

SureSelect Max mRNA ライブラリ調製

イルミナプラットフォーム用 NGS

和文プロトコル [2025年4月版 和文]

Version A0 対応

アジレント SurePrint テクノロジーで製造した SureSelect プラットフォーム For Research Use Only. Not for use in Diagnostic Procedure.

通知

© Agilent Technologies, Inc. 2024

本マニュアルのいかなる部分も、米国および国際著作権法に準拠する Agilent Technologies, Inc.からの事前の合意および書面による同意なしに、いかなる形式または手段 (電子的保存および検索または他の言語への翻訳を含む) でも複製することはできません。

本プロトコルについて

プロトコルは予告なく変更になることがあります。プロトコルを日本語化するにあたり、作業時間が発生するため、日本語プロトコルは英語の最新バージョンに比べて、遅れが生じます。製品ご購入の際は、必ず英語版プロトコルの Version をお確かめの上、日本語版が古い場合は、使用プロトコルについて、弊社までお問い合わせいただきますようお願い申し上げます。

本日本語プロトコルは、英語版の

SureSelect Max Library Preparation using Sheared DNA Version A0, September 2024 (G9663-90000) に対応しています。

本プロトコルに関するご質問やご意見などございましたら、下記のメールアドレスにご連絡ください。

email_japan@agilent.com

確認

Oligonucleotide sequences ©2006, 2008, and 2011 Illumina, Inc. All rights reserved.

イルミナシーケンサーシステムおよび関連するアッセイでのみ使用できます。

保証

本書に含まれる資料は「現状有姿」で提供され、将来の改版に際しては、予告なしに変更される可能性があります。 さらに、適用法で認められる最大限の範囲で、Agilent は、本書および本書に含まれる情報に関して、明示または黙示を問わず、商品性および特定目的への適合性の黙示の保証を含むがこれらに限定されない、全ての保証を否認します。Agilent は、本書または本書に含まれる情報の提供、使用またはパフォーマンスに関連するエラーまたは偶発的もしくは間接的な損害について責任を負わないものとします。Agilent とユーザーが、本書の内容と矛盾する保証条件を別個の契約書として結んでいる場合は、別個の契約書の保証条件が優先されます。

安全上の注意

CAUTION

CAUTION 表示は危険性を示します。正しく実行または遵守されなかった場合に、製品の損傷や重要なデータの損失につながる可能性のある操作手順や方法などを示しています。CAUTION 表示の個所は、その条件を完全に理解し満たすまで、その先に進まないでください。

WARNING

WARNING 表示は危険性を示します。操作手順への注意を喚起するもので、この表示を無視して誤った取扱いをすると、人が死亡または重傷を負う可能性が想定される内容を示しています。

WARNING 表示の個所は、条件を完全に理解し満たすまで、その 先に進まないでください。 本ガイドは、SureSelect Max mRNA Library Preparation Module を使用して、イルミナ社のペアエンドマルチプレックス mRNA シーケンシングライブラリ調製を行うために最適化されたプロトコルです。SureSelect Max ワークフローの中で本プロトコルがサポートするセグメントには、poly-A mRNA 濃縮を含むインプットライブラリの調製から、オプションであるデュプレックス分子バーコードまたは Molecular Barcode (MBC) 付きアダプターを使用したライブラリ調製が含まれます。ライブラリは、SureSelect Max UDI プライマーを使用して PCR インデックス化されます。作製したライブラリは、イルミナプラットフォームを用いた次世代シーケンス (NGS) に使用できます。

1. はじめに

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

2. mRNA 濃縮、断片化、cDNA 変換

この章では total RNA の調製、poly-A mRNA 濃縮、mRNA の断片化、RNA フラグメントの cDNA への変換ステップについて説明しています。

3. cDNA ライブラリ調製

この章では、cDNA フラグメントから Dual index が付加されたシーケンスライブラリを調製する方法について説明しています。 ライブラリは Molecular Barcode (MBC) 付きの、 あるいは MBC なしのアダプターを用いて作製されます。 ライブラリはイルミナプラットフォームを用いたシーケンスに使用できます。

4. 補足資料: NGS と解析のガイドライン

この章は、イルミナプラットフォームでの NGS から解析までのガイドラインを記載しています。

5. リファレンス

この章では、試薬キットの内容、インデックスプライマーペア情報、トラブルシューティング、クイックリファレンスプロトコルなどの参照情報を記載しています。

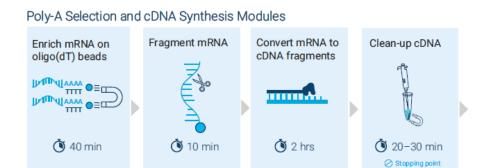
1. はじめに		5
ワークフローの	の概要	6
ワークフロー	で使用する SureSelect Max モジュール	7
追加で必要	な試薬・器具・消耗品	8
操作と安全	に関する注意事項	10
2. mRNA 濃約	縮、断片化、cDNA 変換	11
Step 1. RN	A サンプルの準備と品質評価	13
Step 2. Tot	tal RNA からの poly-A mRNA 濃縮	14
Step 3. mR	RNA の断片化	16
Step 4. 1st	strand cDNA 合成	17
Step 5. 2nd	d strand cDNA 合成	18
Step 6. 磁	性ビーズを用いた cDNA の精製	19
3. cDNA ライ:	ブラリ調製	21
Step 1. Lig	ation Master Mix の調製	23
Step 2. cDI	NA 3'末端修復及び dA 付加 (End repair/dA-tailing)	24
Step 3. アタ	ヺプターライゲーション	25
Step 4. 磁	性ビーズを用いたライブラリの精製	26
Step 5. イン	ンデックス付加と増幅	29
Step 6. 磁	性ビーズを用いたインデックス付加ライブラリの精製	31
Step 7. ライ	イブラリ DNA の品質確認と定量	33
Step 8. マル	レチプレックスシーケンスのためのライブラリのプール	34
4. 補足資料	: NGS と解析のガイドライン	36
SureSelect	: Max ライブラリの構造	37
シーケンスセ	アップとランのガイドライン	37
解析パイプラ	- ラインのガイドライン	38
5. リファレンス		40
キットの内容	3	41
SureSelect	t Max UDI プライマー情報	43
トラブルシュ-	ーティングガイド	55
クイックリファ	レンスプロトコル:mRNA ライブラリ調製	57

1. はじめに

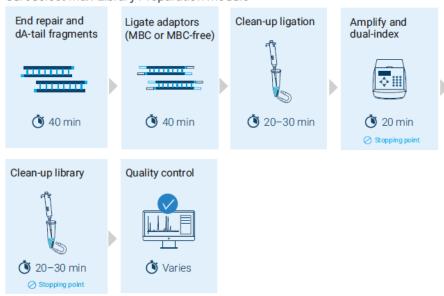
ワークフローの概要	6
ワークフローで使用する SureSelect Max モジュール	7
追加で必要な試薬・器具・消耗品	8
操作と安全に関する注意事項	10

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

NOTE


アジレントは、本ワークフローに必要な SureSelect Max 試薬を本プロトコルに従って使用される場合にのみ、必要な技術サポートを提供します。

ワークフローの概要


SureSelect Max システムは、NGS 用の DNA または RNA ライブラリの調製とターゲットエンリッチメントのための柔軟なワークフローオプションを提供します。モジュール形式で、特定のワークフローに対応したキットが用意されています。このマニュアルでは、図 1 のワークフローサマリーのように mRNA ライブラリ調製に最適化されたプロトコルを提供します。異なるライブラリーアダプターを使用することで、duplex molecular barcode (MBC) 付きの、または MBC なしの mRNA ライブラリを構築することができ、384 の Unique dual indexing (UDI) プライマーを使用してインデックスを付与することができます。

詳細なプロトコルについては、11 ページ以降をご参照ください。下流の NGS ガイドラインについても記載しています。

SureSelect Max mRNA Library Preparation Workflow (*) 5.5 Hours

SureSelect Max Library Preparation Module

図 1 SureSelect Max mRNA ライブラリ調製の概要

所要時間とプロトコル中の Stopping point を参照として記載しています。 所要時間は 1000 ng の高品質 input RNA を 16 サンプル処理する場合にかかる時間です。 パラメーターによって所要時間は変わります。

SureSelect Max 試薬は SureSelect XT HS2 を含む、他の SureSelect システムとの互換性がありません。

ワークフローで使用するSureSelect Maxモジュール

本プロトコルは mRNA ライブラリ調製ワークフローのプロトコルについて説明しています。必要な SureSelect 試薬を表 1 に示します。

表 1 mRNA ライブラリ調製ワークフローに使用する SureSelect Max Kit

モジュール名	16 反応キット	96 反応キット
SureSelect Max mRNA Library Prep Kit, (以下のモジュールを含む)	G9665A	G9665B
SureSelect Poly-A Selection Module		
SureSelect cDNA Module		
SureSelect Max Library Preparation Module		
SureSelect Max Adaptors and UDI Primers Kit for ILM (Select One)):	
MBC Adaptors and UDI Primers 1-16	G9667A	
MBC Adaptors and UDI Primers 17-32	G9667B	
MBC Adaptors and UDI Primers 1-96		G9668A
MBC Adaptors and UDI Primers 97-192		G9668B
MBC Adaptors and UDI Primers 193-288		G9668C
MBC Adaptors and UDI Primers 289-384		G9668D
MBC-Free Adaptors and UDI Primers 1-16	G9669A	
MBC-Free Adaptors and UDI Primers 17-32	G9669B	
MBC-Free Adaptors and UDI Primers 1-96		G9673A
MBC-Free Adaptors and UDI Primers 97-192		G9673B
MBC-Free Adaptors and UDI Primers 193-288		G9673C
MBC-Free Adaptors and UDI Primers 289-384		G9673D
SureSelect Max Purification Beads*	G9962A (5 mL)	G9962B (30 mL)

^{*} AMPure XP beads を使用することも可能 (表 2 を参照).

1. はじめに

追加で必要な試薬・器具・消耗品

ワークフローで使用する、追加で準備する試薬・器具・消耗品を表 2から表 3に記載しています。

表 2 追加で必要な器具・消耗品

品名	メーカーと品番	備考
核酸分析システム	9 ページの表 3 から選択	インプット RNA の QC や下流のターゲットエンリッチメントに使用する前のオプションのライブラリ QC に使用できます。
Small-volume spectrophotometer	NanoDrop 2000, Thermo Fisher Scientific p/n ND-2000 or equivalent	
サーマルサイクラー (96 ウェル、0.2 mL ブロック)	相当品	-
サーマルサイクラーに適した プラスチックウェア:96-well tube plates または 8-well strip tubes	相当品	_
Low-adhesion tubes (RNase/DNase/DNA- free) 1.5-mL 0.5-mL	USA Scientific または相当品 p/n 1415-2600 p/n 1405-2600	_
遠心分離機	Eppendorf microcentrifuge, model 5417C または相当品	-
96 ウェルプレートもしくは ストリップチューブ 遠 心機	KUBOTA またはワケンビーテック または相当品	-
ピペット及びマルチチャネルピペット	Rainin Pipet-Lite Multi Pipette または相当品	_
ピペットチップ 滅菌、Nuclease-Free、 エアロゾルブロックフィルター付き	相当品	
ボルテックスミキサ	相当品	
アイスバケツ	相当品	
パウダーフリー手袋	相当品	
ビーズ分離用マグネット	Thermo Fisher Scientific p/n 12331D または相当品	ウェルの一方に磁性ビーズが集まるタイプを必ず選んでください。リング状に磁性ビーズが集まるタイプは使用できません。
QPCR Human Reference Total RNA	Agilent p/n 750500	コントロールインプット RNA (オプション)
1X Low TE Buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA)	Thermo Fisher Scientific p/n 12090-015 または相当品	gDNA サンプル調製と希釈に使用。
Nuclease-free Water	Thermo Fisher Scientific p/n AM9930	DEPC 処理ではないこと
99.5% Ethanol, molecular biology grade	Wako p/n 054-07225 または相当 品	-
オプション:AMPure XP Kit (5 mL)	Beckman Coulter Genomics p/n A63880	SureSelect Max Purification Beads の代替として 使用可 (表 1を参照)

表 3 推奨の核酸分析プラットフォーム (いずれかを選択)

品名	メーカーと型番	備考
ターゲットエンリッチメントワークフローライブラリ QC オ	プション	
Agilent 4200/4150 TapeStation	Agilent p/n G2991AA / G2992AA	インプット RNA サンプルの QC や、調製し
消耗品		た cDNA ライブラリの NGS 前の QC に推
RNA ScreenTape	p/n 5067-5576	奨のシステム。
RNA ScreenTape Sample Buffer	p/n 5067-5577	(バイオアナライザを使用する場合、RNA
RNA ScreenTape Ladder	p/n 5067-5578	サンプル QC は RNA6000 ナノキット
High Sensitivity RNA ScreenTape	p/n 5067-5579	p/n 5067-1511 または RNA6000 ピコ
High Sensitivity RNA ScreenTape Sample Buffer	p/n 5067-5580	キット p/n 5067-1513、cDNA ライブラリは DNA1000 Kit p/n 5067-1504 でも測定可能)
High Sensitivity RNA ScreenTape Ladder	p/n 5067-5581	ORICE TRI
D1000 Screen Tape	p/n 5067-5582	
D1000 試薬キット	p/n 5067-5583	
96-well sample plate	p/n 5042-8502	
96-well plate foil seals	p/n 5067-5154	
8-well tube strips	p/n 401428	
8-well tube strip caps	p/n 401425	
Agilent 5200/5300/5400 Fragment Analyzer	Agilent p/n M5310AA / M5311AA / M5312AA	
消耗品		
RNA Kit (15NT)	p/n DNF-471-0500	
HS RNA Kit (15NT)	p/n DNF-472-0500	
NGS Fragment Kit (1 - 6000 bp)	p/n DNF-473-0500	

操作と安全に関する注意事項

- ・ ヌクレアーゼの試薬への混入を避けるために、操作を行う場合は、必ずパウダーフリーのラボ用手袋を着用 し、適切な溶液、ピペット、ヌクレアーゼフリー エアロゾル防止フィルター付きピペットチップを使用ください。
- ・ 実験工程全体を通して、サンプル間での PCR 産物のコンタミネーションを防ぐため、以下を実施することをお 勧めします。
 - 1. PCR 前のサンプルを扱う場所と PCR 後のサンプルを扱うエリアを分け、それぞれのエリアで専用の機器、消耗品、試薬を使用してください。 特に、PCR 後のエリアで使用するものを PCR 前の工程で使用するのは避けて下さい。
 - 2. 実験スペースは常にクリーンな状態にしてください。 PCR 前の工程では作業台を 10% bleach solution やその相当品により、日常的に清潔に保ってください。
 - **3.** PCR 前のエリアで試薬を使用するときは、常にヌクレアーゼフリーのエアロゾル防止フィルターつきのピペットチップのついた専用のピペットを使用してください。
 - **4.** パウダーフリーの手袋を着用してください。コンタミの可能性があるものの表面に触れた後は必ず手袋を変えるなど、ラボの衛生を守ってください。
- ・ SureSelect Max プロトコルで使用する試薬にはとても粘性が高いものがあります。プロトコルで示されている方法で混合するようにしてください。
- ・ 混合中に反応混合物に気泡が入らないように注意してください。インキュベーションや PCR 工程のために、サンプルバイアルをサーマルサイクラーに移動する前に、サンプルウェルの底に気泡がないことを確認してください。 気泡がある場合は、短時間スピンダウンして気泡を除いてください。
- ・ PCR プレートもしくはストリップチューブのキャップを外す必要のある工程では、再びキャップをするときには、常に新しいキャップストリップを使用してください。サーマルサイクラーやその他の工程で、キャップの変形が起こりえるため、一度使用したキャップストリップの再利用は、サンプルの蒸発によるロスやコンタミネーション、インキュベーション中のサンプル温度が不正確になるなどのリスクがあります。
- ・ Biosafety Level 1 (BSL1) のルールに基づき、実験を行います。
- ・ プロトコル中に表記されている Stopping Point でサンプルを 4°C または-20°C で保存できます。サンプルの繰り返し凍結融解は避けてください。

CAUTION

実験室で実験を行う際は、各実験室において決められた規則に従い、保護用の用具 (白衣、安全眼鏡など) を着用してください。

2. mRNA濃縮、断片化、cDNA変換

Step 1. RNA サンプルの準備と品質評価	13
Step 2. Total RNA からの poly-A mRNA 濃縮	14
Step 3. mRNA の断片化	14
Step 4. 1st strand cDNA 合成	17
Step 5. 2nd strand cDNA 合成	18
Step 6. 磁性ビーズを用いた cDNA の精製	19

この章では RNA シーケンスライブラリ調製のための mRNA 濃縮と cDNA 合成ステップについて説明しています。 このプロトコルでは新鮮凍結サンプル由来などの高品質 RNA に対応しています。FFPE 由来の RNA サンプルには対応していません。

このプロトコルでは 10~1000 ng の total RNA インプットを必要とします。より品質が低いサンプルではより多くの RNA インプットを必要とします。最適なシーケンス結果を得るためには 10~1000 ng の範囲で使用可能な最大量の RNA を使用してください。

このプロトコルでは 2x 100 または 2x 150 リード長の NGS に適した cDNA フラグメントが作製されます。

2. mRNA 濃縮、断片化、cDNA 変換

mRNA 濃縮ワークフローでは表 4、RNA 断片化と cDNA 合成ワークフローでは表 5 の構成品を使用します。 使用前に、指示に従って試薬を保管場所から取り出してください。

表 4 mRNA 濃縮ステップで使用前に室温に戻す試薬

試薬ボックス・ 保管温度	試薬名	使用方法	使用ページ
SureSelect Poly-A Selection Module	Oligo(dT) Microparticles (tube with brown cap or bottle)	Equilibrate to room temperature. Vortex well immediately before use.	14 ページ
(Pre PCR), 4°C	Bead Washing Buffer (bottle)	Equilibrate to room temperature, then ready-to-use.	14 ページ
	Bead Elution Buffer (tube with green cap or bottle)	Equilibrate to room temperature, then ready-to-use.	14 ページ
	Bead Binding Buffer (tube with purple cap or bottle)	Equilibrate to room temperature, then ready-to-use.	15ページ

表 5 cDNA 合成ステップで使用前に溶かす試薬

試薬ボックス・ 保管温度	試薬名	使用方法	使用ページ
SureSelect cDNA	2X Priming Buffer (tube with purple cap)	Thaw on ice then keep on ice, vortex to mix.	16 ページ
Module (Pre PCR), -20°C	First Strand Master Mix (amber tube with amber cap)*	Thaw on ice for 30 minutes then keep on ice, vortex to mix.	17 ページ
	Second Strand Enzyme Mix (tube with blue cap or bottle)	Thaw on ice then keep on ice, vortex to mix.	18 ページ
	Second Strand Oligo Mix (tube with yellow cap)	Thaw on ice then keep on ice, vortex to mix.	18 ページ
+4°C	SureSelect Max Purification Beads OR AMPure XP Beads	Equilibrate at room temperature for at least 30 minutes before use, vortex to mix.	19 ページ

^{*} First Strand Master Mix は actinomycin D を含んでおり、すぐに使用できる状態です。 遮光状態を保つ必要があるため、 提供されているチューブから移し替えないでください。

Step 1. RNAサンプルの準備と品質評価

本ライブラリ調製プロトコルでは 10 ng \sim 1 μ g の高品質 total RNA が必要です。以降のステップで記載されているように、サンプル品質が低い RNA の場合には最少 50 ng のインプットが必要となります。

NOTE

本プロトコルは新鮮あるいは新鮮凍結サンプル由来の高品質 RNA に適しています。 FFPE 由来の RNA サンプルの使用は推奨されません。

Agilent QPCR Human Reference Total RNA (p/n 750500, 1 µg /µL) のような高品質コントロール RNA を使用し、並行して実施いただくことを検討してください。プロトコルの初回実施時には、すべてのステップが問題なく行われていることを確認するために、コントロール RNA を使用することを特に推奨します。コントロールを日常的に使用することで、パフォーマンスの問題がサンプル品質に起因するか、その他の要因によるものかどうかの切り分けができ、トラブルシューティングに役立ちます。

- 1. 使用する total RNA を nuclease-free water に調製します。
- 2. 分光光度計を利用して、サンプルの RNA 濃度、260/280 および 260/230 の吸光度比を測定します。 高品質な RNA サンプルは、いずれの吸光度比も約 1.8~2.0 になります。 2.0 から極端に値が離れている 場合は、有機物または無機物の混入が示唆されます。 その場合には再精製を行うか、 そのサンプルが RNA ターゲットエンリッチメントアプリケーションには適さない場合があります。
- 3. 表 3 の核酸分析プラットフォームのいずれかを用いて、RNA Integrity Number (RIN)、RINe または RNA Quality Number (RQN)を決定します。アジレントのプラットフォームで算出される RIN/RINe/RQN は RNA 分解度を同等に評価する品質スコアです。上記ステップ 2 の RNA 濃度に基づいて、サンプルに適したアッセイを選択してください。

最適な性能を得るためには、>8 の品質スコアが必要です。その場合には 10 ng \sim 1 μ g の total RNA を使用します。

品質スコアが 6~8 のサンプルも本プロトコルで使用できますが、50 ng 以上の total RNA を使用してください。

NOTE

品質スコアが 6~8 の RNA サンプルを用いてライブラリを調製する場合、後のステップで追加の精製が必要になります (26 ページを参照)。

品質スコアが<6 のサンプルは本プロトコルには適していません。ターゲットエンリッチメントを行う SureSelect Max RNA ワークフローをご検討ください。

4. 各 total RNA を nuclease-free water で 25 μL に調製し、サーマルサイクラーに適した PCR プレートもしくはストリップチューブの各ウェルに分注し、氷上に置きます。

Step 2. Total RNAからのpoly-A mRNA濃縮

このステップでは、オリゴ (dT) 磁性ビーズへの結合を 2 回行うことで、polyA 付加 mRNA を選択的に濃縮します。

- 1. Oligo(dT) Microparticles を色が均一になり安定するまで、ボルテックスミキサでよく混合します。ボルテックス後もビーズが凝集している場合は、ピペッティングで懸濁液が均一になるまで吸引と吐出を繰り返し、よく混ぜます。
- 2. 均一になった Oligo(dT) Microparticles 懸濁液 25 µL を各 total RNA サンプルウェルに添加します。
- **3.** ウェルに蓋をし、5 秒間穏やかにボルテックスで混合します。ビーズが沈殿しない程度にプレートもしくはストリップチューブをスピンダウンし、液を底に集めます。
- **4.** プレートもしくはストリップチューブをサーマルサイクラーに移し、表 6 のプログラムで RNA を変性させます。蓋 の温度は 105°C にセットします。

表 6 RNA 変性サーマルサイクルプログラム (50 μL vol)

		_
ステップ	温度	時間
ステップ 1	65°C	5 minutes
ステップ 2	4°C	1 minute
ステップ 3	4°C	Hold

- **5.** サーマルサイクラーが 4°C Hold のステップに達したら、プレートもしくはストリップチューブを取り出し室温に 5 分静置します。
- **6.** プレートもしくはストリップチューブをマグネットスタンドにセットし、溶液が透明になるまで待ちます (約 2~5分)。
- **7.** プレートもしくはストリップチューブを磁石スタンドにセットした状態で、透明な上清を取り除き、廃棄します。 溶液を除去するときにビーズに触れないように注意します。
- 8. マグネットスタンドからプレートまたはストリップチューブを取り外し、200 μL の Bead Washing Buffer を各ウェルに加えます。

P200 ピペットを 150 μL に設定し、泡立たせないように吸引と吐出を 10 回繰り返し、ピペッティングで静かに混合します。

CAUTION

Bead Washing Buffer は界面活性剤を含みます。泡や泡沫を発生させないようにビーズと Washing buffer を混合することが重要です。もし洗浄ステップで泡や泡沫が発生したら、次のステップに進む前に、プレートまたはストリップチューブを軽く遠心してください。

- **9.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで少なくとも 2 分間静置します。
- **10.** プレートもしくはストリップチューブを磁石スタンドにセットした状態で、透明な上清を取り除き、廃棄します。 溶液を除去するときにビーズに触れないように注意します。
- 11. マグネットスタンドからプレートもしくはストリップチューブを取り外し、25 μL の Bead Elution Buffer を各ウェルに加えます。
- **12.** ウェルに蓋をし、5 秒間やさしくボルテックスします。高速遠心機や卓上遠心機でプレートもしくはストリップチューブをスピンダウンし液を集めます。

13. RNA を溶出するため、サンプルプレートもしくはストリップチューブをサーマルサイクラーにセットし、表 7 のプログラムを実行します。蓋の温度は 105°C にセットします。

表 7 RNA 溶出サーマルサイクルプログラム (25 µL vol)

ステップ゜	温度	時間
ステップ 1	80°C	2 minutes
ステップ 2	4°C	1 minute
ステップ 3	4°C	Hold

- **14.** サーマルサイクラーが 4°C Hold のステップに達したら、プレートもしくはストリップチューブを取り出し、各サンプルウェルに 25 µL の Bead Binding Buffer を添加します。
- **15.** ウェルに蓋をし、5 秒間やさしくボルテックスで混合します。高速遠心機や卓上遠心機でプレートまたはストリップチューブをスピンダウンし液を集めます。
- 16. 室温で 5 分インキュベートし、再度 poly-A mRNA をビーズに再結合させます。
- 17. プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します。
- **18.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、透明になった溶液をピペットで各ウェルから注意深く取り除き廃棄します。溶液を除去するときにビーズに触れないように注意します。
- 19. マグネットスタンドからプレートまたはストリップチューブを取り外し、200 μL の Bead Washing Buffer を各ウェルに加えます。

P200 ピペットを 150 μL に設定し、泡立たせないように吸引と吐出を 10 回繰り返し、ピペッティングで静かに混合します。 もし洗浄ステップで泡や泡沫が発生したら、次のステップに進む前にプレートまたはストリップチューブを軽く遠心してください。

- **20.** プレートまたはストリップチューブを室温で磁石スタンドにセットします。溶液が透明になるまで少なくとも 2 分間静置します。
- **21.** プレートまたはストリップチューブを磁石スタンドにセットしたまま、透明になった溶液をピペットで各ウェルから注意深く取り除き廃棄します。溶液を除去するときにビーズに触れないように注意します。
- **22.** ビーズに結合した RNA サンプルのプレートまたはストリップチューブを磁石スタンドから外します。 10 μL の nuclease-free water を各サンプルウェルに添加し、氷上に置きます。
- 23. すぐに"Step 3. mRNA の断片化"に進みます。

2. mRNA 濃縮、断片化、cDNA 変換

Step 3. mRNAの断片化

このステップでは poly-A mRNA 濃縮後サンプルを金属イオン存在下での高温処理により化学的に断片化し、RNA シーケンシングライブラリ調製に適したサイズにします。このステップで使用する 2X Priming Buffer は断片化用の成分と次ステップの cDNA 合成に使用するプライマーを含みます。

1. 表 8 のサーマルサイクルプログラムを設定します。 蓋の温度は 105°C にセットします。

表 8 mRNA の断片化サーマルサイクルプログラム (20 µL vol)

ステップ	温度	
ステップ 1	94°C	4 minutes
ステップ 2	4°C	1 minute
ステップ 3	4°C	Hold

- 2. 10 µL の 2X Priming Buffer を 10 µL のビーズ結合 RNA の入った各ウェルに加えます。
- **3.** ウェルに蓋をし、高速でボルテックスしビーズを懸濁します。軽くスピンダウンし、液を底に集め気泡を取り除きます。
- 4. プレートもしくはストリップチューブをサーマルサイクラーにセットし、表 8 のプログラムを開始します。このステップで RNA は断片化され、Oligo (dT) ビーズから溶出されます。
- 5. サーマルサイクルプログラムが表 8 の 4°C Hold のステップに達したら、断片化 RNA の入ったプレートもしく はストリップチューブを磁石スタンドにセットします。ビーズ懸濁液が透明になるまで待ち、上清 (約 20 μL) を新しいプレートもしくはストリップチューブに移します。溶出した RNA サンプルを氷上に置きます。Oligo (dT) ビーズはこの時点で廃棄します。

RNA のビーズへの再結合を防ぐためにこのステップはできるだけ短い時間で行います。すぐに"Step 4. 1st strand cDNA 合成"にすすみます。

Step 4. 1st strand cDNA合成

CAUTION

このステップで使用する First Strand Master Mix はとても粘性が高いです。プロトコルに従い、ボルテックスで十分に混合します。ピペッティングでは不十分です。 First Strand Master Mix にはすでに Actinomycin D が含まれています。 追加の Actinomycin D は不要です。

1. 表 9 のサーマルサイクルプログラムを設定します。蓋の温度は 105°C に設定します。

表 9 First Strand cDNA 合成のサーマルサイクルプログラム (24 µL vol)

ステップ	温度	時間
ステップ 1	25°C	10 minutes
ステップ 2	37°C	40 minutes
ステップ 3	4°C	Hold

- 2. 融解した First Strand Master Mix を高速で 5 秒間ボルテックスし、均一に混合します。
- **3.** 各サンプルに 4 µL の First Strand Master Mix を加えます。
- **4.** ピペッティングを 15~20 回繰り返すか、もしくは蓋をして高速のボルテックスで 5~10 秒よく混合します。軽く遠心します。
- 5. サーマルサイクラーにセットして、表 9 の通り設定したサーマルサイクラーのプログラムを開始します。

Step 5. 2nd strand cDNA合成

CAUTION

このステップで使用する Second Strand Enzyme Mix はとても粘性が高いです。プロトコルに従い、ボルテックスで十分に混合します。 ピペッティングでは不十分です。

- 1. 表 9 のサーマルサイクルプログラムにおいて、4°C Hold のステップになったら、サンプルを取り出し氷上に置きます。
- 2. 表 10 のサーマルサイクルプログラムを設定します。蓋の温度は 105°C に設定します。

表 10 Second Strand cDNA 合成のサーマルサイクルプログラム (54 µL vol)

ステップ	 温度	時間
ステップ 1	16°C	60 minutes
ステップ 2	4°C	Hold

- **3.** 融解した Second Strand Enzyme Mix & Second Strand Oligo Mix を高速で 5 秒間ボルテックスし、 均一に混合します。
- 4. 各サンプルに 25 µL の Second Strand Enzyme Mix を加え、氷上に置きます。
- **5.** 各サンプルに 5 μL の Second Strand Oligo Mix を加え、氷上に置きます。溶液の総量は 54 μL になります。
- **6.** ピペッティングを 15~20 回繰り返すか、もしくは蓋をして高速のボルテックスで 5~10 秒よく混合します。軽く遠心します。
- 7. サーマルサイクラーにセットして、表 10 の通り設定したサーマルサイクラーのプログラムを開始します。

NOTE

次のセクションで使用する SureSelect Max Purification ビーズまたは AMPure XP ビーズは冷蔵庫から取り出し、使用前に 30 分以上室温に置くようにします。

Step 6. 磁性ビーズを用いたcDNAの精製

サーマルサイクラーが表 10 の最後の 4°C のステップに達したら、室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いたライブラリの精製を行います。

精製プロトコルでの重要なパラメーターを表 11 に示します。

表 11 磁性ビーズによる cDNA 精製のパラメーター

パラメーター	
各サンプルウェルに加える、室温に戻した精製ビーズの液量	105 μL
最終的な溶出溶媒とその液量	52 μL nuclease-free water
新しいウェルに回収する溶出されたサンプルの回収量	約 50 μL

1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。

NOTE

使用当日に調製したフレッシュな 70%エタノールを使用するようにします。

- 2. ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. サンプルをサーマルサイクラーから室温に移し、ビーズ懸濁液 105 µL を各サンプルウェルに加えます。
- **4.** ピペッティングを 15~20 回または蓋をして高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽くスピンダウンします。
- 5. 室温で 5 分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5~10分)。
- **7.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- **10.** ステップ 8 と 9 をもう一度繰り返し、計 2 回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。 プレートもしくはストリップチューブを再度磁石スタンドにおき、キャップをはずして 30 秒静置します。 ビーズを吸い込まないように注意しながら、20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

- 12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。
- **13.** 52 µL の nuclease-free water を各サンプルウェルに加え、ライブラリ DNA を溶出します。

2. mRNA 濃縮、断片化、cDNA 変換

- **14.** ピペッティングを 10~15 回程度行うか、または蓋をして高速で 5 秒ボルテックスを行い混合します。すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。 サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。長時間のインキュベーションによって特に長い DNA フラグメントの回収効率が向上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 約 50 µL) を新しい PCR プレートもしくはストリップチューブに移し、氷上に置きます。 ビーズはこの時点で廃棄します。

精製した cDNA は NGS ライブラリ調製に用いることができます。ページの "3. cDNA ライブラリ調製" に進みます。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期の場合は-20°C で保存できます。

3. cDNAライブラリ調製

Step 1.	Ligation Master Mix の調製	23
Step 2.	cDNA 3′末端修復及び dA 付加 (End repair/dA-tailing)	24
Step 3.	アダプターライゲーション	25
Step 4.	磁性ビーズを用いたライブラリの精製	26
Step 5.	インデックス付加と増幅	29
Step 6.	磁性ビーズを用いたインデックス付加ライブラリの精製	31
Step 7.	ライブラリ DNA の品質確認と定量	33
Step 8.	マルチプレックスシーケンスのためのライブラリのプール	34

この章は、NGS 用 mRNA 濃縮 cDNA ライブラリの調製について説明しています。

このステップで、固有のデュアルインデックスが付与されたシーケンスライブラリが調製されます。複数サンプルをまとめて調製するために、各ステップでは8もしくは24サンプル分と余剰量分の試薬を調製する手順と、そのあとに個々のcDNAサンプルに加える手順が記載されています。

3. cDNA ライブラリ調製

この章では表 12 の試薬を使用します。使用する試薬を冷凍または冷蔵保管から取り出し、使用前に指示に従って準備します (使用ページ欄を参照してください)。

表 12 プロトコルで使用前に溶かす試薬

試薬ボックス・ 保管温度	試薬名	使用方法	使用ページ
SureSelect Max Library Preparation	Ligation Buffer (purple cap or bottle)	Thaw on ice (may require >20 minutes) then keep on ice, vortex to mix.	23 ページ
Module, stored at -20°C	T4 DNA Ligase (blue cap)	Place on ice just before use, invert to mix.	23 ページ
-20 C	End Repair-A Tailing Buffer (yellow cap or bottle)	Thaw on ice (may require >20 minutes) then keep on ice, vortex to mix.	24ページ
	End Repair-A Tailing Enzyme Mix (orange cap)	Place on ice just before use, invert to mix.	24ページ
	Amplification Master Mix (red cap or bottle)	Thaw on ice then keep on ice. Mix thoroughly by inversion at least 5X. Do not vortex.	29 ページ
SureSelect Max Adaptors and UDI Primers Kit for ILM, stored at – 20°C	For MBC-tagged libraries: SureSelect Max MBC Adaptor Oligo Mix, ILM (white cap) または For MBC-free libraries: SureSelect Max MBC-Free Adaptor Oligo Mix (black cap)	Thaw on ice then keep on ice, vortex to mix	25ページ
	SureSelect Max UDI Primers for ILM (select the specific set of indexes to be used in the run):	Thaw on ice for 30 minutes then keep on ice, vortex to mix	25 ページ
	Index Pairs 1-8 (blue strip) Index Pairs 9-16 (white strip) Index Pairs 17-24 (black strip) Index Pairs 25-32 (red strip) Index Pairs 1-96 (orange plate) Index Pairs 97-192 (blue plate) Index Pairs 193-288 (green plate) Index Pairs 289-384 (red plate)	Thaw on ice then keep on ice, vortex to mix	
+4°C	SureSelect Max Purification Beads または AMPure XP Beads	Equilibrate at room temperature for at least 30 minutes before use, vortex to mix. Beads may be retained at RT between purification steps.	26 ページ および 31 ページ

Step 1. Ligation Master Mixの調製

末端修復/dA 付加のプロトコルを行っている間に、Ligation Master Mix を調製し室温にします。この間、サンプルは氷上に置いておきます。

CAUTION

このステップで使用する Ligation Buffer は粘性が非常に高いです。ステップ 1 とステップ 2 の方法に従って混合してください。

- 1. 融解した Ligation Buffer を、使用直前に高速のボルテックスで 15 秒間混合します。
- 2. 表 13 の試薬を混合して、適切な量の Ligation Master Mix を調製します。

Ligation Buffer をピペットでゆっくりと吸い上げて 1.5 mL チューブに入れ、全量が吐出されたことを確認します。 T4 DNA Ligase をゆっくりと加えた後、buffer 溶液で数回ピペッティングを行い、ピペットチップ内部の酵素をリンスします。 ピペッティングをゆっくり 15~20 回繰り返すか、蓋をしてボルテックスで 10~20 秒よく混合します。 軽く遠心します。

25ページで使用するまで、30~45分間室温に置きます。

表 13 Ligation Master mix の調製

試薬	1 反応	8 反応分 (余剰量含む)*	24 反応分 (余剰量含む) †
Ligation Buffer (purple cap or bottle)	23 µL	207 μL	598 μL
T4 DNA Ligase (blue cap)	2 μL	18 μL	52 μL
Total	25 μL	225 μL	650 μL

^{* 16-}反応の Library Preparation Kits は、余剰量を含め 8 サンプル 2 ラン分の試薬が含まれています。

^{†96-}反応の Library Preparation Kits は、余剰量を含め24サンプル4ラン分の試薬が含まれています。

Step 2. cDNA 3'末端修復及びdA付加 (End repair/dA-tailing)

CAUTION

このステップで使用する End Repair-A Tailing Buffer は粘性が非常に高いです。ステップ 2 とステップ 3 の方法に従って混合してください。

1. 表 14 のサーマルサイクルプログラムを設定します。 蓋の温度は 105°C に設定します。

表 14 Repair/ dA-tailing サーマルサイクルプログラム (70 µL vol)

ステップ	温度	時間
ステップ 1	20°C	15 minutes
ステップ 2	65°C	15 minutes
ステップ 3	4°C	Hold

- 2. 溶解した End Repair A-Tailing Buffer を高速のボルテックスで 15 秒間混合し均一にします。溶液を目視で確認し、固形物がある場合は、完全に溶解するまでボルテックスで混合します。
- 3. 表 15 の試薬を混合して、適切な量の End repair/dA-tailing Master Mix を調製します。

表 15 End repair/dA-tailing Master Mix の調製

試薬	1 反応	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
End Repair-A Tailing Buffer (yellow cap or bottle)	16 μL	144 μL	416 μL
End Repair-A Tailing Enzyme Mix (orange cap)	4 μL	36 µL	104 μL
Total	20 μL	180 μL	520 μL

- **4.** 50 μL の断片化 DNA の入った各サンプルに 20 μL の End repair/dA-tailing Master Mix を加えます。 50 μL に設定したピペットでピペッティングを 15~20 回繰り返すか、もしくは蓋をして高速のボルテックスで 5~10 秒よく混合します。
- **5.** サンプルを軽く遠心し、すぐにサーマルサイクラーにセットして表 14 の通り設定したサーマルサイクラーのプログラムを開始します。

Step 3. アダプターライゲーション

1. 表 16 に従い、SureSelect Max Adaptor Oligo Mix を 5 倍希釈します。

表 16 cDNA ライブラリ用 SureSelect Max Oligo Mix の希釈

試薬	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
SureSelect Max MBC Adaptor Oligo Mix, ILM (white cap) もしくは	10 μL	30 μL
SureSelect Max MBC-Free Adaptor Oligo Mix (black cap) 1X Low TE Buffer	40 μL	120 μL
Total	50 μL	150 μL

2. サーマルサイクラーが表 14 の最後の 4°C のステップに達したら、サンプルを取り出し氷上に置きます。表 17 のサーマルサイクルプログラムを設定し開始します。蓋は加温しない設定にします。

表 17 Ligation サーマルサイクルプログラム (100 µL vol)

ステップ	温度	時間
ステップ 1	20°C	30 minutes
ステップ 2	4°C	Hold

- 3. 末端修復・dA 付加反応済みの各 DNA サンプル (液量約 70 μL) に、Ligation Master Mix (23 ページで調製済み) を 25 μL 加え、室温に置きます。 70 μL に設定したピペットで少なくとも 10 回ピペッティングをするか、もしくは蓋をして高速のボルテックスで 5~10 秒混合します。 その後、軽く遠心を行います。
- **4.** ステップ 1 で希釈した 5 μL の Adaptor Oligo Mix 希釈液を各 DNA サンプルに加えます。 70 μL に設定したピペットで 15~20 回ピペッティングをするか、高速で 5~10 秒ボルテックスし、混合します。

NOTE

上記に記載の通り、Adaptor Oligo Mix と Ligation Master Mix は必ず別々の工程でサンプルに加え、各ステップで加えた後は、必ず混合してください。

5. サンプルを軽くスピンダウンし、サーマルサイクラーにセットした後、表 17 のプログラムを開始します。

NOTE

次のステップで使用する磁性ビーズを冷蔵庫から取り出し、使用前に 30 分以上室温におくようにします。ビーズは 31 ページの最後の精製で使用するまで、室温に置いておきます。

Step 4. 磁性ビーズを用いたライブラリの精製

CAUTION

このステップのビーズ液量は他の SureSelect プロトコルとは異なります。他の SureSelect Kit のプロトコルは使用せずに、以下に記載の指示に従って下さい。

このステップでは室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いてアダプターが付加された cDNA ライブラリの精製を行います。<100 ng の total RNA インプットあるいは品質スコア 6~8 のやや分解が進んだ RNA からライブラリ調製を行った場合は、精製を合計 2 サイクル行います。

プロトコルでの重要なパラメーターを、精製を 1 ラウンドのみ行う場合は表 18 に、2 ラウンド行う場合は表 19 に示します。

サーマルサイクラーが表 17 の最後の 4°C のステップに達したら、精製を開始します。

表 18 精製を1ラウンド行う場合のパラメーター (RNA 品質スコア>8 かつインプット量 100 ng 以上の場合)

パラメーター	値
精製のサイクル数	1 🗓
必要な70%エタノールの液量	400 μL/サンプル+余剰量
各サンプルウェルに加える、室温に戻した精製ビーズの液量	80 μL
最終的な溶出溶媒とその液量	21 μL nuclease-free water
新しいウェルに回収する溶出されたサンプルの回収量	約 20 μL

表 19 精製を2 ラウンド行う場合のパラメーター (RNA 品質スコア 6~8 またはインプット量 100 ng 未満の場合)

パラメーター	
精製のサイクル数	2 🛽
必要な 70%エタノールの液量	800 μL/サンプル+余剰量
各サンプルウェルに加える、室温に戻した精製ビーズの液量	1 ラウンド目:80 μL 2 ラウンド目:60 μL
最終的な溶出溶媒とその液量	1 ラウンド目:50 μL nuclease-free water 2 ラウンド目:21 μL nuclease-free water
新しいウェルに回収する溶出されたサンプルの回収量	1 ラウンド目:50 μL 2 ラウンド目:約 20 μL

- 1. 70%エタノールを調製します。必要な液量は表 18 および表 19 を参照してください。
- **2.** 精製ビーズが使用前に少なくとも 30 分間は室温に戻してあることを確認します。ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. cDNA サンプルをサーマルサイクラーから室温に移し、ビーズ懸濁液 80 µL を各サンプルウェルに加えます。
- **4.** ピペッティングを 15~20 回または蓋をして高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽くスピンダウンします。
- 5. 室温で5分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5~10分)。

- **7.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- **10.** ステップ 8 と 9 をもう一度繰り返し、計 2 回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。 プレートもしくはストリップチューブを再度磁石スタンドにおき、 キャップをはずして 30 秒静置します。 ビーズを吸い込まないように注意しながら、 20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

- 12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。
- **13.** 表 20 に従い、適切な液量の Nuclease-free water を各サンプルウェルに加え、ライブラリ DNA を溶出します。

表 20 インプット RNA 条件と溶出液量

RNA インプット量・品質スコア	- 溶出液量	精製ラウンド数
≥100 ng および 品質スコア 8 以上	21 μL	1 回
<100 ng または 品質スコア 6~8	50 μL	2 💷

- **14.** ピペッティングを 10~15 回程度行うか、または蓋をして高速で 5 秒ボルテックスを行い混合します。すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。 サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。 長時間のインキュベーションによって特に長い DNA フラグメント の回収効率が向 上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 20 μL または 50 μL、表 21 を参照) を新しい PCR プレートもしくはストリップチューブに移し、氷上に置きます。ビーズはこの時点で廃棄します。

表 21 インプット RNA 条件と回収する ト清の液量

RNA インプット量・品質スコア	回収する上清の液量	精製ラウンド数
≥100 ng および品質スコア 8 以上	20 μL	1 回
<100 ng または品質スコア 6~8	50 μL	2 回

^{*}精製を1ラウンドのみ行う場合は、21 µL の溶出液のうち 20 µL を回収し、ビーズの持ち込みを避けるようにします。

18. RNA インプット量が 100 ng 以上および品質スコアが 8 以上のサンプルの場合には直接 "Step 5. インデ

² ラウンド目の精製にすすむ場合には少量の持ち込みは許容されます。50 µL 全量を回収するようにします。

3. cDNA ライブラリ調製

ックス付加と増幅"にすすみます。

品質スコアが6~8 またはインプット量が100 ng 未満の場合は以下のステップ19、20 を行ってください。

低インプット量 (<100 ng) あるいはやや分解が進んだ (品質スコア 6~8) のライブラリのみ

- **19.** ビーズ懸濁液 60 μL をプレートもしくはストリップチューブに入ったサンプル 50 μL に加えます。ピペッティングを 15~20 回または蓋をして高速で 5~10 秒ボルテックスを行います。
- **20.** ステップからはじまる残りの精製ステップを繰り返します。 再精製した cDNA ライブラリは 21 μ L の nuclease-free water で溶出し、 20 μ L の上清を新しいプレートもしくはストリップチューブに移します。

"Step 5. インデックス付加と増幅" にすすみます。

Step 5. インデックス付加と増幅

1. 各サンプルに割り当てる SureSelect Max UDI Primer を決めます。このステップの増幅に使用する UDI primer については 43 ページを参照してください。

同じレーンでシーケンスを行う各サンプルには、異なるインデックスプライマーペアを用いてください。

NOTE

Agilent SureSelect 8-bp dual index は SureSelect Maxfor ILM および SureSelect XT HS2 の各キットフォーマットで共通です。 マルチプレックスシーケンス用 に、同じ番号のインデックスペアでインデックス付加したサンプルを混合しないでください。

CAUTION

UDI Primer Pairs には 1 回分ずつが含まれています。 ライブラリのクロスコンタミネーションを防ぐために、残った溶液を繰り返し実験に使用しないでください。

2. 表 22 のサーマルサイクルプログラムを設定します。蓋の温度は 105℃ に設定し、サンプルをセットする前に 予熱します。

表 22 ライブラリ増幅サーマルサイクルプログラム (50 µL vol)

セグメント	サイクル数	温度	時間
1	1	98°C	45 seconds
2	8~14	98°C	15 seconds
	インプット RNA 量に基づいて決定 (表 23 を参照)	60°C	30 seconds
((本 25 亿多税)	72°C	30 seconds
3	1	72°C	1 minute
4	1	4°C	Hold

表 23 増幅プログラム推奨サイクル数

インプット DNA 量	サイクル数
1000 ng	8 cycles
250 ng	9 cycles
100 ng	10 cycles
50 ng	12 cycles
10 ng	14 cycles

NOTE

ライブラリのクロスコンタミネーションを防ぐために、PCR 反応溶液(ライブラリ DNA 以外の全ての試薬)の調製は、ラボで決められたクリーンエリアもしくは UV 滅菌灯を備えた PCR フード内にて陽圧の環境下で実施してください。

- 3. 溶かした Amplification Master Mix (赤いキャップまたはボトル) を転倒混和し (ボルテックスはしないこと)、軽くスピンダウンします。
- **4.** 25 μL の Amplification Maste Mix を、精製した cDNA ライブラリ断片 (20 μL) の入った、各サンプルウェルに添加します。
- ステップ 1 で割り当てた SureSelect Max UDI primer pair 5 μL を各反応液に加えます。
 蓋をして高速で 5 秒間ボルテックスし、軽くスピンダウンして液を底に集め気泡を取り除きます。

3. cDNA ライブラリ調製

6. サンプルプレートまたはチューブをサーマルサイクラーにセットして表 22 の反応を行います。

CAUTION

サーマルサイクラーの蓋の温度が熱く、やけどをする恐れがあります。蓋の近くで操作する場合は気をつけて作業してください。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期の場合は-20°C で保存できます。

Step 6. 磁性ビーズを用いたインデックス付加ライブラリの精製

サーマルサイクラーが表 22 の最後の 4°C のステップに達したら、室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いてライブラリの精製を行います。

精製プロトコルでの重要なパラメーターを表 24 に示します。

表 24 増幅後の磁性ビーズによる精製のパラメーター

パラメーター	液量
精製ビーズの液量	50 μL
溶出溶媒とその液量	15 μL 1X Low TE Buffer
溶出されたサンプルの回収量	約 14 μL

1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。

NOTE

使用当日に調製したフレッシュな70%エタノールを使用するようにします。

- **2.** 室温で 5 分間インキュベーションします。ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく 混合します。
- 3. 増幅済みのサンプルをサーマルサイクラーから室温に移し、ビーズ懸濁液 50 µL を各サンプルに加えます。
- **4.** ピペッティングを 15~20 回または高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽く スピンダウンします。
- 5. 室温で 5 分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5~10分)。
- **7.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- 10. ステップ 8 と 9 をもう一度繰り返し、計 2 回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。 プレートもしくはストリップチューブを再度磁石スタンドにおき、キャップをはずして 30 秒静置します。 ビーズを吸い込まないように注意しながら、20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

3. cDNA ライブラリ調製

- 12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。
- **13.** 15 µL の 1X Low TE Buffer を各サンプルウェルに加え、ライブラリ DNA を溶出します。
- **14.** ピペッティングを 10~15 回程度行うか、または高速で 5 秒ボルテックスを行い、すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。 サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。 長時間のインキュベーションによって特に長い DNA フラグメント の回収効率が向上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 約 14 μ L) を新しい PCR プレートもしくはストリップチューブに移し、氷上に置きます。 ビーズはこの時点で廃棄します。

Stopping Point

同日にハイブリダイゼーションに進まない場合はサンプルウェルに蓋をしてサンプルを 4°C で一晩、さらに長期の場合は-20°C で保存してください。必要に応じて保存前に QC 分析用にサンプルを取り分けます。

Step 7. ライブラリDNAの品質確認と定量

各ライブラリを表 25 のプラットフォームのいずれかを用いて分析してください。各プラットフォームの使用方法に従って操作してください。

表 25 ライブラリ分析オプション

電気泳動装置	使用キット	サンプル必要量
Agilent 4200/4150 TapeStation system	D1000 ScreenTape	5 倍希釈サンプルを 1 μL
Agilent 5200, 5300 or 5400 Fragment Analyzer system	NGS Fragment Kit (1-6000 bp)	5 倍希釈サンプルを 2 μL

各分析によりライブラリのサイズ分布を示すエレクトロフェログラムと、DNA 濃度が出力されます。DNA フラグメントのサイズ分布については表 26 のガイドラインを参照してください。TapeStation で得られる典型的なエレクトロフェログラムを図 2 に示します。

解析ソフトウェアの Region 機能を用いて、150~1000 bp の領域のライブラリ DNA の濃度と平均サイズを確認します。

表 26 期待されるライブラリフラグメントサイズのガイドライン

インプット DNA	期待される平均フラグメントサイズ (150 -1000 bp region)
Intact RNA	200 to 700 bp

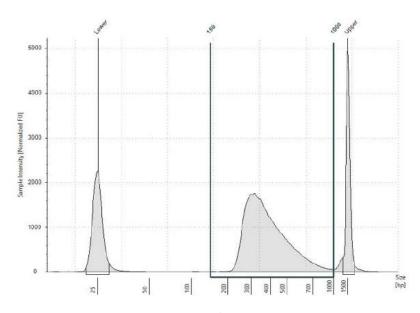


図 2 高品質 RNA サンプルから調製したライブラリの泳動図 (D1000 ScreenTape アッセイ)

Stopping Point

同日にハイブリダイゼーションに進まない場合はサンプルウェルに蓋をしてサンプルを 4°C で一晩、さらに長期の場合は-20°C で保存してください。

Step 8. マルチプレックスシーケンスのためのライブラリのプール

SureSelect Max 全ゲノムライブラリは、そのままプールしてマルチプレックスシーケンスに使用することが出来ます。

NOTE

SureSelect Max UDI ストリップ「およびプレートはイルミナの 2-および 4-チャンネルシステムで適切なカラーバランスとなるようにデザインされています。カラーバランスが維持できる推奨のサンプルプール数は最少で 4 サンプルです。連続した 4 種の SureSelect Max UDI はイルミナのガイダンスを満たす、最適なカラーバランスとなっています。2 または 3 サンプルをプールする際のカラーバランスやプール方式の詳細に関してはイルミナのガイドラインを参照ください。

1 つのシーケンスレーンにマルチプレックスできるインデックスライブラリの数は、研究デザインで必要なシーケンス量と、使用するプラットフォームの仕様により異なります。1 レーンあたりのマルチプレックス数は、使用するプラットフォームのキャパシティや、1 サンプルあたりに必要とするシーケンスデータ量に基づいて計算します。

以下のいずれかの手順に従い、各インデックスライブラリをプール中で等モル量になるように混合します。希釈には、Low TE などシーケンスプロバイダーが指定した希釈液を使用してください。

方法 1: プールするサンプルそれぞれを、終濃度が同じになるように希釈します (典型的な濃度は 4~15 nM、もしくは最も濃度が低いサンプルに合わせます)。その後、全てのサンプルを同じ容量混合して、最終的なプールを調製します。

方法 2: プールするサンプルは異なる濃度のまま、それぞれ適切な量を混合して、最終的にプール中で等モル量になるようにします。その後、プールを Low TE を用いて必要とされる容量にします。以下の式はプールに加える各インデックスサンプルの量を計算するための式です。

Volume of Index =
$$\frac{V(f) \times C(f)}{\# \times C(i)}$$

V(f): プールされたサンプルの最終的な必要量

C(f): プールに含まれる全ての DNA の最終的な濃度

(典型的な濃度は4nM~15nM、もしくは最も濃度が低いサンプルに合わせます。)

#: プールするインデックスの数

C(i): 各インデックスサンプルの初期濃度

表 27 に 4 種のインデックスサンプル (それぞれ異なる初期濃度) の量と、最終的に 20 μ L の 10 μ M DNA 濃度にするのに必要な Low TE Buffer の例を示します。

表 27 10 nM の濃度でトータル 20 µL に調製する計算例

Component	V(f)	C(i)	C(f)	#	Volume to use (µL)
Sample 1	20 μL	20 nM	10 nM	4	2.5
Sample 2	20 µL	10 nM	10 nM	4	5
Sample 3	20 µL	17 nM	10 nM	4	2.9
Sample 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

ライブラリはシーケンスプロバイダーが提示している条件で保存してください。一般的には短期間であれば-20°C で保存します。

4. 補足資料: NGSと解析のガイドライン

SureSelect Max ライブラリの構造	37
シーケンスセットアップとランのガイドライン	37
解析パイプラインのガイドライン	38

この章では、イルミナプラットフォームでの NGS から解析までのガイドラインを提供します。

SureSelect Maxライブラリの構造

イルミナに互換性のあるキットモジュールで調製した、SureSelect Max ライブラリ構造を図 3 に示します。 調製されたライブラリの各フラグメントは、1 つのターゲットインサートが、イルミナ社のシーケンサを用いてマルチプレックスシーケンスするのに必要なシーケンスモチーフにはさまれている状態です。

Libraries made with MBC Adaptor Read 1 PCR primer UDI ILM elements MBC ILM elements UDI PCR primer Read 2 Libraries made with MBC-Free Adaptor Read 1

Insert

図 3 ILM シーケンス用 SureSelect Max ライブラリの構造

ILM elements

各フラグメントにはターゲットインサート (青)が含まれ、以下に示す各エレメントに挟まれています。イルミナペアエンドシーケンシングエレメント(灰色)、Unique Dual Index (黄)、ライブラリ PCR プライマー (水色)、オプションの分子バーコード (MBC) (オレンジ)。 MBC は 3bp のバーコード+1bp の dark base で構成されます。

Read 2

ILM elements

シーケンスセットアップとランのガイドライン

表 28 は、電気泳動によって定量した SureSelect Max mRNA NGS ライブラリに適したシーケンサとケミストリの組み合わせのガイドラインです。 qPCR によって定量したライブラリの場合、および、その他のイルミナ社 NGS プラットフォームについては、キットの構成およびシーディング濃度のガイドラインについてイルミナ社のドキュメントを参照してください。

表 28 イルミナ社キット選択ガイドライン

UDI

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry	Seeding Concentration
MiSeq	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 500 Cycle Kit	v2	9-10 pM
			600 Cycle Kit	v3	12-16 pM
NextSeq 1000/2000	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 600 Cycle Kit	Standard SBS	650-1000 pM
			300 Cycle Kit	XLEAP-SBS	650-1000 pM
NovaSeq 6000	Standard Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	300-600 pM
	Xp Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	200-400 pM
iSeq 100			300 Cycle Kit	v2	50-150 pM
NextSeq 500/550	All Runs	2 x 100 bp or 2 x 150 bp	300 Cycle Kit	v2.5	1.2-1.5 pM
NovaSeq X	All Runs	2 x 150 bp	300 Cycle Kit	v1	90-180 pM

シーディング濃度とクラスタ密度は、ライブラリの cDNA 断片のサイズレンジや、求められるアウトプットやデータの

4. 補足資料: NGS と解析のガイドライン

質に基づき、最適化が必要な場合もあります。表 28 またはイルミナ社提供の内容に記載されている範囲の中間のシーディング濃度から最適化を行ってください。より良好なシーケンス QC のための低濃度のスパイクインによる PhiX コントロールについては、イルミナ社の推奨に従ってください。

各サンプルの Read 1 および Read 2 の FASTQ ファイルを得るために、スタンドアローンモードで装置のソフトウェアを使用するか、Local Run Manger (LRM) や Illumina Experiment Manager (IEM)、または BaseSpaceなどのイルミナ社のラン管理ツールを使用して、シーケンシングのラン設定を行います。ライブラリのリード長や使用した 8 bp のデュアルインデックスリードに適切なサイクル数やリード長を入力します。表 29 は 2 x 150 bp のシーケンシングの設定例です。

表 29 2x 150 bp シーケンスのラン設定

Run Segment	Cycles/Read Length
Read 1	151*
Index 1 (i7)	8
Index 2 (i5)	8
Read 2	151*

^{*}追加の1 cycle についてはイルミナ社の推奨に従ってください。

イルミナの各プラットフォームおよびセットアップソフトウェアオプションに関する説明に従い、以下の追加セットアップガイドラインを組み込んでください。

- ・サンプルレベルインデックスには 8 bp のインデックスリードが必要です。インデックス塩基配列情報については、47ページから 54ページをご参照ください。
- SureSelect Max ライブラリのシーケンスにはカスタムプライマーは使用しません。ランセットアップ中の Read 1、 Read 2、Index 1、Index 2 の項目は空欄または未選択にしてください。
- ・MBC 付加ライブラリの場合、イルミナ社のランセットアップソフトウェアおよびリード処理ソフトウェアの adaptor trimming option を使用しないようにしてください。アダプターは後述の Agilent 社のソフトウェアを用いてトリミングされ、アダプター配列内の分子バーコード (MBC) が適切に処理されるようにします。
- ・イルミナ社の LRM、IEM または BaseSpace を用いてランセットアップを行う場合には、イルミナ社のカスタムライブラリ調製キットと index kit を用いた場合のインストラクションとサポート情報に従ってセットアップを行ってください。 SureSelect Max index 配列は"SureSelect Max Index Sequence Resource"から Excel スプレッドシートをダウンロードできます。イルミナ社の各アプリケーションの仕様に従って.tsv/.csv ファイルフォーマットに変換するか、Sample Sheet にコピーしてください。 もし選択したアプリケーションで SureSelect Max のラン設定についてサポートが必要な場合は、最終ページにある弊社サポート窓口にお問い合わせください。

解析パイプラインのガイドライン

以下のガイドラインは SureSelect Max mRNA ライブラリに適した、典型的な NGS リード処理および解析パイプラインです。 お客様の解析パイプラインは異なる場合があります。

- ・イルミナの bcl2fastq、BCL Convert または DRAGEN ソフトウェアを用いて、デュアルインデックスに基づいてデマルチプレックスを行い、間違ったペアの P5 と P7 を除去します。MBC が付加されたライブラリの場合はイルミナの demultiplexing software の MBC/UMI トリミングオプションをオフにし、下流のツールで処理するようにします。MBC なしのライブラリの場合、イルミナの demultiplexing software の MBC/UMI トリミングオプションをオンにします。
- ・MBC 付きのライブラリを調製し、解析パイプラインで MBC を使用しない場合は、デマルチプレッシングステップ で最初の 5 塩基をトリミングまたはマスキングすることで MBC を除去できます。55 ページを参照してください。

・MBC 付きライブラリの場合、デマルチプレックスされた FASTQ データは、後述のツールのいずれかを使用してアダプター配列の除去 MBC 配列の抽出の前処理を行う必要があります。39 ページのアジレント AGENT ソフトウェアをこの前処理ステップに使用することが出来ます。

NOTE

リードの前処理は fgbio のような適切なオープンソースソフトウェアを用いて行うことが出来ます。両側のアダプターと MBC 配列を適切に処理できるかオープンソースツールの性能を事前に検証する必要があります。 アジレント製以外のアダプタートリミングツールは反対側のアダプターから MBC を除くことが出来ず、アライメントの質に影響します。

SureSelect Max RNAワークフロー用AGeNTソフトウェアガイドライン

アジレントの AGeNT ソフトウェアは、Java ベースのツールキットで SureSelect Max mRNA ライブラリのリード処理ステップに使用します。 AGeNT ツールは、バイオインフォマティクスの専門知識を持つユーザーが、内部解析パイプラインの構築・統合・保守・トラブルシューティングを行えるように設計されています。 追加の情報やこのツールキットのダウンロードは AGeNT のウェブページをご覧ください。 SureSelect XTHS2 用のインストラクションは SureSelect Max にも使用できます。

- バリアント検出の前に、デマルチプレックスした SureSelect Max ライブラリ FASTQ データの前処理をします。 AGENT Trimmer モジュールを使用してシーケンスアダプターを除去し、もしあれば MBC 配列を抽出します。
- ・ トリミングしたリードは、BWA-MEM (DNA ライブラリ) や STAR (RNA ライブラリ) のような適切なツールを使用してアライメントします (必要に応じてアライメントされた BAM ファイルに MBC を追加します)。
- ・ MBC 付きライブラリの場合は AGeNT CReaK (Consensus Read Kit) ツールを使用してコンセンサスリードを生成し、重複をマークまたは除去します。 CReaK には各ライブラリに適したコンセンサスリード生成オプションが含まれます (DNA ライブラリの場合 duplex、hybrid または single-strand mode、RNA ライブラリの場合 single-strand mode)。

得られた BAM ファイルはバリアント探索や遺伝子発現解析を含む下流の解析に使用できます。

RNAストランド特異性ガイドライン

SureSelect Max RNA シーケンシングライブラリ調製法は、second-strand 合成時に dUTP を使用することで RNA ストランド特異性を維持します。P5 端から読まれる Read 1 は poly-A RNA 転写鎖の相補鎖です。P7 端から読まれる Read 2 は poly-A RNA 鎖配列となります。ストランド特異性を決定するための解析を行う際にこの情報を考慮することが重要です。Picard tool を使用し、RNA sequencing metrics を評価する際にストランド特異性を適切に算出するためには、STRAND_SPECIFICITY=SECOND_READ_TANSCRIPTION_STRAND を含めることが必要です。

キットの内容	41
SureSelect Max UDI プライマー情報	43
トラブルシューティングガイド	55
クイックリファレンスプロトコル:	57

この章では、キットに含まれている試薬内容、インデックス配列、トラブルシュート情報、プロトコルのクイックリファレンスを記載しています。

キットの内容

SureSelect Max mRNA ライブラリ調製に使用するキットを表 30 に記載しています。各構成品内に含まれる 試薬を表 31 から表 35 に記載しています。

表 30 SureSelect Max mRNA ライブラリ調製キット

Purchased Kit	Included Component	Component Kit Part Nu	Component Kit Part Number				
	Kits	16 反応キット	96 反応キット	Condition			
SureSelect Max mRNA Library Preparation Kit	SureSelect Poly-A Selection Module	5190-6410	5190-6411	+4°C			
	SureSelect cDNA Module	5500-0148	5500-0149	-20°C			
	SureSelect Max Library Preparation Module	5280-0065	5280-0066	-20°C			
SureSelect Max Adaptors and UDI	SureSelect Max MBC Adaptor Oligo Mix for ILM	5282-0124	5282-0125	−20°C			
Primers Kit for ILM	OR	OR	OR				
	SureSelect Max MBC-Free Adaptor Oligo Mix for ILM	5282-0126	5282-0127				
	SureSelect Max UDI Primers for ILM	5282-0138 (Index 1-16) 5282-0119 (Index 17-32)	5282-0120 (Index 1-96) 5282-0121 (Index 97-192) 5282-0122 (Index 193-288) 5282-0123 (Index 289-384)	-20°C			
SureSelect Max Purifica	tion Beads	5282-0225	5282-0226	+4°C			

各構成品の内容

表 31 SureSelect Poly-A Selection Module の内容

Kit Component	16 反応キット (p/n 5190-6410)	96 反応キット (p/n 5190-6411)
Oligo(dT) Microparticle	tube with brown cap	bottle
Bead Binding Buffer	tube with purple cap	bottle
Bead Washing Buffer	bottle	bottle
Bead Elution Buffer	tube with green cap	bottle

表 32 SureSelect Max cDNA Module の内容

Kit Component	16 反応キット (p/n 5280-0148)	96 反応キット (p/n 5280-0149)
2X Priming Buffer	tube with purple cap	tube with purple cap
First Strand Master Mix*	amber tube with amber cap	amber tube with amber cap
Second Strand Enzyme Mix	tube with blue cap	bottle
Second Strand Oligo Mix	tube with yellow cap	tube with yellow cap

^{*} First Strand Master Mix は actinomycin D を含んでおり、すぐに使用できる状態です。 遮光状態を保つ必要があるため、提供されているチューブから移し替えないでください。

表 33 SureSelect Max Library Preparation Module の内容

Kit Component	16 反応キット (p/n 5280-0065)	96 反応キット (p/n 5280-0066)
End Repair/A-Tailing Enzyme Mix	tube with orange cap	tube with orange cap
End Repair/A-Tailing Buffer	tube with yellow cap	bottle
T4 DNA Ligase	tube with blue cap	tube with blue cap
Ligation Master Mix	tube with purple cap	bottle
Amplification Master Mix	tube with red cap	bottle

表 34 SureSelect Max Adaptor Oligo Mix for ILM オプション

キットコンポーネント	16 反応キット	96 反応キット
SureSelect MBC Adaptor Oligo Mix for ILM	tube with white cap	tube with white cap
SureSelect MBC-Free Adaptor Oligo Mix for ILM	tube with black cap	tube with black cap

表 35 SureSelect Max UDI Primers for ILM オプション

キットコンポーネント	16 反応キット	96 反応キット
SureSelect Max UDI Primers for ILM*	Blue 8-well strip tube (index pairs 1-8), AND White 8-well strip tube (index pairs 9-16) OR Black 8-well strip tube (index pairs 17-24) AND Red 8-well strip tube (index pairs 25-32)	Orange 96-well plate (index pairs 1–96), OR Blue 96-well plate (index pairs 97–192), OR Green 96-well plate (index pairs 193–288), OR Red 96-well plate (index pairs 289–384)

^{*}インデックスストリップとプレートマップに関しては 45 ページから 46 ページを、インデックス配列情報に関しては 47 ページから 54 ページを参照ください。

SureSelect Max UDI プライマー情報

SureSelect Max unique dual indexing (UDI) Primers は混合された状態で提供されます。各プライマーペアはユニークな 8 bp の P5 または P7 インデックスを含み、デュアルインデックスの NGS ライブラリを作製できます。 1 つのプライマーペアは、8 ウェルストリップチューブ (16 反応キット、マップは図 4 参照) または 96 ウェルプレート (96 反応キット、マップは 45~46 ページ参照) の各ウェルで提供されます。各ウェルには、特定のフォワードおよびリバースプライマーの組み合わせの 1 回使用分が入っています。

インデックス部分の塩基配列は 47 ページの表 40 から 54 ページの表 47 に記載されています。インデックス配列は、"SureSelect Max Index Sequence Resource"から Excel スプレッドシートをダウンロードできます。

NOTE

このリンクからはウェブサイトは開かれず、エクセルスプレッドシートが自動的に使用しているウェブブラウザの既定のフォルダにダウンロードされます。ファイルは Microsoft Excel またはその他の互換性のあるソフトウェアで開くことができます。最初のタブにスプレッドシートの内容と使用に関するインストラクションが記載されています。

表 40 から表 47 およびエクセルスプレッドシートでは、P7 インデックスは、対応するイルミナプラットフォームに共通なフォワード方向で記載されています。P5 インデックスは、プラットフォーム、シーケンスランセットアップおよび管理ツール (Local Run Manager や Instrument Run Setup など) に応じて、2 つの方向で示されています。イルミナのサポートドキュメントも併せて参照し、正しい P5 インデックスの方向を確認してください。

Index Primer Pair Strip Tubeとプレートマップ

SureSelect Max UDI プライマー1~16 と 17~32 (16 反応キットの場合) は下図のように 8 ウェルストリップチューブで納品されます。

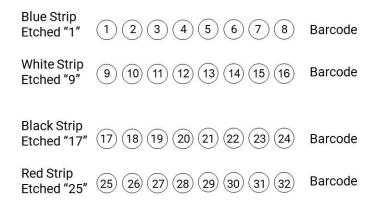


図 416 反応キットで提供される SureSelect Max Index Primer Pairs ストリップチューブマップ

- 青のストリップには index Primer 1-8 が含まれており、タブに 1 と記載されている側のウェルに#1 が入っています。
- 白のストリップには index Primer 9-16 が含まれており、タブに 9 と記載されている側のウェルに#9 が入っています。
- ・ 黒のストリップには index Primer 17-24 が含まれており、タブに 17 と記載されている側のウェルに#17 が入っています。
- ・ 赤のストリップには index Primer 25-32 が含まれており、タブに 25 と記載されている側のウェルに#25 が入っています。

ライブラリ調製中に、ストリップチューブに入っているインデックスプライマーペアを使用する時は、溶液をピペッティングする直前に使用するウェルのホイルシールをピペットチップで突き刺します。操作中に使用しないウェルのホイルシールが破けた場合は、ストリップチューブについている新しいホイルシールで未使用のウェルに蓋をしてください。付属のホイルシールは、使用済みウェルの密閉にも使用でき、その後の使用時にインデックスペアの二次汚染を防ぐことができます。

96 反応キットの SureSelect Max UDI プライマーペアのプレートマップは表 36 から表 39 をご覧ください。

CAUTION

SureSelect Max UDI Primer Pairs には 1 回分ずつが含まれています。ライブラリのクロスコンタミネーションを防ぐため、各ウェルはライブラリ調製反応 1 回のみ使用してください。残った溶液を繰り返し実験に使用しないでください。

表 36 SureSelect Max UDI プライマー 1-96 プレートマップ (オレンジ色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	9	17	25	33	41	49	57	65	73	81	89
В	2	10	18	26	34	42	50	58	66	74	82	90
С	3	11	19	27	35	43	51	59	67	75	83	91
D	4	12	20	28	36	44	52	60	68	76	84	92
E	5	13	21	29	37	45	53	61	69	77	85	93
F	6	14	22	30	38	46	54	62	70	78	86	94
G	7	15	23	31	39	47	55	63	71	79	87	95
н	8	16	24	32	40	48	56	64	72	80	88	96

表 37 SureSelect Max UDI プライマー 97-192 プレートマップ (青色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	97	105	113	121	129	137	145	153	161	169	177	185
В	98	106	114	122	130	138	146	154	162	170	178	186
С	99	107	115	123	131	139	147	155	163	171	179	187
D	100	108	116	124	132	140	148	156	164	172	180	188
E	101	109	117	125	133	141	149	157	165	173	181	189
F	102	110	118	126	134	142	150	158	166	174	182	190
G	103	111	119	127	135	143	151	159	167	175	183	191
Н	104	112	120	128	136	144	152	160	168	176	184	192

表 38 SureSelect Max UDI プライマー 193-288 プレートマップ (緑色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	193	201	209	217	225	233	241	249	257	265	273	281
В	194	202	210	218	226	234	242	250	258	266	274	282
С	195	203	211	219	227	235	243	251	259	267	275	283
D	196	204	212	220	228	236	244	252	260	268	276	284
E	197	205	213	221	229	237	245	253	261	269	277	285
F	198	206	214	222	230	238	246	254	262	270	278	286
G	199	207	215	223	231	239	247	255	263	271	279	287
Н	200	208	216	224	232	240	248	256	264	272	280	288

表 39 SureSelect Max UDI プライマー 289-384 プレートマップ (赤色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	289	297	305	313	321	329	337	345	353	361	369	377
В	290	298	306	314	322	330	338	346	354	362	370	378
С	291	299	307	315	323	331	339	347	355	363	371	379
D	292	300	308	316	324	332	340	348	356	364	372	380
Е	293	301	309	317	325	333	341	349	357	365	373	381
F	294	302	310	318	326	334	342	350	358	366	374	382
G	295	303	311	319	327	335	343	351	359	367	375	383
Н	296	304	312	320	328	336	344	352	360	368	376	384

SureSelect Max Index 配列情報

表 40 SureSelect Max Index Primer Pairs 1-48 (ストリップチューブまたはオレンジ色のプレート)

Primer	Index		P5 Index Forward	P5 Index Reverse Complement	Primer		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
1	A01	CAAGGTGA	ATGGTTAG	CTAACCAT	25	A04	AGATGGAT	TGGCACCA	TGGTGCCA
2	B01	TAGACCAA	CAAGGTGA	TCACCTTG	26	B04	GAATTGTG	AGATGGAT	ATCCATCT
3	C01	AGTCGCGA	TAGACCAA	TTGGTCTA	27	C04	GAGCACTG	GAATTGTG	CACAATTC
4	D01	CGGTAGAG	AGTCGCGA	TCGCGACT	28	D04	GTTGCGGA	GAGCACTG	CAGTGCTC
5	E01	TCAGCATC	AAGGAGCG	CGCTCCTT	29	E04	AATGGAAC	GTTGCGGA	TCCGCAAC
6	F01	AGAAGCAA	TCAGCATC	GATGCTGA	30	F04	TCAGAGGT	AATGGAAC	GTTCCATT
7	G01	GCAGGTTC	AGAAGCAA	TTGCTTCT	31	G04	GCAACAAT	TCAGAGGT	ACCTCTGA
8	H01	AAGTGTCT	GCAGGTTC	GAACCTGC	32	H04	GTCGATCG	GCAACAAT	ATTGTTGC
9	A02	CTACCGAA	AAGTGTCT	AGACACTT	33	A05	ATGGTAGC	GTCGATCG	CGATCGAC
10	B02	TAGAGCTC	CTACCGAA	TTCGGTAG	34	B05	CGCCAATT	ATGGTAGC	GCTACCAT
11	C02	ATGTCAAG	TAGAGCTC	GAGCTCTA	35	C05	GACAATTG	CGCCAATT	AATTGGCG
12	D02	GCATCATA	ATGTCAAG	CTTGACAT	36	D05	ATATTCCG	GACAATTG	CAATTGTC
13	E02	GACTTGAC	GCATCATA	TATGATGC	37	E05	TCTACCTC	ATATTCCG	CGGAATAT
14	F02	CTACAATG	GACTTGAC	GTCAAGTC	38	F05	TCGTCGTG	TCTACCTC	GAGGTAGA
15	G02	TCTCAGCA	CTACAATG	CATTGTAG	39	G05	ATGAGAAC	TCGTCGTG	CACGACGA
16	H02	AGACACAC	TCTCAGCA	TGCTGAGA	40	H05	GTCCTATA	ATGAGAAC	GTTCTCAT
17	A03	CAGGTCTG	AGACACAC	GTGTGTCT	41	A06	AATGACCA	GTCCTATA	TATAGGAC
18	B03	AATACGCG	CAGGTCTG	CAGACCTG	42	B06	CAGACGCT	AATGACCA	TGGTCATT
19	C03	GCACACAT	AATACGCG	CGCGTATT	43	C06	TCGAACTG	CAGACGCT	AGCGTCTG
20	D03	CTTGCATA	GCACACAT	ATGTGTGC	44	D06	CGCTTCCA	TCGAACTG	CAGTTCGA
21	E03	ATCCTCTT	CTTGCATA	TATGCAAG	45	E06	TATTCCTG	CGCTTCCA	TGGAAGCG
22	F03	GCACCTAA	ATCCTCTT	AAGAGGAT	46	F06	CAAGTTAC	TATTCCTG	CAGGAATA
23	G03	TGCTGCTC	GCACCTAA	TTAGGTGC	47	G06	CAGAGCAG	CAAGTTAC	GTAACTTG
24	H03	TGGCACCA	TGCTGCTC	GAGCAGCA	48	H06	CGCGCAAT	CAGAGCAG	CTGCTCTG

表 41 SureSelect Max Index Primer Pairs 49-96 (オレンジ色のプレート)

Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Index Strip	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
49	A07	TGAGGAGT	CGCGCAAT	ATTGCGCG	73	A10	AACGCATT	ATAGTGAC	GTCACTAT
50	B07	ATGACGAA	TGAGGAGT	ACTCCTCA	74	B10	CAGTTGCG	AACGCATT	AATGCGTT
51	C07	TACGGCGA	ATGACGAA	TTCGTCAT	75	C10	TGCCTCGA	CAGTTGCG	CGCAACTG
52	D07	AGCGAGTT	TACGGCGA	TCGCCGTA	76	D10	AAGGCTTA	TGCCTCGA	TCGAGGCA
53	E07	TGTATCAC	AGCGAGTT	AACTCGCT	77	E10	GCAATGAA	AAGGCTTA	TAAGCCTT
54	F07	GATCGCCT	TGTATCAC	GTGATACA	78	F10	AAGAACCT	GCAATGAA	TTCATTGC
55	G07	GACTCAAT	GATCGCCT	AGGCGATC	79	G10	CTGTGCCT	AAGAACCT	AGGTTCTT
56	H07	CAGCTTGC	GACTCAAT	ATTGAGTC	80	H10	TACGTAGC	CTGTGCCT	AGGCACAG
57	A08	AGCTGAAG	CAGCTTGC	GCAAGCTG	81	A11	AAGTGGAC	TACGTAGC	GCTACGTA
58	B08	ATTCCGTG	AGCTGAAG	CTTCAGCT	82	B11	CAACCGTG	AAGTGGAC	GTCCACTT
59	C08	TATGCCGC	ATTCCGTG	CACGGAAT	83	C11	CTGTTGTT	CAACCGTG	CACGGTTG
60	D08	TCAGCTCA	TATGCCGC	GCGGCATA	84	D11	GCACGATG	CTGTTGTT	AACAACAG
61	E08	AACTGCAA	TCAGCTCA	TGAGCTGA	85	E11	GTACGGAC	GCACGATG	CATCGTGC
62	F08	ATTAGGAG	AACTGCAA	TTGCAGTT	86	F11	CTCCAAGC	GTACGGAC	GTCCGTAC
63	G08	CAGCAATA	ATTAGGAG	CTCCTAAT	87	G11	TAGTCTGA	CTCCAAGC	GCTTGGAG
64	H08	GCCAAGCT	CAGCAATA	TATTGCTG	88	H11	TTCGCCGT	TAGTCTGA	TCAGACTA
65	A09	TCCGTTAA	GCCAAGCT	AGCTTGGC	89	A12	GAACTAAG	ATACGAAG	CTTCGTAT
66	B09	GTGCAACG	TCCGTTAA	TTAACGGA	90	B12	AAGCCATC	GAGATTCA	TGAATCTC
67	C09	AGTAACGC	GTGCAACG	CGTTGCAC	91	C12	AACTCTTG	AAGCCATC	GATGGCTT
68	D09	CATAGCCA	AGTAACGC	GCGTTACT	92	D12	GTAGTCAT	AACTCTTG	CAAGAGTT
69	E09	CACTAGTA	CATAGCCA	TGGCTATG	93	E12	CTCGCTAG	GTAGTCAT	ATGACTAC
70	F09	TTAGTGCG	CACTAGTA	TACTAGTG	94	F12	AGTCTTCA	CAGTATCA	TGATACTG
71	G09	TCGATACA	TTAGTGCG	CGCACTAA	95	G12	TCAAGCTA	CTTCGTAC	GTACGAAG
72	H09	ATAGTGAC	TCGATACA	TGTATCGA	96	H12	CTTATCCT	TCAAGCTA	TAGCTTGA

表 42 SureSelect Max Index Primer Pairs 97-144 (青色のプレート)

Primer	Index		P5 Index Forward	P5 Index Reverse Complement	Primer		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
97	A01	TCATCCTT	CTTATCCT	AGGATAAG	121	A04	CAGGCAGA	AGACGCCT	AGGCGTCT
98	B01	AACACTCT	TCATCCTT	AAGGATGA	122	B04	TCCGCGAT	CAGGCAGA	TCTGCCTG
99	C01	CACCTAGA	AACACTCT	AGAGTGTT	123	C04	CTCGTACG	TCCGCGAT	ATCGCGGA
100	D01	AGTTCATG	CACCTAGA	TCTAGGTG	124	D04	CACACATA	CTCGTACG	CGTACGAG
101	E01	GTTGGTGT	AGTTCATG	CATGAACT	125	E04	CGTCAAGA	CACACATA	TATGTGTG
102	F01	GCTACGCA	GTTGGTGT	ACACCAAC	126	F04	TTCGCGCA	CGTCAAGA	TCTTGACG
103	G01	TCAACTGC	GCTACGCA	TGCGTAGC	127	G04	CGACTACG	TTCGCGCA	TGCGCGAA
104	H01	AAGCGAAT	TCAACTGC	GCAGTTGA	128	H04	GAAGGTAT	CGACTACG	CGTAGTCG
105	A02	GTGTTACA	AAGCGAAT	ATTCGCTT	129	A05	TTGGCATG	GAAGGTAT	ATACCTTC
106	B02	CAAGCCAT	GTGTTACA	TGTAACAC	130	B05	CGAATTCA	TTGGCATG	CATGCCAA
107	C02	CTCTCGTG	CAAGCCAT	ATGGCTTG	131	C05	TTAGTTGC	CGAATTCA	TGAATTCG
108	D02	TCGACAAC	CTCTCGTG	CACGAGAG	132	D05	GATGCCAA	TTAGTTGC	GCAACTAA
109	E02	TCGATGTT	TCGACAAC	GTTGTCGA	133	E05	AGTTGCCG	GATGCCAA	TTGGCATC
110	F02	CAAGGAAG	TCGATGTT	AACATCGA	134	F05	GTCCACCT	AGTTGCCG	CGGCAACT
111	G02	ATTGATGC	AGAGAATC	GATTCTCT	135	G05	ATCAAGGT	GTCCACCT	AGGTGGAC
112	H02	TCGCAGAT	TTGATGGC	GCCATCAA	136	H05	GAACCAGA	ATCAAGGT	ACCTTGAT
113	A03	GCAGAGAC	TCGCAGAT	ATCTGCGA	137	A06	CATGTTCT	GAACCAGA	TCTGGTTC
114	B03	CTGCGAGA	GCAGAGAC	GTCTCTGC	138	B06	TCACTGTG	CATGTTCT	AGAACATG
115	C03	CAACCAAC	CTGCGAGA	TCTCGCAG	139	C06	ATTGAGCT	TCACTGTG	CACAGTGA
116	D03	ATCATGCG	CAACCAAC	GTTGGTTG	140	D06	GATAGAGA	ATTGAGCT	AGCTCAAT
117	E03	TCTGAGTC	ATCATGCG	CGCATGAT	141	E06	TCTAGAGC	GATAGAGA	TCTCTATC
118	F03	TCGCCTGT	TCTGAGTC	GACTCAGA	142	F06	GAATCGCA	TCTAGAGC	GCTCTAGA
119	G03	GCGCAATT	TCGCCTGT	ACAGGCGA	143	G06	CTTCACGT	GAATCGCA	TGCGATTC
120	H03	AGACGCCT	GCGCAATT	AATTGCGC	144	H06	CTCCGGTT	CTTCACGT	ACGTGAAG

表 43 SureSelect Max Index Primer Pairs 145--192 (青色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
145	A07	TGTGACTA	CTCCGGTT	AACCGGAG	169	A10	CGCTCAGA	CTAACAAG	CTTGTTAG
146	B07	GCTTCCAG	TGTGACTA	TAGTCACA	170	B10	TAACGACA	CGCTCAGA	TCTGAGCG
147	C07	CATCCTGT	GCTTCCAG	CTGGAAGC	171	C10	CATACTTG	TAACGACA	TGTCGTTA
148	D07	GTAATACG	CATCCTGT	ACAGGATG	172	D10	AGATACGA	CATACTTG	CAAGTATG
149	E07	GCCAACAA	GTAATACG	CGTATTAC	173	E10	AATCCGAC	AGATACGA	TCGTATCT
150	F07	CATGACAC	GCCAACAA	TTGTTGGC	174	F10	TGAAGTAC	AATCCGAC	GTCGGATT
151	G07	TGCAATGC	CATGACAC	GTGTCATG	175	G10	CGAATCAT	TGAAGTAC	GTACTTCA
152	H07	CACATTCG	TGCAATGC	GCATTGCA	176	H10	TGATTGGC	CGAATCAT	ATGATTCG
153	A08	CAATCCGA	CACATTCG	CGAATGTG	177	A11	TCGAAGGA	TGATTGGC	GCCAATCA
154	B08	CATCGACG	CAATCCGA	TCGGATTG	178	B11	CAGTCATT	TCGAAGGA	TCCTTCGA
155	C08	GTGCGCTT	CATCGACG	CGTCGATG	179	C11	CGCGAACA	CAGTCATT	AATGACTG
156	D08	ATAGCGTT	GTGCGCTT	AAGCGCAC	180	D11	TACGGTTG	CGCGAACA	TGTTCGCG
157	E08	GAGTAAGA	ATAGCGTT	AACGCTAT	181	E11	AGAACCGT	TACGGTTG	CAACCGTA
158	F08	CTGACACA	GAGTAAGA	TCTTACTC	182	F11	AGGTGCTT	AGAACCGT	ACGGTTCT
159	G08	ATACGTGT	CTGACACA	TGTGTCAG	183	G11	ATCGCAAC	AGGTGCTT	AAGCACCT
160	H08	GACCGAGT	ATACGTGT	ACACGTAT	184	H11	GCCTCTCA	ATCGCAAC	GTTGCGAT
161	A09	GCAGTTAG	GACCGAGT	ACTCGGTC	185	A12	TCGCGTCA	GCCTCTCA	TGAGAGGC
162	B09	CGTTCGTC	GCAGTTAG	CTAACTGC	186	B12	GAGTGCGT	TCGCGTCA	TGACGCGA
163	C09	CGTTAACG	CGTTCGTC	GACGAACG	187	C12	CGAACACT	GCATAAGT	ACTTATGC
164	D09	TCGAGCAT	CGTTAACG	CGTTAACG	188	D12	TAAGAGTG	AGAAGACG	CGTCTTCT
165	E09	GCCGTAAC	TCGAGCAT	ATGCTCGA	189	E12	TGGATTGA	TAAGAGTG	CACTCTTA
166	F09	GAGCTGTA	GCCGTAAC	GTTACGGC	190	F12	AGGACATA	TGGATTGA	TCAATCCA
167	G09	AGGAAGAT	GAGCTGTA	TACAGCTC	191	G12	GACATCCT	AGGACATA	TATGTCCT
168	H09	CTAACAAG	AGGAAGAT	ATCTTCCT	192	H12	GAAGCCTC	GACATCCT	AGGATGTC

表 44 SureSelect Max Index Primer Pairs 193-240 (緑色のプレート)

Primer Pair #	Index Strip	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
193	A01	GTCTCTTC	GAAGCCTC	GAGGCTTC	217	A04	GCGGTATG	CACGAGCT	AGCTCGTG
194	B01	AGTCACTT	GTCTCTTC	GAAGAGAC	218	B04	TCTATGCG	GCGGTATG	CATACCGC
195	C01	AGCATACA	AGTCACTT	AAGTGACT	219	C04	AGGTGAGA	TCTATGCG	CGCATAGA
196	D01	TCAGACAA	AGCATACA	TGTATGCT	220	D04	CACAACTT	AGGTGAGA	TCTCACCT
197	E01	TTGGAGAA	TCAGACAA	TTGTCTGA	221	E04	TTGTGTAC	CACAACTT	AAGTTGTG
198	F01	TTAACGTG	TTGGAGAA	TTCTCCAA	222	F04	TCACAAGA	TTGTGTAC	GTACACAA
199	G01	CGTCTGTG	TTAACGTG	CACGTTAA	223	G04	GAAGACCT	TCACAAGA	TCTTGTGA
200	H01	AACCTAAC	CGTCTGTG	CACAGACG	224	H04	AGTTCTGT	GAAGACCT	AGGTCTTC
201	A02	AGAGTGCT	AACCTAAC	GTTAGGTT	225	A05	GCAGTGTT	AGTTCTGT	ACAGAACT
202	B02	TTATCTCG	AGAGTGCT	AGCACTCT	226	B05	AGGCATGC	GCAGTGTT	AACACTGC
203	C02	CATCAGTC	TTATCTCG	CGAGATAA	227	C05	AAGGTACT	AGGCATGC	GCATGCCT
204	D02	AAGCACAA	CATCAGTC	GACTGATG	228	D05	CACTAAGT	AAGGTACT	AGTACCTT
205	E02	CAGTGAGC	AAGCACAA	TTGTGCTT	229	E05	GAGTCCTA	CACTAAGT	ACTTAGTG
206	F02	GTCGAAGT	CAGTGAGC	GCTCACTG	230	F05	AGTCCTTC	GAGTCCTA	TAGGACTC
207	G02	TCTCATGC	GTCGAAGT	ACTTCGAC	231	G05	TTAGGAAC	AGTCCTTC	GAAGGACT
208	H02	CAGAAGAA	TCTCATGC	GCATGAGA	232	H05	AAGTCCAT	TTAGGAAC	GTTCCTAA
209	A03	CGGATAGT	CAGAAGAA	TTCTTCTG	233	A06	GAATACGC	AAGTCCAT	ATGGACTT
210	B03	CACGTGAG	CGGATAGT	ACTATCCG	234	B06	TCCAATCA	GAATACGC	GCGTATTC
211	C03	TACGATAC	CACGTGAG	CTCACGTG	235	C06	CGACGGTA	TCCAATCA	TGATTGGA
212	D03	CGCATGCT	TACGATAC	GTATCGTA	236	D06	CATTGCAT	CGACGGTA	TACCGTCG
213	E03	GCTTGCTA	CGCATGCT	AGCATGCG	237	E06	ATCTGCGT	CATTGCAT	ATGCAATG
214	F03	GAACGCAA	GCTTGCTA	TAGCAAGC	238	F06	GTACCTTG	ATCTGCGT	ACGCAGAT
215	G03	ATCTACCA	GAACGCAA	TTGCGTTC	239	G06	GAGCATAC	GTACCTTG	CAAGGTAC
216	H03	CACGAGCT	ATCTACCA	TGGTAGAT	240	H06	TGCTTACG	GAGCATAC	GTATGCTC

表 45 SureSelect Max Index Primer Pairs 241-288 (緑色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
241	A07	AAGAGACA	TGCTTACG	CGTAAGCA	265	A10	CAATGCTG	CATGAATG	CATTCATG
242	B07	TAGCTATG	AAGAGACA	TGTCTCTT	266	B10	CTTGATCA	CAATGCTG	CAGCATTG
243	C07	TCTGCTAC	TAGCTATG	CATAGCTA	267	C10	GCGAATTA	CTTGATCA	TGATCAAG
244	D07	GTCACAGA	TCTGCTAC	GTAGCAGA	268	D10	GTTCGAGC	GCGAATTA	TAATTCGC
245	E07	CGATTGAA	GTCACAGA	TCTGTGAC	269	E10	GCCAGTAG	GTTCGAGC	GCTCGAAC
246	F07	GAGAGATT	CGATTGAA	TTCAATCG	270	F10	AAGGTCGA	GCCAGTAG	CTACTGGC
247	G07	TCATACCG	GAGAGATT	AATCTCTC	271	G10	AGTGAAGT	CACTTATG	CATAAGTG
248	H07	TCCGAACT	TCATACCG	CGGTATGA	272	H10	GTTGCAAG	ATAACGGC	GCCGTTAT
249	A08	AGAGAGAA	TCCGAACT	AGTTCGGA	273	A11	AGCCGGAA	GTTGCAAG	CTTGCAAC
250	B08	GATCGTTA	AGAGAGAA	ттстстст	274	B11	AACAGCCG	AGCCGGAA	TTCCGGCT
251	C08	GCGCTAGA	GATCGTTA	TAACGATC	275	C11	CTAGTGTA	AACAGCCG	CGGCTGTT
252	D08	ATGACTCG	GCGCTAGA	TCTAGCGC	276	D11	GAGGCTCT	CTAGTGTA	TACACTAG
253	E08	CAATAGAC	ATGACTCG	CGAGTCAT	277	E11	CTCCGCAA	GAGGCTCT	AGAGCCTC
254	F08	CGATATGC	CAATAGAC	GTCTATTG	278	F11	CGCTATTG	CTCCGCAA	TTGCGGAG
255	G08	GTCAGAAT	CGATATGC	GCATATCG	279	G11	GTGTTGAG	CGCTATTG	CAATAGCG
256	H08	CATAAGGT	GCACTACT	AGTAGTGC	280	H11	TCACCGAC	GTGTTGAG	CTCAACAC
257	A09	TGTTGGTT	GATTCGGC	GCCGAATC	281	A12	CGGTAATC	TCACCGAC	GTCGGTGA
258	B09	ATACTCGC	TGTTGGTT	AACCAACA	282	B12	GTGACTGC	CGGTAATC	GATTACCG
259	C09	AATGCTAG	ATACTCGC	GCGAGTAT	283	C12	CGACTTGT	GTGACTGC	GCAGTCAC
260	D09	GCCTAGGA	AATGCTAG	CTAGCATT	284	D12	GATAGGAC	CGACTTGT	ACAAGTCG
261	E09	GCAACCGA	GCCTAGGA	TCCTAGGC	285	E12	AAGTACTC	GATAGGAC	GTCCTATC
262	F09	ATACTGCA	GCAACCGA	TCGGTTGC	286	F12	GCTCTCTC	AAGTACTC	GAGTACTT
263	G09	TCTCCTTG	ATACTGCA	TGCAGTAT	287	G12	CTACCAGT	GCTCTCTC	GAGAGAGC
264	H09	CATGAATG	TCTCCTTG	CAAGGAGA	288	H12	GATGAGAT	CTACCAGT	ACTGGTAG

表 46 SureSelect Max Index Primer Pairs 289-336 (赤色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
289	A01	AGATAGTG	GATGAGAT	ATCTCATC	313	A04	AGCTACAT	GATCCATG	CATGGATC
290	B01	AGAGGTTA	AGATAGTG	CACTATCT	314	B04	CGCTGTAA	AGCTACAT	ATGTAGCT
291	C01	CTGACCGT	AGAGGTTA	TAACCTCT	315	C04	CACTACCG	CGCTGTAA	TTACAGCG
292	D01	GCATGGAG	CTGACCGT	ACGGTCAG	316	D04	GCTCACGA	CACTACCG	CGGTAGTG
293	E01	CTGCCTTA	GCATGGAG	CTCCATGC	317	E04	TGGCTTAG	GCTCACGA	TCGTGAGC
294	F01	GCGTCACT	CTGCCTTA	TAAGGCAG	318	F04	TCCAGACG	TGGCTTAG	CTAAGCCA
295	G01	GCGATTAC	GCGTCACT	AGTGACGC	319	G04	AGTGGCAT	TCCAGACG	CGTCTGGA
296	H01	TCACCACG	GCGATTAC	GTAATCGC	320	H04	TGTACCGA	AGTGGCAT	ATGCCACT
297	A02	AGACCTGA	TCACCACG	CGTGGTGA	321	A05	AAGACTAC	TGTACCGA	TCGGTACA
298	B02	GCCGATAT	AGACCTGA	TCAGGTCT	322	B05	TGCCGTTA	AAGACTAC	GTAGTCTT
299	C02	CTTATTGC	GCCGATAT	ATATCGGC	323	C05	TTGGATCT	TGCCGTTA	TAACGGCA
300	D02	CGATACCT	CTTATTGC	GCAATAAG	324	D05	TCCTCCAA	TTGGATCT	AGATCCAA
301	E02	CTCGACAT	CGATACCT	AGGTATCG	325	E05	CGAGTCGA	TCCTCCAA	TTGGAGGA
302	F02	GAGATCGC	CTCGACAT	ATGTCGAG	326	F05	AGGCTCAT	CGAGTCGA	TCGACTCG
303	G02	CGGTCTCT	GAGATCGC	GCGATCTC	327	G05	GACGTGCA	AGGCTCAT	ATGAGCCT
304	H02	TAACTCAC	CGGTCTCT	AGAGACCG	328	H05	GAACATGT	GACGTGCA	TGCACGTC
305	A03	CACAATGA	TAACTCAC	GTGAGTTA	329	A06	AATTGGCA	GAACATGT	ACATGTTC
306	B03	GACTGACG	CACAATGA	TCATTGTG	330	B06	TGGAGACT	AATTGGCA	TGCCAATT
307	C03	CTTAAGAC	GACTGACG	CGTCAGTC	331	C06	AACTCACA	TGGAGACT	AGTCTCCA
308	D03	GAGTGTAG	CTTAAGAC	GTCTTAAG	332	D06	GTAGACTG	AACTCACA	TGTGAGTT
309	E03	TGCACATC	GAGTGTAG	CTACACTC	333	E06	CGTAGTTA	GTAGACTG	CAGTCTAC
310	F03	CGATGTCG	TGCACATC	GATGTGCA	334	F06	CGTCAGAT	CGTAGTTA	TAACTACG
311	G03	AACACCGA	CGATGTCG	CGACATCG	335	G06	AACGGTCA	CGTCAGAT	ATCTGACG
312	H03	GATCCATG	AACACCGA	TCGGTGTT	336	H06	GCCTTCAT	AACGGTCA	TGACCGTT

表 47 SureSelect Max Index Primer Pairs 337-384 (赤色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
337	A07	TGAGACGC	GCCTTCAT	ATGAAGGC	361	A10	CTGAGCTA	GCACAGTA	TACTGTGC
338	B07	CATCGGAA	TGAGACGC	GCGTCTCA	362	B10	CTTGCGAT	CTGAGCTA	TAGCTCAG
339	C07	TAGGACAT	CATCGGAA	TTCCGATG	363	C10	GAAGTAGT	CTTGCGAT	ATCGCAAG
340	D07	AACACAAG	TAGGACAT	ATGTCCTA	364	D10	GTTATCGA	GAAGTAGT	ACTACTTC
341	E07	TTCGACTC	AACACAAG	CTTGTGTT	365	E10	TGTCGTCG	GTTATCGA	TCGATAAC
342	F07	GTCGGTAA	TTCGACTC	GAGTCGAA	366	F10	CGTAACTG	TGTCGTCG	CGACGACA
343	G07	GTTCATTC	GTCGGTAA	TTACCGAC	367	G10	GCATGCCT	CGTAACTG	CAGTTACG
344	H07	AAGCAGTT	GTTCATTC	GAATGAAC	368	H10	TCGTACAC	GCATGCCT	AGGCATGC
345	A08	ATAAGCTG	AAGCAGTT	AACTGCTT	369	A11	CACAGGTG	TCGTACAC	GTGTACGA
346	B08	GCTTAGCG	ATAAGCTG	CAGCTTAT	370	B11	AGCAGTGA	CACAGGTG	CACCTGTG
347	C08	TTCCAACA	GCTTAGCG	CGCTAAGC	371	C11	ATTCCAGA	AGCAGTGA	TCACTGCT
348	D08	TACCGCAT	TTCCAACA	TGTTGGAA	372	D11	TCCTTGAG	ATTCCAGA	TCTGGAAT
349	E08	AGGCAATG	TACCGCAT	ATGCGGTA	373	E11	ATACCTAC	TCCTTGAG	CTCAAGGA
350	F08	GCCTCGTT	AGGCAATG	CATTGCCT	374	F11	AGACCATT	ATACCTAC	GTAGGTAT
351	G08	CACGGATC	GCCTCGTT	AACGAGGC	375	G11	CGTAAGCA	AGACCATT	AATGGTCT
352	H08	GAGACACG	CACGGATC	GATCCGTG	376	H11	TCTGTCAG	CGTAAGCA	TGCTTACG
353	A09	AGAGTAAG	GAGACACG	CGTGTCTC	377	A12	CACAGACT	TCTGTCAG	CTGACAGA
354	B09	AGTACGTT	AGAGTAAG	CTTACTCT	378	B12	GTCGCCTA	CACAGACT	AGTCTGTG
355	C09	AACGCTGC	AGTACGTT	AACGTACT	379	C12	TGCGCTCT	GTCGCCTA	TAGGCGAC
356	D09	GTAGAGCA	AACGCTGC	GCAGCGTT	380	D12	GCTATAAG	TGCGCTCT	AGAGCGCA
357	E09	TCCTGAGA	GTAGAGCA	TGCTCTAC	381	E12	CAACAACT	GCTATAAG	CTTATAGC
358	F09	CTGAATAG	TCCTGAGA	TCTCAGGA	382	F12	AGAGAATC	CTCTCACT	AGTGAGAG
359	G09	CAAGACTA	CTGAATAG	CTATTCAG	383	G12	TAATGGTC	AGACGAGC	GCTCGTCT
360	H09	GCACAGTA	CAAGACTA	TAGTCTTG	384	H12	GTTGTATC	TAATGGTC	GACCATTA

トラブルシューティングガイド

ライブラリ収量が少ない

- ✓ ライブラリ調製のプロトコルには、粘性の高いバッファや酵素液について、最適な性能を得るために推奨とする溶解・温度管理・ピペッティング・混合の特異的な説明が記載されております。反応を行う際は、プロトコルに記載されているすべての内容に従って実施してください。
- ✓ PCR サイクル数は最適化が必要な場合があります。再度、そのサンプルについてはキャプチャ前 PCR 反応のサイクル数を 1~2 サイクル増やし、ライブラリ調製を試してください。
- ✓ AMPure XP ビーズの精製ステップからの収量が最適ではない可能性があります。以下の要因を考慮してく ださい。
 - ・ プロトコルに記載されているビーズと試薬の取り扱い手順をすべて守ってください。特にビーズを使用前に少なくとも30分室温で平衡化させ、各精製手順で新鮮な70%エタノール(使用当日に調製)を使用してください。
 - ・ サンプル溶出直前のステップで AMPure XP ビーズが過度に乾燥していないことを確認してください。ビーズを 37℃ 2 分で乾燥している場合は、室温 5 分で乾燥することを検討してください。
 - ・ 溶出のためのインキュベーション時間を延長することで (最長 10 分)、特に長い DNA 断片の収量が 改善することがあります。

End Repair-A Tailing Buffer 中に固形物が見られた場合

✓ 固形物が溶解するまで、溶液を高速でボルテックスします。最初に解凍したときに固形物が見られたとしても、性能には影響しませんが、すべての溶質が溶解するまでバッファを混合することが重要です。

エレクトロフェログラムのピーク位置が想定と異なる

✓ 磁性ビーズ精製における cDNA のフラグメント長による選別は、サンプルと磁性ビーズとが正しい比率で存在している状況で実施されていることに依存しています。 精製ステップでビーズを分注するときは、ビーズを均等な色の均一な状態になるまでよく混合し、各ステップで推奨されている容量を必ず分注してください。

キャプチャ前ライブラリの OC で低分子量のアダプターダイマーピークが検出される

- ✓ 想定されるピーク以外の低分子量のピークは、ライブラリ中にアダプターダイマーが存在している可能性を示唆しています。アダプターダイマーの割合が低い場合は、次のターゲットエンリッチのステップに進んでも問題ありません。アダプターダイマーが多く含まれている場合は、キャプチャ前のライブラリの収量を低下させる可能性があります。アダプターライゲーションの工程が25ページに記載されている内容で実施されているかどうか確認してください。特に、Adaptor Oligo Mix をサンプルと混合してから、その後 Ligation Master Mix を混合する点に注意してください。Ligation Master Mix と Adaptor Oligo Mix を同時にサンプルに入れてはいけません。
- ✓ の記載に従い、ライゲーション後に追加のラウンドの磁性ビーズによる精製を行ってください。2回の連続した 精製はインプット量が少ないあるいは品質が低めの RNA を用いる際の標準のプロトコルですが、RNA イン プットの量と品質によらず実施いただくことが可能です。

MBC 付きのライブラリを調製したが、シークエンス解析パイプラインで MBC を使用しない

- ▼ 下流の解析に進む前に、Read1 および Read2 の最初の 5 塩基をマスキングまたはトリミングすることで除去します。
 - bcl2fastg を使用してデマルチプレックスする場合、MBC はベースマスク N5Y*, 18, 18, N5Y*を含めるこ

とで、BCL Concert でデマルチプレックスする場合、MBC はサンプルシートのヘッダーに: **OverrideCycles,N5Y*;I8;I8;N5Y***を含めることでトリミングできます。両方の方法で*はマスクした 5 塩基を除いた後の実際のリード長に置き換えてください。例えば、ページにある、151 サイクルでの 2 x 150 NGS の場合は N5Y146,I8,I8,N5Y146 を含めることでマスクできます。N と Y の合計は RunInfo.xml ファイルにあるリード長と一致する必要があります。

• AGeNT の Trimmer モジュールや seqtk のような適切な処理ツールを用いることでデマルチプレックスした FASTQ ファイルから最初の 5 塩基をトリミングします。アジレント製以外のアダプタートリミングツールは反対側のアダプター (37 ページの図 3 参照) から MBC を除くことができず、アライメントの質に影響が出る可能性があるため、事前に検証が必要です。

クイックリファレンスプロトコル: mRNAライブラリ調製

実験操作に慣れた方向けに、プロトコルの手順を以下に要約します。試薬の混合手順や装置の設定など、プロトコル詳細の全てに慣れるまでは、11 ページから 33 ページ記載の完全なプロトコルを使用してください。

ステップ	工程のサマリー
	Poly-A mRNA 濃縮
RNA サンプルの準備と品質確認	Nuclease-free H ₂ O で準備した total RNA サンプルの品質スコアを確認 品質スコアが>8 の場合、10~1000 ng RNA を使用 品質スコアが 6~8 の場合、50~1000 ng RNA を使用 品質スコアが<6 の場合はこのプロトコルでの使用は非推奨 10~1000 ng RNA を 25 µL の nuclease-free H ₂ O で希釈し、氷上に置く。
変性と poly-A mRNA の oligo(dT) ビーズへの結合	25 μL total RNA + 25 μL Oligo(dT) Microparticles 懸濁液 サーマルサイクラーでインキュベートし RNA を熱変性。5 min @ 65°C, 1 min @ 4°C, Hold @ 4°C.
洗浄とビーズ結合 mRNA の溶出	磁石スタンドで Oligo(dT)ビーズを集め、上清を除去 200 µL の Bead Washing Buffer で洗浄し、磁石スタンドでビーズを集め、上清を除去 25 µL の Bead Elution Buffer で再懸濁 サーマルサイクラーでインキュベートし RNA を溶出。2 min @ 80°C, 1 min @ 4°C, Hold @ 4°C.
Poly-A mRNA の oligo(dT) ビー ズへの再結合	25 μL の溶出 RNA を含む Oligo(dT) Microparticles 懸濁液 + 25 μL Bead Binding Buffer 室温で 5 分インキュベートし、ビーズへ再結合
洗浄と濃縮した mRNA の溶出	磁石スタンドで Oligo(dT)ビーズを集め、上清を除去 200 μL の Bead Washing Buffer で洗浄し、磁石スタンドでビーズを集め、上清を除去 10 μL の nuclease-free H ₂ O を添加し、サンブルウェル内に溶液とビーズを残したまま、氷上に置く。
	RNA 断片化と cDNA 合成
Intact RNA の断片化と cDNA 合成のプライミング	10 μL RNA+ 10 μL 2× Priming Buffer サーマルサイクラーでインキュベート。 4 min @ 94°C, 1 min @ 4°C, Hold @ 4°C. 磁石スタンドでビーズを集め、上清 20 μL を新しいウェルに移す。
First Strand cDNA の合成	20 μL primed RNA fragments + 4 μL First Strand Master Mix 調製し、スピンダウン。 サーマルサイクラーでインキュベート。10 min @ 25°C, 40 min @ 37°C,Hold @ 4°C.
Second Strand cDNA の合成	24 μL first-strand cDNA + 25 μL Second Strand Enzyme Mix + 5 μL Second Strand Oligo Mix 氷上で調製し、スピンダウン。 サーマルサイクラーでインキュベート。 60 min @ 16°C, Hold @ 4°C.
cDNA の精製	54 μ L cDNA サンプルと、105 μ L のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。70%エタノールで 2 回洗浄。52 μ L の nuclease-free H_2 O を加え混合し 2~5 分インキュベーション。ビーズを集めた後、50 μ L の上清を回収。
	cDNA ライブラリ調製
Ligation Master Mix σ 調製	8 反応: 207 μL Ligation Buffer + 18 μL T4 DNA Ligase 24 反応: 598 μL Ligation Buffer + 52 μL T4 DNA Ligase 室温で調製し、ボルテックス後スピンダウン。30~45 分室温で静置
End-Repair/dA-Tailing Master Mix の調製	8 反応: 144 μL End-Repair-A-Tailing Buffer + 36 μL End-Repair-A-Tailing Enzyme Mix 24 反応: 416 μL End-Repair-A-Tailing Buffer + 104 μL End-Repair-A-Tailing Enzyme Mix 氷上で調製し、ボルテックス後スピンダウン。 氷上に置く。
cDNA 断片の末端修復と dA 付加	50 μL cDNA 断片 + 20 μL End-Repair/dA-Tailing Master Mix 混合後、スピンダウン。15 min @ 20°C, 15 min @ 65°C, Hold @ 4°C.
Oligo の希釈と アダプターライゲーション	SureSelect Max Adaptor Oligo Mix (MBC または MBC-Free) を 1X Low TE Buffer で 5 倍に希釈。 70 μL の DNA サンプルと 25 μL の Ligation Master Mix を加え、ピペッティングで混合し、スピンダウン。 5 μL の SureSelect Max Adaptor Oligo Mix (MBC or MBC-free) を混合し、スピンダウン。 サーマルサイクラーでインキュベート。30 min @ 20°C, Hold @ 4°C.
cDNA ライブラリの精製	高品質 RNA サンプルの場合 (1 ラウンドの精製) 100 μL cDNA ライブラリと、80 μL のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。21 μL の nuclease-free H ₂ O を加え混合し 2~5 分インキュベーション。ビーズを集めた後、20 μL の上清を回収し、氷上に置く

ライブラリの品質評価と定量

やや分解が進んだ RNA サンプルの場合 (2 ラウンドの精製)

100 μL cDNA ライブラリと、80 μL のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。50 μL の nuclease-free H₂O を加え混合し 2~5 分インキュベーション。ビーズを集めた後、50 μL の上清を新しいウェルに移し、氷上に置く 50 μL cDNA ライブラリと、60 μL のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。21 μL の nuclease-free H₂O を加え混合し 2~5 分インキュベーション。ビーズを集めた後、20 μL の上清を回収し、氷上に置く 20 μL cDNA ライブラリと 25 μL の Amplification Master Mix、5 μL SureSelect Max UDI Primers for ILM を混合し、ボルテックス後、スピンダウン。表 48 のプログラムで増幅。 50 μL cDNA ライブラリと、50 μL のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。15 μL の 1X Low TE Buffer を加え混合し 2~5 分インキュベーション。 ビーズを集めた後、14 μL の上清を回収。

TapeStation または Fragment Analyzer でライブラリの品質確認と定量

表 48 ライブラリ増幅サーマルサイクルプログラム (50 µL、蓋は 105°C に加温)

セグメント	サイクル数	温度	時間
1	1	98°C	45 seconds
2	1000 ng input : 8 cycles	98°C	15 seconds
	250 ng input : 9 cycles	60°C	30 seconds
	100 ng input : 10 cycles 50 ng input : 12 cycles	72°C	30 seconds
	10 ng input : 14 cycles		
3	1	72°C	1 minute
4	1	4°C	Hold

G250747

ゲノミクス関連製品に関するお問い合わせ

Tel: 0120 - 477 - 111

Mail: email_japan@agilent.com

電話・メール受付時間 土、日、祝祭日、5/1を除く

9:00~12:00、13:00~17:00

※プロトコル名とともに、テクニカルな質問と明示してください。

※価格、納期等のご質問は担当営業にご連絡ください。