptureIndexing_XT_

Illumina_v1.5.pro を選択します。

5. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できます。

3) Select Number of Columns of Samples*

6. Display Initial Workstation Setup をクリックします。

	Display Initial
${\boldsymbol{\vee}}$	Workstation Setup

7. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできてい るか**必ず**確認してください。このステップでセットアップ位置をダブルチェックするようにしてください。

Min	iHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	Min
· _		-	·	· i —
·		- <u>_</u>		

- 8. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 9. 確認後 Run Selected Protocol をクリックしてください。

Post-CaptureIndexing_XT_Illumina_v1.5.pro の実行には約 15 分かかります。完了すると、調製した DNA と PCR マスターミックスが混合した、PCR にかける準備が整ったサンプルが ABI MicroAmp プレ ートに入って Bravo デッキの 5 番に載った状態となります。容量は 50 uL です。

Bravo デッキの4番にある Eppendorf プレートには調製した DNA サンプルの残りがあり、4°C で一晩、 または-20°C で長期保存ができます。

10. 次のウィンドウが現れたら、Bravo デッキの 5 番デッキにのったプレートを PlateLoc Thermal Microplate Sealer でシールします。Bravo デッキの 5 番から PCR プレートをとります。

Seal PCR plate and run t protocol.	hermocycler

プレートを30秒間,1000gで遠心し、壁やプレートシールについた液をスピンダウンし、気泡を除きます。

11. 表 73 で示したサイクル数で実行します。ボリュームは 50 μL となります。 必ず適切な Compression Pad を挟むようにしてください。以降のステップでチラーは使用しないので、オフにし ます。

セグメント	サイクル数	温度	時間
1	1	98°C	2 minutes
2	10 から 16	98°C	30 seconds
	表 74 参照	57°C	30 seconds
		72°C	1 minutes
3	1	72°C	10 minutes
4	1	4°C	Hold

表 73 Post-Capture PCR サイクルプログラム

表 74 SureSelect Capture Library サイズに基づく推奨されるサイクル数

Capture Library	Cycles
<0.5 Mb	16 cycles
0.5 to 1.49 Mb	14 cycles
> 1.5 Mb	12 cycles
All Exon and Exome libraries	10 to 12 cycles
OneSeq Constitutional Research Panel	10 cycles
OneSeq Hi Res CNV Backbone-based custom designs	10 cycles
OneSeq 1Mb CNV Backbone-based custom designs	10 to 12 cycles

NOTE キャプチャ前の PCR 同様、キャプチャ後のサンプルの PCR 増幅のサイクル数も最小限に するようにしてください。もし収量が低すぎるか、より大きな分子量の非特異的増幅が見ら れる場合は、増幅に用いなかった残りの半量のライブラリのテンプレートを使って、サイク ル数を最適化して増幅してください。
STEP2. Agencourt AMPure XP ビーズによるサンプルの精製

このステップでは、Agilent SureSelect^{XT} 自動化システムは AMPure XP ビーズとインデックスタグ付加 DNA を Nunc DeepWell プレートに移して撹拌し、ビーズに結合した DNA を集め、洗浄して溶出する操 作を実行します。

ワークステーションと試薬の準備

- 1. Labware MiniHubとBenchCel のプレートとチップボックスをすべて片付けます。
- NucleoClean decontamination スプレー溶液をキムワイプなどに含ませて、Labware MiniHub、 Bravo デッキ、および BenchCel をやさしく拭いてください。NucleoClean decontamination スプレ ー溶液が、使用する 96 プレート類に直接かからないようにご注意ください。
- 3. 使用する少なくとも30分以上前に、AMPure XPビーズ(4C保存)を室温に戻しておくようにします。
- ビーズ懸濁液の状態や色が均一になるまで、よく混合します。決して凍らせないようにしてください。
- AMPure XP ビーズを含む Nunc DeepWell ソースプレートを準備します。均一な状態にした AMPure XP ビーズ懸濁液 92 µL を、Nunc DeepWell プレートの使用する各ウェルに入れます。 使用するサンプル数にあわせて、必ず A1 から H1 に、続いて A2 から H2 にという順番で、ビーズ を入れるようにしてください。
- 6. 20 mL の nuclease-free 水を入れた Thermo Scientific リザーバーを準備します。
- 7. 45 mL の新しく調製した 70%エタノールを入れた Thermo Scientific リザーバーを準備します。

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

8. 図 13 に示すプレートの向きを参考に、表 75 にしたがって Labware MiniHub に試薬をセットします。

カセット 1	 カセット 2		 カセット 4
空の Nunc	空き	空き	空き
DeepWell プレート			
空き	空き	空き	空き
空き	空の BioRad HSP9601	空き	空き
	LoBind PCR プレート		
空き	ステップ 6 の	ステップ 5 の	空き
	nuclease-free 水リ	AMPure XP ビーズ	
	ザーバー	懸濁液入りのNunc	
		DeepWell プレート	
空き	ステップ7の70%エ	空き	空き
	タノールリザーバ		
	カセット 1 空の Nunc DeepWell プレート 空き ロート ロー ロー<	カセット1カセット2空の Nunc空きDeepWellプレート空き空き空の BioRad HSP9601空き2の BioRad HSP9601このBind PCR プレート1000000000000000000000000000000000000	カセット1カセット2ハセット3空の Nunc空き空きDeepWell プレートビビ空き空き空き空う BioRad HSP9601空きご空う BioRad HSP9601ごご空きステップ 6 のステップ 5 のパロにとるを・「アレート」バロにとるを・「アレート」空きステップ 7 の 7 いろい感激えいりの Nunc空きステップ 7 の 7 いろいご空きステップ 7 の 7 いろいご空きステップ 7 の 7 いろいごシールリザーバジールリザーバジールリザーバ

表 75	AMPureXP	XT	Illumina	v1.5.pro	用の	MiniHub	の初期配置
------	----------	----	----------	----------	----	---------	-------

※それぞれのプレートとリザーバーを MiniHub に置くときの向きに十分に注意してください。A1 ポジショ ンを決められた方に向けてセットします。リザーバーの切り欠きは MiniHub の内側に向けてセットしま す。

9. 表 76 のように BenchCel Microplate Handling Workstation にセットします。

		•		
使用カラム数	ラック1	ラック 2	ラック 3	ラック 4
1	1 チップボックス	空き	空き	空き
2	1 チップボックス	空き	空き	空き
3	2 チップボックス	空き	空き	空き
4	2 チップボックス	空き	空き	空き
6	3 チップボックス	空き	空き	空き
12	6 チップボックス	空き	空き	空き

表 76 AMPureXP_XT_Illumina_v1.5.pro 用の BenchCel の初期配置

10. 表 77 にしたがって Bravo デッキにプレートをセットします。

デッキの位置	内容
1	空の廃液リザーバー(Axygen 96 Deep Well Plate, square wells)
4	黒いアダプターに載せたインデックスタグ付加 DNA ライブラリを含む ABI MicroAmp プ
	レート。A1 が左上になるように。プレートシールははがした状態で。
8	空のチップボックス

表 77 AMPureXP XT Illumina v1.5.pro 用の Bravo デッキ	Fの初期配置
---	--------

VWorks プロトコル AMPureXP_XT_IIIumina_v1.5.pro の実行

11.セットアップフォームの Select Protocol to Run の下の AMPureXP_XT_Illumina_v1.5.pro を

選択します。

1) Select Protocol to Run

12. Select additional Parameters の下から、

ステップは Post-Capture PCR Cleanup を選択します。

2) Select additional Parameters

AMPureXP_XT_Illumina_v1.5.pro Only

13. 続いて、Select additional Parameters の下の、b.必ず適切な[サンプルプレート]を選択してくだ さい。の選択肢から、ここでは 96ABI PCR half skirt in black carrier を選択します。この選択 を間違えると、動作が正常に行われなくなりますので、注意してください。

b.必ず適切な【サンプルプレート】を選択して下さい。

96 ABI PCR half skirt in black carrier

O 96 Eppendorf Twin.tec PCR Plate or 96 Bio-Rad HSP9601 LoBind PCR Plate

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

- NOTE AMPure_XT_Illumina_v1.5.pro は SureSelect 自動ワークフローの複数のステップで使用 します。自動プロトコルを始める時に正しいワークフローステップを選択しているか確認して ください。
 - 14. 使用するサンプルのカラム数を選択してください。1、2、3、4、6、または 12 カラムが選択できます。
- 3) Select Number of Columns of Samples*

15. Display Initial Workstation Setup をクリックします。

16. ワークステーションがフォームの Workstation Setup 領域に示されているようにセットアップできて いるか**必ず**確認してください。このステップでセットアップ位置をダブルチェックするようにしてくださ い。

[\	Vorksta - MiniHub	tion Setup			-
	Shalf 5	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
	Shelf 4	ا مىرىمى مىسىم	 مىرىمە مەرىيە	-	

- 17. ミニハブの電源が入っていることを確認し、イニシャライズします。
- 18. 確認後 Run Selected Protocol をクリックしてください。

AMPure_XT_Illumina_v1.5.pro の実行には約 45 分かかります。完了すると精製 DNA サンプルは Bravo デッキの 7 番にある BioRad HSP9601 LoBind PCR のプレートの中に入った状態になります。 容量は 30 uL です。

STEP3. キャプチャライブラリの定量とサイズ確認

Option 1: Agilent 2100バイオアナライザによる品質(サイズ)チェック

精製したキャプチャライブラリの収量とサイズ分布をバイオアナライザの High Sensitivity DNA チップ と試薬キットを用いて測定します。バイオアナライザの和文ガイドブックは下記 Web サイトからダウン ロードいただくことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

- 1. PlateLoc Thermal Microplate Sealer でプレートをシールします。設定は、165°C、1.0 秒です。
- 2. 各ウェルのサンプルを均一にするためプレートを5秒ボルテックスした後、30秒間遠心して壁や プレートシールについた液を落とします。
- バイオアナライザの電極を洗浄します。正確に定量を行うため、電極クリーナーチップに入れて電 極を洗浄する水 350 µL は、複数回の測定を同日中に行う場合も、測定の度に交換して下さい。 必要に応じて、バイオアナライザのガイドブックに従い十分な洗浄を行ってください。
- 4. Agilent 2100 expert ソフトウェア(version B.02.07 もしくはそれ以上) を起動し、バイオアナライ ザ本体とのコミュニケーションを確認します。
- 5. バイオアナライザの試薬ガイドに従い、チップ、サンプル、ラダーを調製します。
- NOTE High Sensitivity DNA キットはサンプルの塩濃度が極端に低いとベースライン不安定を引き起こすことがあります。この時点でのサンプルは水で溶出されているため、測定前にサン プル1µLに1xTEを加えて数倍に希釈することで塩を含んだ状態にし、ボルテックスミキサ でよく混合して後、その希釈液から1µLとって測定することをお勧めします。希釈倍率は濃 度の計算に必要なので、必ず記録をとってください。
- 調製が終わったチップをバイオアナライザにセットします。チップ調製後、5分以内にランをスタートさせる必要があります。
- 7. バイオアナライザの assay のメニューから、適切な assay を選択します。
- ランをスタートさせます。データファイルへのリンクをクリックして、サンプル名およびコメントを書き 込みます。

 結果をチェックします。以下の泳動図のように、約250 bp から350 bp の間にシングルピークのピ ークトップがあることを確認します。また PCR の非特異的増幅産物がないかどうか確認します。こ の位置のシングルピークの濃度をバイオアナライザのマニュアルインテグレーション機能を用い て、測定します。次の Step にある定量 PCR キットを用いることで、1 レーンに等量のサンプルを 混合するために、さらに正確な濃度の決定を行うことができます。

Stopping Point: 次のステップをすぐに行わない場合、サンプルは4℃で1週間保存できます。それ以 上置く場合は、-20℃で保存してください。

図 22 High Sensitivity DNA キットを用いたキャプチャライブラリの定量とサイズ確認。250 bp - 350 bp の間のサイズに、シングルピークのピークトップが観察される。

Option 2: Agilent TapeStationによる品質(サイズ)チェック

TapeStation の High Sensitivity D1000 ScreenTape (p/n 5067-5584)と専用試薬キット(p/n 5067-5585)を使います。TapeStation の操作マニュアルは下記 Web サイトからダウンロードいただく ことができます。

http://Agilentgenomics.jp

初めてサポートサイトへアクセスされる方は、アクセス方法について、本プロトコル最終ページの問い 合わせ窓口にお問い合わせください。

 Agilent TapeStation の操作マニュアルに従い、2 uL のアダプター付き増幅 DNA サンプルを、2 uL の High Sensitivity D1000 サンプルバッファで希釈し、よく混ぜます。

CAUTION 正確な定量のために、DNAとHigh Sensitivity D1000 サンプルバッファを混ぜた

サンプルは,TapeStation 本体付属のボルテックスミキサで 2000 rpm で 1 分、混合してください。 付属のボルテックスミキサをお持ちでない場合は Max で 10 秒の混合を 2 回繰り返して確実に 混合してください。

- 2. サンプルプレートもしくはサンプルチューブストリップを TapeStation にセットし、ランをスタートさせます。
- 3. 結果をチェックします。図 23 の泳動図のような分布が得られ、250 bp 350 bp 付近の位置にピ ークトップがあることを確認します。
- 4. ピークを積分してライブラリの濃度(ng/µL)を測定します。
- **Stopping Point** 次のステップに進まない場合、4°C で一晩保存できます。長期保存の場合には、 -20°C で保存してください。

図 23 TapeStation High Sensitivity D1000 キットを用いたキャプチャライブラリの定量とサイズ確認。250 bp – 350 bp の間のサイズにシングルピークのピークトップが観察される。

STEP4. 定量 PCR によるインデックスタグ付きキャプチャライブラリの定量

以下のステップの詳細については、Agilent QPCR NGS Library Quantification Kit (p/n G4880A)の プロトコルを必ず参照ください。

- Agilent QPCR NGS Library Quantification Kit (p/n G4880A イルミナ用)を、各インデックスタグ 付きキャプチャライブラリの定量に用います。
- 2. G4880Aのキット中の試薬を用い、プロトコルを参照して、検量線用の標準液を調製します。
- 各インデックスタグ付きキャプチャライブラリを、検量線の濃度範囲におさまるように適切な濃度に 希釈します。G4880A に含まれる指定の Dilution Buffer を使用するため、必ず G4880A のプロト コルを参照のうえ、調製ください。

一般的にはキャプチャライブラリを、およそ 1:1,000~1:10,000 の比率で希釈することになります。

- G4880A のプロトコルを参照して、イルミナ Adapter-specific PCR Primers の入った QPCR master mix 溶液を調製します。
- 5. 各 PCR チューブ(プレート)に、master mix を分注し、template を加えます。
- 6. MX3005pなどの定量 PCR システムを用いて、G4880A のプロトコルに記載されている定量 PCR のプログラムを設定して RUN します。SYBR Green 対応の機器を使用します。
- 7. 検量線からそれぞれのインデックスタグ付きキャプチャライブラリの濃度を計算します。濃度は nM で計算します。ここで計算された濃度を元に、マルチプレックスシーケンス用にサンプルを正確に 等量でプールします。
- NOTE ほとんどの場合、表 74に示すサイクル数でバイアスや非特異的増幅産物なしに適切な収 量が得られます。もし収量が低すぎるか、より大きな分子量の非特異的増幅が見られる場 合は、増幅に用いなかった残りの半量のライブラリのテンプレートを使って、サイクル数を 最適化して増幅してください。

STEP5. マルチプレックスシーケンスのためのサンプルのプール

最適なクラスタ密度はお使いのイルミナ社シーケンサの機種や Version によって異なりますので、必ずイルミナ社の提供する最新のプロトコルをあわせて参照ください。本プロトコルに記された DNA の最終的な濃度は、イルミナ社のアップデートにより変わることがありますので、事前にご確認ください。

1. プールするサンプルは正確に等量を混ぜる必要があります。下記の式により、インデックスバーコ ードサンプルをプールするための量を計算します。

Volume of Index = $\frac{V(f) \times C(f)}{\# \times C(i)}$

- V(f): プールするための最終的な必要量
- C(f): プールに含まれるすべての DNA の最終的な濃度 例:イルミナ標準プロトコルでは 10 nM
- # : プールするインデックスバーコードタグの数
- C(i): 各インデックスサンプルの初期濃度

表 78 に 4 つのインデックスタグ (それぞれ異なる初期濃度)の計算例を示します。最終的な容量 20µL (10 nM の濃度)にするには Low TE を用います。

表 78 トータル量 20µL にするためのインデックスタグ付きサンプルの混合例

内容	V(f)	C(i)	C(f)	#	使用する量(µL)
サンプル 1	20 µL	20 nM	10 nM	4	2.5
サンプル 2	20 µL	10 nM	10 nM	4	5
サンプル 3	20 µL	17 nM	10 nM	4	2.9
サンプル 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

- 2. 最終的に必要な液量になるように調整を行います。
 - プールしたインデックスタグ付きサンプル量の総量が20 µLより少ない場合、Low TE Buffer を用いて総量が20 µL になるように調整します。
 - プールしたインデックスタグ付きサンプル量の総量が20 µLより多い場合、濃縮遠心機を用いて液
 を蒸発させ、再溶解して20 µLとします。
- 3. 調製したプールサンプルをすぐにシーケンスしない場合は、Tween20を0.1%(v/v)の濃度になるように加えて-20°C で短期間保存できます。

Agilent SureSelect Automated Library Prep and Capture System

6. ハイブリダイゼーション後の増幅とインデックスタグの付加

4. template の変性とフローセルの調製に進みます。イルミナ社のプロトコルを参照ください。

ライブラリのプールのための希釈とプール方法は、フローセルのキャパシティと分析のパイプラインによって異なります。必ずイルミナ社の適切なプロトコルを参照ください。このプロトコルは 100 base の Paired-end 用のものです。Read 長は実験の目的に合わせて適切な長さを選択してください。

Illumina Paired-End Cluster Generation Kit を使用しクラスタ増幅へ進んでください。

CAUTION Human All Exon キャプチャを用いて最適な性能と特異性を得るためには、2x76 base もしくは 2x100bp でシーケンスすることを推奨します。

STEP6. シーケンスサンプルの準備

SureSelect XT でターゲットエンリッチメントを行ったライブラリの最適な seeding 濃度は、HiSeq およ び MiSeq では 6 – 8 pM、NextSeq では 1.2 – 1.3 pM です。Seeding 濃度とクラスタ密度はライブラリ DNA フラグメントのサイズ分布と得たいデータ量とクオリティによって最適化が必要です。 目的に応じて、適切な濃度でクラスタ形成を行うようにしてください。

シーケンスクオリティを向上させるための PhiX コントロールのスパイクインについては、イルミナ社の推 奨に従ってください。

イルミナ社の適切な Paired-End Cluster Generation Kit を用いて、クラスタ増幅を行ってください。 表 79 に推奨のリード長で使用可能なキットを示します。

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry
HiSeq 2500	Rapid Run	2 × 100 bp	200 Cycle Kit	v1
HiSeq 2500	Rapid Run	2 × 100 bp	200 Cycle Kit	v2
HiSeq 2500	High Output	2 × 100 bp	4 x 50 Cycle Kit	v3
HiSeq 2500	High Output	2 × 100 bp	250 Cycle Kit	v4
HiSeq 2000	All Runs	2 × 100 bp	4 x 50 Cycle Kit	v3
MiSeq	All Runs	2 × 100 bp	300 Cycle Kit	v2
MiSeq	All Runs	2 × 76 bp	150 Cycle Kit	v3
NextSeq 500	All Runs	2 × 100 bp	300 Cycle Kit	v1

表 79 イルミナ社シーケンス試薬の選択ガイドライン

8-bp インデックスタグ付加ライブラリのためのシーケンシングランセットアップガイドライン

8 bp インデックスを付加したライブラリは、シーケンスランは 8 bp インデックスリードを行うように設定して下さい。インデックス配列情報は**表 87**を参照して下さい。

HiSeq 2500 と NextSeq 500 (v1) を使用する場合は、表 80 のサイクル数設定をして下さい。 サイクル数設定は、装置コントロールソフトウェアインターフェイスのインデックスタイプ選択ボタンから Custom を選択した後、Run Configuration スクリーンで指定できます。

表 80 HiSeq および NextSeq プラットフォームにおける Run Configuration スクリーン Cycle Number 設定

Run Segment	Cycle Number	
Read 1	100	
Index 1 (i7)	9	
Index 2 (i5)	0	
Read 2	100	

MiSeq プラットフォームでは Illumina Experiment Manager (IEM) ソフトウェアを用いて、表 81 に記載 のランパラメータでサンプルシートを作成します。

表 81 MiSeq プラットフォームサンプルシートのランパラメータ

Parameter	Entry
Workflow	GenerateFASTQ
Cycles for Read 1	100 for v2 chemistry 75 for v3 chemistry
Cycles for Read 2	100 for v2 chemistry 75 for v3 chemistry
Index 1 (i7) Sequence (enter in Data Section for each sample)	Type the 8-nt index sequence for each individual sample (see Table 37 on page 65).

7. リファレンス

この章では、リファレンス情報について説明します。

以下のリファレンスは、8 bp の長さのインデックスプライマーが入った試薬キットの 情報です。6 bp の長さのインデックスプライマーが入った試薬キットを使用する場合 は、後述の6 bp の長さのインデックスインデックスプライマーが入った試薬キットの情 報を参照してください。 8 bp のインデックスの見分け方 96 反応用は、5500-0133 のボックス中の青色 96 ウェルプレート中に入っています。

試薬一覧 8 bp のインデックスが入った試薬キット

(青色ウェルプレートに入ったインデックスプライマーが含まれる)

SureSelect^{XT} 試薬キットは、室温保存品、-20℃保存品、-80℃保存品が、それぞれ異なる Box に入り、 ラベルに保管温度が記載されています。必ず指定温度で保管してください。

また、これらの試薬キットは、各種 SureSelect キットの種類により試薬の組成が異なります。必ずそのキットに添付されてきた試薬キットを実験に使うように注意ください。必ず使用前に下の表に記載された各 試薬キットの部品番号が、使用する予定の試薬ボックスのラベルに記載されている番号と一致すること を確認してください。

表 82 SureSelect^{XT}キット (8 bp インデックス対応)構成試薬一覧

Product	Storage Condition	96 Reactions	480 Reactions
SureSelect XT Library Prep Kit ILM	-20°C	5500-0133	5 x 5500-0133
SureSelect Target Enrichment Box 1	Room Temperature	5190-8646	5 x 5190-8646
SureSelect XT Automation ILM Module Box 2	–20°C	5190-3730	5190-3732

次に、各キットの内容について以下の表に示します。

表 83 S	SureSelect XT Library Prep Kit ILM (8 bp	インデックス対応)	(-20℃保存)内訳
--------	--	-----------	------------

Kit Component	Format
10X End Repair Buffer	tube with clear cap
10X Klenow Polymerase Buffer	tube with blue cap
5X T4 DNA Ligase Buffer	tube with green cap
T4 DNA Ligase	tube with red cap
Exo() Klenow	tube with red cap
T4 DNA Polymerase	tube with purple cap
Klenow DNA Polymerase	tube with yellow cap
T4 Polynucleotide Kinase	tube with orange cap
dATP	tube with green cap
dNTP Mix	tube with green cap
SureSelect Adaptor Oligo Mix	tube with brown cap
SureSelect Primer (forward primer)	tube with brown cap
SureSelect ^{XT} Indexes, 8 bp reverse primers [*]	SSEL 8bp Indexes A01 through H12, provided in blue 96-well plate [†]

*インデックスシーケンスについては、表 87を参照ください。

+プレートマップについては、表 86を参照ください。

表 84 SureSelect Target Enrichment Kit Box #1(室温保存)内訳

Kit Component	Format
SureSelect Hyb 1	tube with orange cap
SureSelect Hyb 2	tube with red cap
SureSelect Hyb 4	tube with black cap
SureSelect Binding Buffer	bottle
SureSelect Wash Buffer 1	bottle
SureSelect Wash Buffer 2	bottle

6. リファレンス

表 85 SureSelect Target Enrichment Kit ILM Indexing Hyb Module Box #2 (-20℃保存)内訳

Kit Component	96 Reactions	480 Reactions
SureSelect Hyb 3	tube with yellow cap	bottle
SureSelect Indexing Block 1	tube with green cap	tube with green cap
SureSelect Block 2	tube with blue cap	tube with blue cap
SureSelect ILM Indexing Block 3	tube with brown cap	tube with brown cap
SureSelect RNase Block	tube with purple cap	tube with purple cap
SureSelect Indexing Pre-Capture PCR (Reverse) Primer	tube with clear cap	tube with clear cap
SureSelect Indexing Post-Capture PCR (Forward) Primer	tube with orange cap	tube with orange cap

表 86 SureSelect XT Library Prep Kit 5500-0013 に含まれている青色 96 ウェルプレートの 8 bp インデックス A01-H12 までのマップ

	1	2	3	4	5	6	7	8	9	10	11	12
Α	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	A12
В	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12
C	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12
D	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12
E	E01	E02	E03	E04	E05	E06	E07	E08	E09	E10	E11	E12
F	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12
G	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
H	H01	H02	H03	H04	H05	H06	H07	H08	H09	H10	H11	H12

表 87 8 bp インデックスの配列情報 (96 反応は青色プレート)

Index	Sequence	Index	Sequence		Index	Sequence	Index	Sequence
A01	ATGCCTAA	A04	AACTCACC		A07	ACGTATCA	A10	AATGTTGC
B01	GAATCTGA	B04	GCTAACGA	ĺ	B07	GTCTGTCA	B10	TGAAGAGA
C01	AACGTGAT	C04	CAGATCTG	ĺ	C07	CTAAGGTC	C10	AGATCGCA
D01	CACTTCGA	D04	ATCCTGTA	ĺ	D07	CGACACAC	D10	AAGAGATC
E01	GCCAAGAC	E04	CTGTAGCC	ĺ	E07	CCGTGAGA	E10	CAACCACA
F01	GACTAGTA	F04	GCTCGGTA	ĺ	F07	GTGTTCTA	F10	TGGAACAA
G01	ATTGGCTC	G04	ACACGACC	ĺ	G07	CAATGGAA	G10	CCTCTATC
H01	GATGAATC	H04	AGTCACTA	Ì	H07	AGCACCTC	H10	ACAGATTC
A02	AGCAGGAA	A05	AACGCTTA	ĺ	A08	CAGCGTTA	A11	CCAGTTCA
B02	GAGCTGAA	B05	GGAGAACA	Ì	B08	TAGGATGA	B11	TGGCTTCA
C02	AAACATCG	C05	CATCAAGT	ĺ	C08	AGTGGTCA	C11	CGACTGGA
D02	GAGTTAGC	D05	AAGGTACA	Ì	D08	ACAGCAGA	D11	CAAGACTA
E02	CGAACTTA	E05	CGCTGATC	ĺ	E08	CATACCAA	E11	CCTCCTGA
F02	GATAGACA	F05	GGTGCGAA	Ì	F08	TATCAGCA	F11	TGGTGGTA
G02	AAGGACAC	G05	CCTAATCC	ĺ	G08	ATAGCGAC	G11	AACAACCA
H02	GACAGTGC	H05	CTGAGCCA	ĺ	H08	ACGCTCGA	H11	AATCCGTC
A03	ATCATTCC	A06	AGCCATGC	ĺ	A09	CTCAATGA	A12	CAAGGAGC
B03	GCCACATA	B06	GTACGCAA	ĺ	B09	TCCGTCTA	B12	TTCACGCA
C03	ACCACTGT	C06	AGTACAAG	ĺ	C09	AGGCTAAC	C12	CACCTTAC
D03	CTGGCATA	D06	ACATTGGC	ĺ	D09	CCATCCTC	D12	AAGACGGA
E03	ACCTCCAA	E06	ATTGAGGA	ĺ	E09	AGATGTAC	E12	ACACAGAA
F03	GCGAGTAA	F06	GTCGTAGA		F09	TCTTCACA	F12	GAACAGGC
G03	ACTATGCA	G06	AGAGTCAA	ĺ	G09	CCGAAGTA	G12	AACCGAGA
H03	CGGATTGC	H06	CCGACAAC		H09	CGCATACA	H12	ACAAGCTA

CAUTION 以下のリファレンスは、6 bp の長さのインデックスプライマーが入った試薬キットの 情報です。8 bp の長さのインデックスプライマーが入った試薬キットを使用する場合 は、前項の8bpの長さのインデックスインデックスプライマーが入った試薬キットの情 報を参照してください。 6 bp のインデックスの見分け方

96 反応用は、5500-0075 のボックス中の透明キャップのチューブに入っています。

試薬一覧 6 bp のインデックスが入った試薬キット

(透明キャップチューブに入った 1-16 までのインデックスプライマーが含まれる)

SureSelect^{XT} 試薬キットは、室温保存品、-20℃保存品、-80℃保存品が、それぞれ異なる Box に入り、 ラベルに保管温度が記載されています。必ず指定温度で保管してください。

また、これらの試薬キットは、各種 SureSelect キットの種類により試薬の組成が異なります。必ずそのキ ットに添付されてきた試薬キットを実験に使うように注意ください。必ず使用前に下の表に記載された各 試薬キットの部品番号が、使用する予定の試薬ボックスのラベルに記載されている番号と一致すること を確認してください。

表 88 SureSelect^{XT}キット (6 bp インデックス対応)構成試薬一覧

Product	Storage Condition	96 Reactions	480 Reactions
SureSelect XT Library Prep Kit ILM	-20°C	5500-0075	5 x 5500-0075
SureSelect Target Enrichment Box 1	Room Temperature	5190-4394	5190-4395
SureSelect XT Automation ILM Module Box 2	-20°C	5190-3730	5190-3732

次に、各キットの内容について以下の表に示します。

表 89 SureSelect XT Library Prep Kit ILM (6 bp インデックス対応) (-20℃保存)内訳

Kit Component	Format
10X End Repair Buffer	tube with clear cap
10X Klenow Polymerase Buffer	tube with blue cap
5X T4 DNA Ligase Buffer	tube with green cap
T4 DNA Ligase	tube with red cap
Exo() Klenow	tube with red cap
T4 DNA Polymerase	tube with purple cap
Klenow DNA Polymerase	tube with yellow cap
T4 Polynucleotide Kinase	tube with orange cap
dATP	tube with green cap
dNTP Mix	tube with green cap
SureSelect Adaptor Oligo Mix	tube with brown cap
SureSelect Primer (forward primer)	tube with brown cap
PCR Primer Index 1 through Index 16 (reverse primers containing 6-bp index sequences)*	16 tubes with clear caps

*インデックスシーケンスについては、表 92を参照ください。

表 90 SureSelect Target Enrichment Kit Box #1(室温保存)内訳

Kit Component	96 Reactions	480 Reactions
SureSelect Hyb 1	tube with orange cap	bottle
SureSelect Hyb 2	tube with red cap	tube with red cap
SureSelect Hyb 4	tube with black cap	bottle
SureSelect Binding Buffer	bottle	bottle
SureSelect Wash Buffer 1	bottle	bottle
SureSelect Wash Buffer 2	bottle	bottle
SureSelect Elution Buffer*	bottle	bottle
SureSelect Neutralization Buffer*	bottle	bottle

*Elution BufferとNeutralization Bufferは、本プロトコル中では使用しません。

7. リファレンス

表 91 SureSelect Target Enrichment Kit ILM Indexing Hyb Module Box #2 (-20℃)内訳

Kit Component	96 Reactions	480 Reactions
SureSelect Hyb 3	tube with yellow cap	bottle
SureSelect Indexing Block 1	tube with green cap	tube with green cap
SureSelect Block 2	tube with blue cap	tube with blue cap
SureSelect ILM Indexing Block 3	tube with brown cap	tube with brown cap
SureSelect RNase Block	tube with purple cap	tube with purple cap
SureSelect Indexing Pre-Capture PCR (Reverse) Primer	tube with clear cap	tube with clear cap
SureSelect Indexing Post-Capture PCR (Forward) Primer	tube with orange cap	tube with orange cap

表 92 6 bp インデックスの配列情報 (透明キャップのチューブ)

Index Number	Sequence
1	ATCACG
2	CGATGT
3	TTAGGC
4	TGACCA
5	ACAGTG
6	GCCAAT
7	CAGATC
8	ACTTGA
9	GATCAG
10	TAGCTT
11	GGCTAC
12	CTTGTA
13	AAACAT
14	CAAAAG
15	GAAACC
16	AAAGCA

※Index Number 13 から index Number 16 までのバーコードは、塩基配列とバーコード番号の割り当 てが Illumina 社の提供しているインデックスの割り当てと異なりますのでご注意下さい。 Copyright Agilent Technologies 2014

すべての権利は留保されています。著作権法で認められている場合を除き、本書を許可なく複製、改作、 翻訳することは禁止されています。

本和文プロトコルの版権は全て Agilent Technologies, Inc.が所有しています。

ご注意

本書に記載した内容は、予告なしに変更することがあります。

本書は、内容について細心の注意をもって作成いたしましたが、万一ご不審な点や誤り、記載もれ等、

お気づきの点がございましたら当社までお知らせください。

当社では、下記の項目を補償の対象から除外いたします。

ユーザーの誤った操作に起因する機器などの損傷、性能上のトラブル、損害

本キットの本来の用途以外の使用に起因する機器などの損傷、性能上のトラブル、損害

本プロトコルに以外の方法または試薬を用いたことによる性能上のトラブル、損害。

分析結果に基づく損失

本書の内容の一部または全部を無断で複写、転載したり、他の言語に翻訳することは法律で禁止されています。複写、転載などの必要が生じた場合は、当社にお問い合わせください。

本製品パッケージとして提供した本マニュアル、CD-ROM 等の媒体は本製品用にだけお使いください。

保証

本書に記載した内容は、予告なしに変更することがあります。

Agilent Technologies は、本品に関していかなる保証も行いません。これには暗黙の保証、または商品 性および特定目的への適合性が含まれますが、それらに限定されません。

Agilent Technologies は、本書に含まれている誤植、あるいは本品の性能、または使用に関する偶発的ないし間接的な損害に関して責任を負いません。

SureSelect^{xT}自動化システムに関するサポートお問い合わせ窓口 Tel: 0120-477-111

E-mail: <a href="mailto:emailt

*SureSelect^{XT}自動化システム(もしくはXT-Auto)のテクニカルな 質問と明示ください。

*価格、納期等のご質問は担当営業にご連絡ください。