

SureSelect Max DNA

機械的断片化法を用いたライブラリ調製

イルミナプラットフォーム用 NGS

和文プロトコル [2024年9月版 和文]

Version A0 対応

アジレント SurePrint テクノロジーで製造した SureSelect プラットフォーム For Research Use Only. Not for use in Diagnostic Procedure.

通知

© Agilent Technologies, Inc. 2024

本マニュアルのいかなる部分も、米国および国際著作権法に準拠する Agilent Technologies, Inc.からの事前の合意および書面による同意なしに、いかなる形式または手段 (電子的保存および検索または他の言語への翻訳を含む) でも複製することはできません。

本プロトコルについて

プロトコルは予告なく変更になることがあります。プロトコルを日本語化するにあたり、作業時間が発生するため、日本語プロトコルは英語の最新バージョンに比べて、遅れが生じます。製品ご購入の際は、必ず英語版プロトコルの Version をお確かめの上、日本語版が古い場合は、使用プロトコルについて、弊社までお問い合わせいただきますようお願い申し上げます。

本日本語プロトコルは、英語版の

SureSelect Max Library Preparation using Sheared DNA Version A0, September 2024 (G9663-90000) に対応しています。

本プロトコルに関するご質問やご意見などございましたら、下記のメールアドレスにご連絡ください。

email_japan@agilent.com

確認

Oligonucleotide sequences ©2006, 2008, and 2011 Illumina, Inc. All rights reserved.

イルミナシーケンサーシステムおよび関連するアッセイでのみ使用できます。

保証

本書に含まれる資料は「現状有姿」で提供され、将来の改版に際しては、予告なしに変更される可能性があります。 さらに、適用法で認められる最大限の範囲で、Agilent は、本書および本書に含まれる情報に関して、明示または黙示を問わず、商品性および特定目的への適合性の黙示の保証を含むがこれらに限定されない、全ての保証を否認します。Agilent は、本書または本書に含まれる情報の提供、使用またはパフォーマンスに関連するエラーまたは偶発的もしくは間接的な損害について責任を負わないものとします。Agilent とユーザーが、本書の内容と矛盾する保証条件を別個の契約書として結んでいる場合は、別個の契約書の保証条件が優先されます。

安全上の注意

CAUTION

CAUTION 表示は危険性を示します。正しく実行または遵守されなかった場合に、製品の損傷や重要なデータの損失につながる可能性のある操作手順や方法などを示しています。CAUTION 表示の個所は、その条件を完全に理解し満たすまで、その先に進まないでください。

WARNING

WARNING 表示は危険性を示します。操作手順への注意を喚起するもので、この表示を無視して誤った取扱いをすると、人が死亡または重傷を負う可能性が想定される内容を示しています。

WARNING 表示の個所は、条件を完全に理解し満たすまで、その 先に進まないでください。 本ガイドは、SureSelect Max Library Preparation Module を使用して、イルミナ社のペアエンドマルチプレックスシーケンシングライブラリ調製を行うために最適化されたプロトコルです。SureSelect Max ワークフローの中で本プロトコルがサポートするセグメントには、gDNA サンプルのコバリスによる機械的断片化から、オプションであるデュプレックス分子バーコードまたは Molecular Barcode (MBC) 付きアダプターを使用したライブラリ調製が含まれます。ライブラリは、SureSelect Max UDI プライマーを使用して PCR インデックス化されます。作製したライブラリは、後半のワークフローであるターゲットエンリッチメントに使用することが出来ます。本ガイドでは、SureSelect Max Library Preparation Module およびその変更プロトコルを用いて、全ゲノムシーケンス用の DNA ライブラリを調製することも出来ます。

1. はじめに

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

2. コバリス断片化法を用いたターゲットエンリッチメント用ライブラリ調製

この章では、機械的断片化法を用いて、Dual index が付加された gDNA シーケンスライブラリを調製する方法 について説明しています。 ライブラリは Molecular Barcode (MBC) 付きの、 あるいは MBC なしのアダプターを 用いて作製されます。 ライブラリは SureSelect Max ターゲットエンリッチメントプロトコルに使用することが出来ます。

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

この章では、全ゲノムシーケンス用に、機械的断片化法を用いて、Dual index が付加された gDNA シーケンス ライブラリを調製する際のプロトコルの変更点について説明しています。下流の NGS 解析のガイドラインもこの章で説明しています。

4. リファレンス

この章では、試薬キットの内容、インデックスプライマーペア情報、トラブルシューティング、クイックリファレンスプロトコルなどの参照情報を記載しています。

1.	はじめに	5
	ワークフローの概要	6
	ワークフローで使用する SureSelect Max モジュール	7
	追加で必要な試薬・器具・消耗品	8
	操作と安全に関する注意事項	10
2	コバリス断片化法を用いたターゲットエンリッチメント用ライブラリ調製	11
	Step 1. ゲノム DNA の調製と品質評価	13
	Step 2. コバリスを用いた断片化	15
	Step 3. Ligation Master Mix の調整	16
	Step 4. 末端修復及び dA 付加 (End repair/dA-tailing)	17
	Step 5. アダプターライゲーション	18
	Step 6. 磁性ビーズを用いたライブラリの精製	19
	Step 7. インデックス付加と増幅	21
	Step 8. 磁性ビーズを用いたインデックス付加ライブラリの精製	23
	Step 9. ライブラリ DNA の品質確認と定量 (オプション)	25
3.	補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製	27
	プロトコルの概要	28
	Step 1. ゲノム DNA の調製と品質評価	28
	Step 2. コバリスを用いた断片化	28
	Step 3. Ligation Master Mix の調整	29
	Step 4. 末端修復及び dA 付加 (End repair/dA-tailing)	29
	Step 5. アダプターライゲーション	29
	Step 6. 磁性ビーズを用いたライブラリの精製	29
	Step 7. インデックス付加と増幅	29
	Step 8. 磁性ビーズを用いたインデックス付加ライブラリの精製	31
	Step 9. ライブラリ DNA の品質確認と定量	33
	NGS ガイドライン	35
4	リファレンス	38
	キットの内容	39
	SureSelect Max ライブラリの構造	40
	SureSelect Max UDI プライマー情報	40
	トラブルシューティングガイド	52
	クイックリファレンスプロトコル:ターゲットエンリッチメント用ライブラリ調製	54
	クイックリファレンスプロトコル:全ゲノムシーケンス用ライブラリ調製	55

1. はじめに

ワークフローの概要	6
ワークフローで使用する SureSelect Max モジュール	7
追加で必要な試薬・器具・消耗品	8
操作と安全に関する注意事項	10

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

NOTE

アジレントは、本ワークフローに必要な SureSelect Max 試薬を本プロトコルに従って使用される場合にのみ、必要な技術サポートを提供します。

1. はじめに

ワークフローの概要

SureSelect Max システムは、NGS 用の DNA または RNA ライブラリの調製とターゲットエンリッチメントのための柔軟なワークフローオプションを提供します。モジュール形式で、特定のワークフローに対応したキットが用意されています。このマニュアルでは、図 1 のワークフローサマリーのように機械的断片化法を用いた DNA ライブラリ調製のための最適化されたプロトコルを提供します。さらに柔軟性を持たせるために、異なるライブラリーアダプターを使用することで、duplex molecular barcode (MBC) 付きの、または MBC なしのライブラリを構築することができ、384 の Unique dual indexing (UDI) プライマーを使用してインデックスを付与することができます。詳細なプロトコルについては、11 ページの "2. コバリス断片化法を用いたターゲットエンリッチメント用ライブラリ調製"をご参照ください。下流のターゲットエンリッチメントステップのプロトコルは、別紙のマニュアルに記載されています。

本マニュアルでは、SureSelect Max Library Preparation Module を使用して、"3. 補足資料: コバリス断片 化による全ゲノムシーケンス用ライブラリ調製" に詳述されている変更プロトコルを用いた全ゲノムライブラリ調製 にも対応しています。

図 1 機械的断片化法を用いたターゲットエンリッチメント用 SureSelect Max DNA ライブラリ調製の概要 所要時間とプロトコル中の Stopping point を参照として記載しています。 所要時間は機械的断片化後、200 ng の高品質 input DNA を 16 サンプル処理する場合にかかる時間です。 パラメーターによって所要時間は変わります。

SureSelect Max システムは、以前の SureSelect プラットフォームから以下の点について変更・改良がされています。

- 強化された増幅反応ケミストリとマスターミックス。
- 未希釈のライブラリサンプルのキャプチャのための、プレキャプチャ QC のオプション。
- ・ Fast ハイブリダイゼーションケミストリの向上と合理化されたキャプチャプロセス。
- シンプルなプロトコルによるターンアラウンドタイムの短縮。

SureSelect Max 試薬は SureSelect XT HS2 を含む、他の SureSelect システムとの互換性がありません。

ワークフローで使用するSureSelect Maxモジュール

本プロトコルは DNA の機械的断片化法を用いたライブラリ調製ワークフローのプロトコルについて説明しています。必要な SureSelect 試薬を表 1 に示します。

表 1 機械的断片化法を用いた DNA ライブラリ調製ワークフローに使用する SureSelect Max Kit

モジュール名	16 反応キット	96 反応キット
SureSelect Max DNA Library Prep Kit	G9663A	G9663B
SureSelect Max Adaptors and UDI Primers Kit for ILM (Select One)		
MBC Adaptors and UDI Primers 1-16	G9667A	
MBC Adaptors and UDI Primers 17-32	G9667B	
MBC Adaptors and UDI Primers 1-96		G9668A
MBC Adaptors and UDI Primers 97-192		G9668B
MBC Adaptors and UDI Primers 193-288		G9668C
MBC Adaptors and UDI Primers 289-384		G9668D
MD0 F A L A L A L MD1D A A A A	004404	
MBC-Free Adaptors and UDI Primers 1-16	G9669A	
MBC-Free Adaptors and UDI Primers 17-32	G9669B	
MBC-Free Adaptors and UDI Primers 1-96		G9673A
MBC-Free Adaptors and UDI Primers 97-192		G9673B
MBC-Free Adaptors and UDI Primers 193-288		G9673C
MBC-Free Adaptors and UDI Primers 289-384		G9673D
SureSelect Max Purification Beads*	G9962A (5 mL)	G9962B (30 mL)

^{*} AMPure XP beads を使用することも可能 (表 2 を参照).

1. はじめに

追加で必要な試薬・器具・消耗品

ワークフローで使用する、追加で準備する試薬・器具・消耗品を表 2から表 4に記載しています。

表 2 追加で必要な器具・消耗品

品名	メーカーと品番	備考
gDNA 抽出・定量システム	9ページの表 3から選択	サンプルタイプに応じた適切な調製・定量システムを使 用してください。
核酸分析システム	9 ページの表 4 から選択	下流のターゲットエンリッチメントに使用する前のオプショ ンのライブラリ QC に使用できます。FFPE サンブルの定 量にも使用できます。
Qubit BR dsDNA Assay Kit, 100 assays	Thermo Fisher Scientific p/n Q32850	Thermo Fisher Scientific's Qubit Fluorometer/Assay Tubes (p/n Q33238/Q32856) で使用
Covaris DNA shearing ultrasonicator Covaris microTUBE sample holders	Covaris model E220 Covaris p/n 520045	せん断条件の最適化後、異なるコバリス装置やサンプ ルホルダーを使用することもできます。
サーマルサイクラー (96 ウェル、0.2 mL ブロック)	相当品	-
サーマルサイクラーに適した プラスチックウェア:96-well tube plates または 8-well strip tubes	相当品	-
DNA LoBind チューブ, 1.5ml PCR clean, 250 pieces	Eppendorf p/n 022431021 または 相当品	-
遠心分離機	Eppendorf microcentrifuge, model 5417C または相当品	-
96 ウェルプレートもしくは ストリップチューブ 遠 心機	KUBOTA またはワケンビーテック または相当品	_
ピペット及びマルチチャネルピペット	Rainin Pipet-Lite Multi Pipette または相当品	-
ピペットチップ 滅菌、Nuclease-Free、 エアロゾルブロックフィルター付き	相当品	
ボルテックスミキサ	相当品	
アイスバケツ	相当品	
パウダーフリー手袋	相当品	
ビーズ分離用マグネット	Thermo Fisher Scientific p/n 12331D または相当品	ウェルの一方に磁性ビーズが集まるタイプを必ず選んでください。 リング状に磁性ビーズが集まるタイプは使用できません。
1X Low TE Buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA)	Thermo Fisher Scientific p/n 12090-015 または相当品	gDNA サンプル調製と希釈に使用。
Nuclease-free Water	Thermo Fisher Scientific p/n AM9930	DEPC 処理ではないこと
99.5% Ethanol, molecular biology grade	Wako p/n 054-07225 または相当 品	-
オプション:AMPure XP Kit (5 mL)	Beckman Coulter Genomics p/n A63880	SureSelect Max Purification Beads の代替として使用可 (表 1 を参照)

表 3 推奨の DNA 抽出・定量システム

品名	メーカーと品番	備考
高品質な DNA の場合		
QIAamp DNA Mini Kit	Qiagen	ライブラリ調製の前に高品質 DNA サンプルを精製する
50 Samples	p/n 51304	ための推奨試薬
250 Samples	p/n 51306	
FFPE 由来 DNA の場合		
QIAamp DNA FFPE Tissue Kit, 50 Samples	Qiagen p/n 56404	ライブラリ調製の前に FFPE から DNA を精製するため の推奨試薬
Deparaffinization Solution	Qiagen p/n 19093	
FFPE DNA integrity assessment system:		FFPE 由来 DNA の分解度評価に推奨のシステム。
Agilent NGS FFPE QC Kit	Agilent	Agilent TapeStation 装置とアクセサリーについては
16 reactions	p/n G9700A	表 4を参照
96 reactions	p/n G9700B	
または		
TapeStation Genomic DNA Analysis Consumables:	Agilent	
Genomic DNA ScreenTape	p/n 5067-5365	
Genomic DNA Reagents	p/n 5067-5366	

表 4 推奨の核酸分析プラットフォーム (いずれかを選択)

品名	メーカーと型番	備考			
ターゲットエンリッチメントワークフローライブラリ QC オプション					
Agilent 4200/4150 TapeStation 消耗品	Agilent p/n G2991AA / G2992AA	ターゲットエンリッチメントワークフローでのオ プションのライブラリ QC に推奨のシステ			
D1000 Screen Tape	p/n 5067-5582	ム。 (ライブラリはバイオアナライザシステム と DNA1000 Kit でも測定可能 p/n			
D1000 試薬キット	p/n 5067-5583	5067-1504)			
96-well sample plate	p/n 5042-8502	,			
96-well plate foil seals	p/n 5067-5154				
8-well tube strips	p/n 401428				
8-well tube strip caps	p/n 401425				
Agilent 5200/5300/5400 Fragment Analyzer	Agilent p/n M5310AA / M5311AA / M5312AA				
消耗品					
NGS Fragment Kit (1 - 6000 bp)	p/n DNF-473-0500				
全ゲノムシーケンスワークフロー用ライブラリ Q	С				
Agilent 4200/4150 TapeStation System 消耗品	Agilent p/n G2991AA / G2992AA	いずれかの自動電気泳動システムを選 択。全ゲノムシーケンスシーケンスライブラ			
Agilent TapeStation D5000 Screen Tape	p/n 5067-5592	リワークフローでのライブラリの品質確認に			
Agilent TapeStation D5000 Screen Tape Agilent TapeStation D5000 試薬キット	p/n 5067-5593	使用。増幅サイクルが5サイクル以上の			
96-well sample plate	p/n 5042-8502	場合は定量にも使用可 (33 ページを参照)。			
96-well plate foil seals	p/n 5067-5154	# # /0			
8-well tube strips	p/n 401428				
8-well tube strip caps	p/n 401425				
Agilent 5200/5300/5400 Fragment Analyzer	Agilent p/n M5310AA / M5311AA / M5312AA				
消耗品					
HS NGS Fragment Kit (1-6000bp)	p/n DNF-474-0500				
NGS ライブラリ定量キット (qPCR-based)	Various suppliers	増幅サイクルが 5 サイクル未満の場合の 全ゲノムシーケンスライブラリの定量に使 用 (33 ページを参照)。			

操作と安全に関する注意事項

- ・ ヌクレアーゼの試薬への混入を避けるために、操作を行う場合は、必ずパウダーフリーのラボ用手袋を着用 し、適切な溶液、ピペット、ヌクレアーゼフリー エアロゾル防止フィルター付きピペットチップを使用ください。
- ・ 実験工程全体を通して、サンプル間での PCR 産物のコンタミネーションを防ぐため、以下を実施することをお 勧めします。
 - 1. PCR 前のサンプルを扱う場所と PCR 後のサンプルを扱うエリアを分け、それぞれのエリアで専用の機器、消耗品、試薬を使用してください。 特に、 PCR 後のエリアで使用するものを PCR 前の工程で使用するのは避けて下さい。
 - 2. 実験スペースは常にクリーンな状態にしてください。 PCR 前の工程では作業台を 10% bleach solution やその相当品により、日常的に清潔に保ってください。
 - **3.** PCR 前のエリアで試薬を使用するときは、常にヌクレアーゼフリーのエアロゾル防止フィルターつきのピペットチップのついた専用のピペットを使用してください。
 - **4.** パウダーフリーの手袋を着用してください。コンタミの可能性があるものの表面に触れた後は必ず手袋を変えるなど、ラボの衛生を守ってください。
- ・ SureSelect Max プロトコルで使用する試薬にはとても粘性が高いものがあります。プロトコルで示されている方法で混合するようにしてください。
- ・ 混合中に反応混合物に気泡が入らないように注意してください。インキュベーションや PCR 工程のために、サンプルバイアルをサーマルサイクラーに移動する前に、サンプルウェルの底に気泡がないことを確認してください。 気泡がある場合は、短時間スピンダウンして気泡を除いてください。
- ・ PCR プレートもしくはストリップチューブのキャップを外す必要のある工程では、再びキャップをするときには、常に新しいキャップストリップを使用してください。サーマルサイクラーやその他の工程で、キャップの変形が起こりえるため、一度使用したキャップストリップの再利用は、サンプルの蒸発によるロスやコンタミネーション、インキュベーション中のサンプル温度が不正確になるなどのリスクがあります。
- ・ Biosafety Level 1 (BSL1) のルールに基づき、実験を行います。
- ・ プロトコル中に表記されている Stopping Point でサンプルを 4°C または-20°C で保存できます。サンプルの繰り返し凍結融解は避けてください。

CAUTION

実験室で実験を行う際は、各実験室において決められた規則に従い、保護用の用具 (白衣、安全眼鏡など) を着用してください。

製

Step 1.	ゲノム DNA の調製と品質評価	13
Step 2.	コバリスを用いた断片化	15
Step 3.	Ligation Master Mix Ø	16
Step 4.	末端修復及び dA 付加 (End repair/dA-tailing)	17
Step 5.	アダプターライゲーション	18
Step 6.	磁性ビーズを用いたライブラリの精製	19
Step 7.	インデックス付加と増幅	21
Step 8.	磁性ビーズを用いたインデックス付加ライブラリの精製	23
Step 9.	ライブラリ DNA の品質確認と定量 (オプション)	25

この章は、下流のターゲットエンリッチメントに使用するための DNA ライブラリ調製について説明しています。

全ゲノムシーケンス用の DNA ライブラリの場合は、27ページの "3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製" を参照してください。

本ライブラリ調製プロトコルは、新鮮もしくは新鮮凍結サンプルからの高品質の gDNA だけでなく、FFPE サンプルからの低品質の DNA にもお使いいただけます。プロトコルでは、10 ng~200 ng のインプット DNA が必要であり、FFPE サンプルの場合 DNA インプット量や定量方法の調整が必要です。最適なシーケンス結果を得るために、推奨範囲内で、可能な限り最大量のインプット DNA を使用してください。

ライブラリ調製はコバリスを用いた DNA の機械的断片化から始まります。次いで末端修復および dA 付加を行い、duplex Molecular Barcode (MBCs) 付きの、または MBC なしのアダプターをライゲーションします。精製後、ライブラリ断片を Unique dual indexing (UDI) プライマーペアで増幅します。最後の精製が完了すると DNA ライブラリはターゲットエンリッチメントの工程に使用することが出来るようになります。オプションでのライブラリ QC ステップについては章の最後に説明しています。

各サンプルには個別のデュアルインデックスが付加されます。複数サンプルを処理するために、このプロトコルでは余剰を含んだ試薬混合液を準備し、DNA ライブラリサンプルに分注します。各表には例として、8 または 24 反応分の試薬量が記載されています。

cell-free DNA (cfDNA) または circulating tumor DNA (ctDNA) サンプルを用いる場合: アジレントは cfDNA または ctDNA サンプルを用いた SureSelect Max によるライブラリ調製を検証していません。これらのサンプルを用いてライブラリ調製を最適化・検証したい場合、アジレントはこの章で記載しているプロトコルを以下のように変更して用いることをお勧めします。

- 利用可能な最大量の DNA を含む cfDNA または ctDNA サンプルを、50 μL の 1X Low TE Buffer または nuclease-free water で調製します。
- 血液または同様の生物学的サンプル中に存在する cfDNA または ctDNA は、あらかじめ断片化されています。15~16 ページの機械的断片化の工程は省略してください。
- それ以外の場合は、12~26 ページのプロトコルに従ってください。 ライブラリ増幅サイクル数の最適化およびパラメーターの追加が必要な場合があります。

この章では表 5 の試薬を使用します。使用する試薬を冷凍または冷蔵保管から取り出し、使用前に指示に従って準備します (使用ページ欄を参照してください)。

15ページの DNA 断片化ステップの準備として、製造元の指示に従って Covaris 装置をセットアップします。プロトコルを開始する前に、装置のガス抜きとウォーターバス冷却のために十分な時間 (通常 30~60 分) をとります。

この章のプロトコルは gDNA サンプルからのライブラリ調製用であることに注意してください。 SureSelect Max Library Preparation Module を使用して cDNA サンプルから RNA シーケンスライブラリを調製する場合、 Adaptor Oligo Mix の希釈や RNA ライブラリに適した増幅条件など、プロトコルの重要な変更点については、 SureSelect Max RNA Library Preparation Protocol (G9664-90000) を参照してください。

表 5 プロトコルで使用前に溶かす試薬

試薬ボックス・	試薬名	使用方法	使用ページ	
保管温度				
SureSelect Max Library Preparation	Ligation Buffer (purple cap or bottle)	Thaw on ice (may require >20 minutes) then keep on ice, vortex to mix.	15ページ	
Module, stored at -20°C	T4 DNA Ligase (blue cap)	Place on ice just before use, invert to mix.	15ページ	
-20 C	End Repair-A Tailing Buffer (yellow cap or bottle)	Thaw on ice (may require >20 minutes) then keep on ice, vortex to mix.	17 ページ	
	End Repair-A Tailing Enzyme Mix (orange cap)	Place on ice just before use, invert to mix.	21 ページ	
	Amplification Master Mix (red cap or bottle)	Thaw on ice then keep on ice. Mix thoroughly by inversion at least 5X. Do not vortex.	21 ページ	
SureSelect Max Adaptors and UDI Primers Kit for ILM, stored at – 20°C	For MBC-tagged libraries: SureSelect Max MBC Adaptor Oligo Mix, ILM (white cap) または For MBC-free libraries: SureSelect Max MBC-Free Adaptor Oligo Mix (black cap)	Thaw on ice then keep on ice, vortex to mix.	16ページ	
	SureSelect Max UDI Primers for ILM (select the specific set of indexes to be used in the run): Index Pairs 1-8 (blue strip) Index Pairs 9-16 (white strip) Index Pairs 17-24 (black strip) Index Pairs 25-32 (red strip) Index Pairs 1-96 (orange plate) Index Pairs 97-192 (blue plate) Index Pairs 193-288 (green plate) Index Pairs 289-384 (red plate)	Thaw on ice then keep on ice, vortex to mix	21ページ	
4°C	SureSelect Max Purification Beads または AMPure XP Beads	Equilibrate at room temperature (RT) for at least 30 minutes before use, vortex to mix. Beads may be retained at RT for both purification steps performed on same day.	19 ページ および 23 ページ	

Step 1. ゲノムDNAの調製と品質評価

新鮮なサンプルからの高品質DNAの調製

1. キアゲン社の QIAamp DNA Mini Kit など適した方法を用いて、製造元が提供しているプロトコルに従い、 高品質の gDNA を調製します。

NOTE

gDNA サンプルが、OD 260/280 の値が 1.8~2.0 であり高品質であることを確認してください。

2. Qubit BR dsDNA Assay Kit を使用して、各 DNA サンプルの濃度を測定します。 Qubit 装置および試薬 の使用法につきましては製造元が提供しているプロトコルをご確認ください。

新鮮なサンプルから調製した DNA は、その後更なる品質確認操作は不要です。15ページの "Step 2. コバリスを用いた断片化" にすすみます。

FFPE由来gDNAの調製と品質評価

1. キアゲン社の QIAamp DNA FFPE Tissue Kit と、キアゲン社の Deparaffinization Solution を用いて、 製造元が提供しているプロトコルに従い、FFPE 組織片サンプルから gDNA を調製します。最後のステップ で、Mini Elute カラムにて 30 μL の Buffer ATE で gDNA を溶出します (2 回)。最終的な溶出液の容 量は約 60 μL になります。

NOTE

Proteinase K での 1 時間の分解反応後、組織の溶解が不十分な場合は、さらに Proteinase K を 10 μ L 加え時々混合しながら、56°C で継続してインキュベーションします (最長 3 時間まで)。

同じ日にライブラリ調製を行う場合は、精製後の gDNA は氷上に置きます。ライブラリ調製が後日になる場合は、-20°C で保存します。

- **2.** Qubit BR dsDNA Assay Kit を使用して、各 DNA サンプルの濃度を測定します。 Qubit 装置および試薬の使用法については製造元が提供しているプロトコルをご確認ください。
- 3. 以下に示す方法のいずれかを用いて、各 FFPE 由来 DNA サンプルの品質 (分解度) を確認します。

Option 1: Agilent Genomic DNA ScreenTape AssayのDINを用いる方法

Agilent TapeStation Genomic DNA ScreenTape Assay は、電気泳動パターンから DNA サンプルの分解 度を解析できます。このアッセイでは、各サンプルについて DNA Integrity Number (DIN) の値が出力され、低品質 DNA はその値をもとに DNA インプット量を決定します。

- **a.** 各 FFPE 由来 gDNA サンプル 1 μL を分取し、Agilent Genomic DNA ScreenTape Assay を 用いて分析します。 キットの使用方法は別途弊社ウェブページをご参照ください。
- b. DIN の値をもとに、表 6 の内容を参照して、各サンプルのインプット量を決定してください。

表 6 DNA Integrity Number (DIN) の値に基づく DNA インプット量の決定

Protocol	non-FFPE	FFPE Samples		
Parameter	Samples	DIN > 8*	DIN 3-8	DIN<3
DNA input for Library Preparation	10 ng to 200 ng DNA, quantified by Qubit Assay	10 ng to 200 ng DNA, quantified by Qubit Assay	Use at least 15 ng for more intact samples and at least 40 ng for less intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.	Use at least 50 ng for more intact samples and at least 100 ng for the least intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.

^{*} DIN が 8 より大きい FFPE サンプルの場合、FFPE ではないサンプルと同様に DNA インプット量を決定してください

Option 2: Agilent NGS FFPE DNA QC Kitを用いる方法

Agilent NGS FFPE DNA QC Kit では、qPCR ベースのアッセイにより DNA の分解度を調べます。結果として、 $\Delta\Delta Cq$ DNA 分解度スコアと、サンプル中の増幅可能な DNA の濃度が得られます。その結果を用いて各サンプルの DNA インプット量を決めることができます。

- **a.** 各 FFPE 由来 gDNA サンプル 1 μL を、Agilent NGS FFPE DNA QC Kit 測定用に分注します。 キットの使用方法は別途キットマニュアルをご参照ください。
- **b.** サンプルの適切なインプット DNA 量を、表 7 にまとめられた $\Delta\Delta$ Cq 分解度スコアに基づくガイドライン に沿って決定します。

全ての $\Delta\Delta$ Cq 分解度スコアが 1 未満のサンプル (より分解していない FFPE 由来 DNA サンプル) は、プロトコルに必要なインプット DNA 量は Qubit で計測した qDNA 濃度を参照します。

全ての $\Delta\Delta$ Cq 分解度スコアが 1 以上のサンプル (より分解している FFPE 由来 DNA サンプル) は、プロトコルに必要なインプット DNA 量は、Agilent NGS FFPE DNA QC Kit で得られる qPCR ベースの増幅可能な gDNA 濃度を使用します。

表 7 ΔΔCq DNA 分解度スコアに基づく DNA インプット量のガイドライン

Cq Score	DNA インプットガイドライン
Cq≦1*	10 ng to 200 ng DNA, based on Qubit Assay quantification
Cq>1	10 ng to 200 ng of amplifiable DNA, based on qPCR quantification

^{*} $\Delta\Delta$ Cq が 1 以下の FFPE サンプルの場合、FFPE ではないサンプルと同様に DNA インプット量を決定してください。 10~200 ng に必要な容量を計算するには qPCR による DNA 濃度ではなく、Qubit で測定した濃度を使用します。

Step 2. コバリスを用いた断片化

このステップでは、gDNA サンプルを、50 μL の断片化液量で、高品質 DNA または FFPE DNA に最適化された条件を用いて断片化し、目的の NGS リード長に適した DNA 断片サイズにします。推奨される断片化時間については、表 8 を参照してください。詳細な断片化条件は以下に記載しています。

表 8 NGS リード長別のコバリス断片化時間

リード長	断片化サイズ	高品質 DNA サンプルの 断片化時間	FFPE DNA サンプルの 断片化時間*
2 ×100 reads	150 to 200 bp	2 ×120 seconds	240 seconds
2 ×150 reads	180 to 250 bp	2 ×60 seconds	240 seconds

^{*} FFPE 由来 DNA は、最初の DNA の断片サイズが切断処理後の断片サイズに影響し、表に示したターゲットサイズより短くなることがあります。 すべての FFPE サンプルは、ライブラリ構築に適した断片未端にするために 240 秒断片化する必要があります。 FFPE 由来サンプルから調製したライブラリは、最終ライブラリのサイズ分布に適した NGS リード長で分析する必要があります。

NOTE

本プロトコルは、Covaris model E220 装置と 130 μ L Covaris microTUBE により 条件が最適化されています。他の Covaris 装置やサンプルホルダーを用いる場合は装置取り扱い会社にお問い合わせください。

断片化を行う 10~200 ng の gDNA サンプルを 1X Low TE Buffer (10 mM Tris HCl, pH 7.5~8.0, 0.1mM EDTA) で 50 μL に調製します。 サンプルは氷上に置いてください。

NOTE

断片化する DNA を水で希釈しないでください。水に溶解したサンプルを断片化すると、全体のライブラリ収量と complexity が下がります。

- 2. 各 gDNA サンプルを、下記の手順にて断片化します。
 - a. 先がテーパー上になったピペットチップを用い、コバリスの microTUBE のキャップ上面にあるスリットにチップの先を差し込んで、50 µL の DNA サンプルを Covaris microTUBE に移します。
 - b. microTUBE を 30 秒遠心し、液を底に集め、底部にある泡を取り除きます。microTUBE 内に泡が残らないように注意してください(泡は超音波による gDNA の断片化を阻害します)。

【microTUBE の遠心操作】

卓上遠心機の PCR チューブ用のアタッチメントにセットして軽くスピンダウンします。その際は右図の黄色の位置に microTUBE をセットします (1.5 mL チューブ用のアタッチメントにはセットすることができません)。外側にセットした場合、遠心力が強すぎチューブが飛ぶおそれがあります。

c. サンプルを入れた microTUBE を、コバリスのチューブホルダにセットします。 表 9 の設定により gDNA の断片化を行います。

表 9 コバリス E シリーズ装置による断片化設定条件 (SonoLab software v7 以降)

設定	高品質 DNA サンプル (2×100 reads)	高品質 DNA サンプル (2×150 reads)	FFPE DNA サンプル (2×100 / 2×150 reads)
Duty Factor	10%	10%	10%
Peak Incident Power (PIP)	175	175	175
Cycles per Burst	200	200	200
Treatment Time	2×120 seconds (see two-round instructions below)	2×60 seconds (see two-round instructions below)	240 seconds
Bath Temperature	2° to 8°C	2° to 8°C	2° to 8°C

高品質 DNA のみ、下記の手順にて 2 段階で断片化を実施してください:

- ・ 120 秒または 60 秒断片化します (表 9)。
- microTUBE を 10 秒間遠心します。
- ・ microTUBE を高速のボルテックスミキサにより 5 秒間混合します。
- microTUBE を 10 秒間遠心します。
- ・ さらに 120 秒または 60 秒断片化します。
- microTUBE を 10 秒間遠心します。
- ・ microTUBE を高速のボルテックスミキサにより 5 秒間混合します。
- microTUBE を 10 秒間遠心します。
- d. 断片化されたサンプル全量 (約 50 μL) を、新しい 96 ウェルプレートもしくは 8 ウェルストリップチューブに移します。 サンプルを氷上に移します。
- e. DNA サンプルを移した後、microTUBE を遠心し残存したサンプルを集めます。チューブ内に残ったサンプルをできるだけ回収し、ステップ d のチューブに移します。

NOTE

このステップでは、特に少量の DNA サンプルを取り扱う際、インプット DNA のロスを避けることが重要です。 microTUBE 内を確認し、全てのサンプルを移したことを確認してください。 もし液が残っていたら、ステップ e を繰り返してください。

このステップは stopping point ではありません。ライブラリ調製に用いる前に、断片化サンプルの評価は必要ありません。

Step 3. Ligation Master Mixの調製

末端修復/dA 付加のプロトコルを行っている間に、Ligation Master Mix を調製し室温にします。この間、サンプルは氷上に置いておきます。

CAUTION

このステップで使用する Ligation Buffer は粘性が非常に高いです。ステップ 1 とステップ 2 の方法に従って混合してください。

- 1. 融解した Ligation Buffer を、使用直前に高速のボルテックスで 15 秒間混合します。
- 2. 表 10 の試薬を混合して、適切な量の Ligation Master Mix を調製します。

Ligation Buffer をピペットでゆっくりと吸い上げて 1.5 mL チューブに入れ、全量が吐出されたことを確認します。 T4 DNA Ligase をゆっくりと加えた後、 buffer 溶液で数回ピペッティングを行い、 ピペットチップ内部の酵素をリンスします。 ピペッティングをゆっくり 15~20 回繰り返すか、 蓋をしてボルテックスで 10~20 秒よく混合します。 軽く遠心します。

18ページで使用するまで、30~45分間室温に置きます。

表 10 Ligation Master mix の調製

試薬	1 反応	8 反応分 (余剰量含む) *	24 反応分 (余剰量含む) +
Ligation Buffer (purple cap or bottle)	23 μL	207 μL	598 μL
T4 DNA Ligase (blue cap)	2 μL	18 µL	52 μL
Total	25 µL	225 µL	650 μL

^{*16-}反応の Library Preparation Kits は、余剰量を含め8 サンプル2 ラン分の試薬が含まれています。

Step 4. 末端修復及びdA付加 (End repair/dA-tailing)

CAUTION

このステップで使用する End Repair-A Tailing Buffer は粘性が非常に高いです。ステップ 2 とステップ 3 の方法に従って混合してください。

1. 表 11 のサーマルサイクルプログラムを設定します。蓋の温度は 105°C に設定します。

表 11 Repair/dA-tailing サーマルサイクルプログラム (70 µL vol)

セグメント	温度	時間
1	20°C	15 minutes
2	65°C	15 minutes
3	4°C	Hold

- 2. 溶解した End Repair A-Tailing Buffer を高速のボルテックスで 15 秒間混合し均一にします。溶液を目視で確認し、固形物がある場合は、完全に溶解するまでボルテックスで混合します。
- 3. 表 12 の試薬を混合して、適切な量の End repair/dA-tailing Master Mix を調製します。

表 12 End repair/dA-tailing Master Mix の調製

試薬	1 反応	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
End Repair-A Tailing Buffer (yellow cap or bottle)	16 μL	144 μL	416 μL
End Repair-A Tailing Enzyme Mix (orange cap)	4 μL	36 μL	104 μL
Total	20 μL	180 µL	520 μL

4. 50 μL の断片化 DNA の入った各サンプルに 20 μL の End repair/dA-tailing Master Mix を加えま

^{†96-}反応の Library Preparation Kits は、余剰量を含め 24 サンプル 4 ラン分の試薬が含まれています。

す。50 μL に設定したピペットでピペッティングを 15~20 回繰り返すか、もしくは蓋をして高速のボルテックスで 5~10 秒よく混合します。

5. サンプルを軽く遠心し、すぐにサーマルサイクラーにセットして表 11 の通り設定したサーマルサイクラーのプログラムを開始します。

Step 5. アダプターライゲーション

1. サーマルサイクラーが表 11 の最後の 4°C のステップに達したら、サンプルを取り出し氷上に置きます。表 13 のサーマルサイクルプログラムを設定し開始します。 蓋は加温しない設定にします。

表 13 Ligation サーマルサイクルプログラム (100 µL vol)

セグメント	温度	時間
1	20°C	30 minutes
2	4°C	Hold

- 2. 末端修復・dA 付加反応済みの各 DNA サンプル (液量約 70 μL) に、Ligation Master Mix (16 ページで調製済み) を 25 μL 加え、室温に置きます。 70 μL に設定したピペットで少なくとも 10 回ピペッティングをするか、もしくは蓋をして高速のボルテックスで 5~10 秒混合します。 その後、軽く遠心を行います。
- 3. 5 µL の Adaptor Oligo Mix を各 DNA サンプルに加えます。
 - ・ MBC 付きのライブラリ 5 µL の SureSelect Max Adaptor Oligo Mix (白いキャップ)
 - ・ MBC なしのライブラリ $5 \mu L$ の SureSelect Max MBC-Free Adaptor Oligo Mix (黒いキャップ) 70 μL に設定したピペットで $15\sim20$ 回ピペッティングをするか、高速で $5\sim10$ 秒ボルテックスし、混合しま

NOTE

す。

上記に記載の通り、Adaptor Oligo Mix と Ligation Master Mix は必ず別々の工程でサンプルに加え、各ステップで加えた後は、必ず混合してください。

4. サンプルを軽くスピンダウンし、サーマルサイクラーにセットした後、表 13 のプログラムを再開します。

NOTE

19 ページで使用する磁性ビーズを冷蔵庫から取り出し、使用前に 30 分以上室温におくようにします。 ビーズは 23 ページの最後の精製で使用するまで、室温に置いておきます。

Step 6. 磁性ビーズを用いたライブラリの精製

CAUTION

このステップのビーズ液量は他の SureSelect プロトコルとは異なります。他の SureSelect Kit のプロトコルは使用せずに、以下に記載の指示に従って下さい。

サーマルサイクラーが表 13 の最後の 4°C のステップに達したら、室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いたライブラリの精製を行います。

精製プロトコルでの重要なパラメーターを表 14 に示します。

表 14 アダプターライゲーション後の磁性ビーズによる精製のパラメーター

パラメーター	 液量
各サンプルウェルに加える、室温に戻した精製ビーズの液量	80 μL
最終的な溶出溶媒とその液量	21 µL nuclease-free water
新しいウェルに回収する溶出されたサンプルの回収量	約 20 μL

1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。

NOTE

使用当日に調製したフレッシュな70%エタノールを使用するようにします。

- **2.** ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. サンプルをサーマルサイクラーから室温に移し、ビーズ懸濁液 80 µL を各サンプルウェルに加えます。
- **4.** ピペッティングを 15~20 回または蓋をして高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽くスピンダウンします。
- 5. 室温で5分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5~10分)。
- 7. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- 10. ステップ 8 と 9 をもう一度繰り返し、計 2 回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。 プレートもしくはストリップチューブを再度磁石スタンドにおき、 キャップをはずして 30 秒静置します。 ビーズを吸い込まないように注意しながら、 20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

- 12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。
- **13.** 21 µL の Nuclease-free water を各サンプルウェルに加え、ライブラリ DNA を溶出します。
- **14.** ピペッティングを 10~15 回程度行うか、または蓋をして高速で 5 秒ボルテックスを行い混合します。すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。 サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。 長時間のインキュベーションによって特に長い DNA フラグメント の回収効率が向上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 約 20 µL) を新しい PCR プレートもしくはストリップチューブに移し、氷上に置きます。 ビーズはこの時点で廃棄します。

Step 7. インデックス付加と増幅

1. 各サンプルに割り当てる SureSelect Max UDI Primer を決めます。このステップの増幅に使用する UDI primer については 40 ページを参照してください。

同じレーンでシーケンスを行う各サンプルには、異なるインデックスプライマーペアを用いてください。

NOTE

Agilent SureSelect 8-bp dual index は SureSelect Max および SureSelect XT HS2 の各キットフォーマットで共通です。マルチプレックスシーケンス用に、同じ番号のインデックスペアでインデックス付加したサンプルを混合しないでください。

CAUTION

UDI Primer Pairs には 1 回分ずつが含まれています。ライブラリのクロスコンタミネーションを防ぐために、残った溶液を繰り返し実験に使用しないでください。

2. 表 15 のサーマルサイクルプログラムを設定します。蓋の温度は 105°C に設定し、サンプルをセットする前に 予熱します。

表 15 ライブラリ増幅サーマルサイクルプログラム (50 µL vol)

セグメント	サイクル数	温度	時間
1	1	98°C	45 seconds
2 7~13	98°C	15 seconds	
	インプット DNA の質と量に基づいて決定 (表 16 を参照)	60°C	30 seconds
(衣 10 を参照	(衣 10 色》照)	72°C	30 seconds
3	1	72°C	1 minute
4	1	4°C	Hold

表 16 増幅プログラム推奨サイクル数

インプット DNA	インプット DNA 量	サイクル数
Intact DNA from fresh sample	200 ng	7 cycles
	100 ng	8 cycles
	50 ng	9 cycles
	10 ng	10 cycles
FFPE sample DNA	100 to 200 ng*	11 cycles
	50 ng*	12 cycles
	10 ng*	13 cycles

^{*}gPCR で決定した増幅可能な DNA 量または DIN の値を基に決定した DNA 量

NOTE

ライブラリのクロスコンタミネーションを防ぐために、PCR 反応溶液(ライブラリ DNA 以外の全ての試薬)の調製は、ラボで決められたクリーンエリアもしくは UV 滅菌灯を備えた PCR フード内にて陽圧の環境下で実施してください。

- 3. 溶かした Amplification Master Mix (赤いキャップまたはボトル) を転倒混和し (ボルテックスはしないこと)、軽くスピンダウンします。
- **4.** 25 μL の Amplification Maste Mix を、精製した DNA ライブラリ断片 (20 μL) の入った、各サンプルウェルに添加します。

- **5.** ステップ 1 で割り当てた SureSelect Max UDI primer pair 5 μL を各反応液に加えます。 蓋をして高速で 5 秒間ボルテックスし、軽くスピンダウンして液を底に集め気泡を取り除きます。
- 6. サンプルプレートまたはチューブをサーマルサイクラーにセットして表 15 の反応を行います。

CAUTION

サーマルサイクラーの蓋の温度が熱く、やけどをする恐れがあります。蓋の近くで操作する場合は気をつけて作業してください。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期の場合は-20°C で保存できます。

Step 8. 磁性ビーズを用いたインデックス付加ライブラリの精製

サーマルサイクラーが表 15 の最後の 4°C のステップに達したら、室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いてライブラリの精製を行います。

精製プロトコルでの重要なパラメーターを表 17 に示します。

表 17 増幅後の磁性ビーズによる精製のパラメーター

パラメーター	- 液量
精製ビーズの液量	50 μL
溶出溶媒とその液量	15 μL nuclease-free water
溶出されたサンプルの回収量	約 14 μL

1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。

NOTE

使用当日に調製したフレッシュな70%エタノールを使用するようにします。

- 2. ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. 増幅済みのサンプルをサーマルサイクラーから室温に移し、ビーズ懸濁液 50 µL を各サンプルに加えます。
- **4.** ピペッティングを 15~20 回または高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽く スピンダウンします。
- 5. 室温で 5 分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5~10分)。
- **7.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- 10. ステップ8と9をもう一度繰り返し、計2回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。 プレートもしくはストリップチューブを再度磁石スタンドにおき、キャップをはずして 30 秒静置します。 ビーズを吸い込まないように注意しながら、20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。

- **13.** 15 μL の Nuclease-free water を各サンプルウェルに加え、ライブラリ DNA を溶出します。
- **14.** ピペッティングを 10~15 回程度行うか、または高速で 5 秒ボルテックスを行い、すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。 サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。 長時間のインキュベーションによって特に長い DNA フラグメント の回収効率が向上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 約 14 µL) を新しい PCR プレートもしくはストリップチューブに移し、氷上に置きます。ビーズはこの時点で廃棄します。

Stopping Point

同日にハイブリダイゼーションに進まない場合はサンプルウェルに蓋をしてサンプルを 4°C で一晩、さらに長期の場合は-20°C で保存してください。必要に応じて保存前に QC 分析用にサンプルを取り分けます。

Step 9. ライブラリDNAの品質確認と定量 (オプション)

ライブラリの品質確認はオプションですが、プレキャプチャプーリングハイブリダイゼーションワークフローの場合には定量が必要になります。 SureSelect Max ポストキャプチャプーリングターゲットエンリッチメントワークフローの場合 (Max Fast Hyb および Max Overnight Hyb の両方) には、定量をしていない 12 μL のサンプルをそのままハイブリダイゼーションに使用することが出来ます。

プレキャプチャ QC が必要な場合は、各ライブラリを表 18 のプラットフォームのいずれかを用いて分析してください。各プラットフォームの使用方法に従って操作してください。

表 18 ライブラリ分析オプション

電気泳動装置	使用キット	サンプル必要量
Agilent 4200/4150 TapeStation system	D1000 ScreenTape	5 倍希釈サンプルを 1 μL
Agilent 5200, 5300 or 5400 Fragment Analyzer system	NGS Fragment Kit (1-6000 bp)	5 倍希釈サンプルを 2 μL

各分析によりライブラリのサイズ分布を示すエレクトロフェログラムと、DNA 濃度が出力されます。DNA フラグメントのサイズ分布については表 19 のガイドラインを参照してください。TapeStation で得られる典型的なエレクトロフェログラムを図 2 と 図 3 に示します。

解析ソフトウェアの Region 機能を用いて、150~1000 bp の領域のライブラリ DNA の濃度と平均サイズを確認します。

表 19 期待されるライブラリフラグメントサイズ

インプット DNA	断片化の際に選択した NGS リード長	期待される平均フラグメントサイズ (150 -1000 bp region)
Intact DNA	2x 100 reads	250 to 450 bp
	2x 150 reads	380 to 480 bp
FFPE DNA	2 ×100 OR 2 ×150 reads	250 to 350 bp

期待されるライブラリ断片のピークに加え低分子のピークが観察された場合は、ライブラリにアダプターダイマーが含まれます。観察されたアダプターダイマーが少量であればターゲットエンリッチメントに進むことが可能です。その他については 53 ページのトラブルシュートガイドをご覧ください。

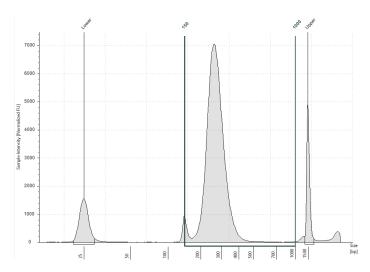


図 2 FFPE gDNA サンプルから調製したライブラリの泳動図 (D1000 ScreenTape アッセイ)

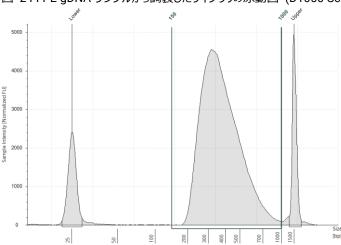


図 3 高品質な gDNA サンプルから調製したライブラリの泳動図 (D1000 ScreenTape アッセイ)

Stopping Point

同日にハイブリダイゼーションに進まない場合はサンプルウェルに蓋をしてサンプルを 4°C で一晩、さらに長期の場合は-20°C で保存してください。

DNA ライブラリはそのままターゲットエンリッチメントに使用することが出来ます。表 20 の適切な SureSelect Max Target Enrichment モジュールのユーザーガイドを参照ください。

表 20 ターゲットエンリッチメントワークフローオプション

ワークフロー	ユーザーガイド番号
Max Fast Hybridization (with pre-capture or post-capture pooling)	G9689-90000 またはその日本語版
Max Overnight Hybridization (with pre-capture or post-capture pooling)	G9690-90000 またはその日本語版

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライ

ブラリ調製

プロトコルの概要	28
Step 1. ゲノム DNA の調製と品質評価	28
Step 2. コバリスを用いた断片化	28
Step 3. Ligation Master Mix の調整	29
Step 4. 未端修復及び dA 付加 (End repair/dA-tailing)	29
Step 5. アダプターライゲーション	29
Step 6. 磁性ビーズを用いたライブラリの精製	29
Step 7. インデックス付加と増幅	29
Step 8. 磁性ビーズを用いたインデックス付加ライブラリの精製	31
Step 9. ライブラリ DNA の品質確認と定量	31
NGS ガイドライン	35

この補足資料では、全ゲノムシーケンス用に最適化されたコバリス断片化法を用いたライブラリ調製の方法について説明しています。 概要を図 4 に示します。 このガイドラインはイルミナプラットフォームを用いた NGS 用の補足資料を含んでいます。

(2.5 Hours

SureSelect Max Library Preparation with Covaris Shearing Workflow for Whole Genome Sequencing

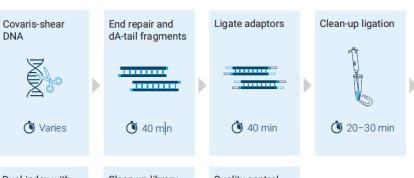


図 4 コバリス断片化法を用いた全ゲノムシーケンス用 SureSelect Max DNA ライブラリ調製の概要 プロトコルのストッピングポイントと所要時間 (200 ng 高品質 DNA / 16 サンプルの場合) を記載しています。プロトコルのパラメーターによって所要時間は変わります。

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

プロトコルの概要

全ゲノムシーケンス用ライブラリ調製プロトコルのほとんどは、12~25ページのターゲットエンリッチメント用のライブラリ調製と同様です。この補足資料では、全ゲノムシーケンスライブラリ調製用のプロトコルの変更点について説明しています。

全ゲノムシーケンスライブラリ調製では 12 ページの表 5 の試薬を使用します。全ゲノムシーケンス用ライブラリでは SureSelect Max MBC-Free adaptor (黒いキャップ) を使用してください。 実験を始める前に 12 ページの内容に沿って試薬と断片化装置 (コバリス) を準備するようにしてください。

cell-free DNA (cfDNA) または circulating tumor DNA (ctDNA) サンプルを用いる場合: アジレントは cfDNA または ctDNA サンプルを用いた SureSelect Max によるライブラリ調製を検証していません。 これらのサンプルを用いてライブラリ調整を最適化・検証したい場合、アジレントはこの章で記載しているプロトコルを以下のように変更して用いることをお勧めします。

- 利用可能な最大量の DNA を含む cfDNA または ctDNA サンプルを 50 μL の 1X Low TE Buffer または nuclease-free water で調製します。
- 血液または同様の生物学的サンプル中に存在する cfDNA または ctDNA は、あらかじめ断片化されています。15~16 ページの機械的断片化の工程は省略してください。
- それ以外の場合は、12~26 ページのプロトコルに従ってください。ライブラリ増幅サイクル数の最適化およびパラメーターの追加が必要な場合があります。

Step 1. ゲノムDNAの調製と品質評価

 $13\sim14$ ページのインストラクションを参照してください。 このセクションの最後では $10\sim200$ ng の DNA ライブラリ が含まれた、 $50~\mu$ L の 1X Low TE が得られます。 下流のアプリケーションでのサイクル数を減らすために、 $10\sim200$ ng の範囲で可能な限り最大量のインプット DNA を使用してください。

Step 2. コバリスを用いた断片化

全ゲノムライブラリ調製のプロトコルではより長い DNA フラグメントを得るために断片化条件を変更します。以下の表 21 に示す適切な断片化時間を用いて、15~16 ページの手順に従ってください。

このセクションの最後では $10\sim200$ ng の DNA ライブラリが含まれた、 $50~\mu$ L の 1X Low TE が得られます。

表 21 NGS リード長別のコバリス断片化時間

リード長	断片化サイズ	高品質 DNA サンプルの 断片化時間	FFPE DNA サンプルの 断片化時間*
2 ×100 reads	400 to 550 bp	2 ×15 seconds	240 seconds
2 ×150 reads	700 to 800 bp	2 ×5 seconds	Not applicable

^{*} FFPE 由来 DNA は、最初の DNA の断片サイズが切断処理後の断片サイズに影響し、表に示したターゲットサイズより短くなることがあります。すべての FFPE サンプルは、ライブラリ構築に適した断片未端にするために 240 秒断片化する必要があります。 FFPE 由来サンプルから調製したライブラリは、最終ライブラリのサイズ分布に適した NGS リード長で分析する必要があります。

Step 3. Ligation Master Mixの調整

16 ページ (ステップ 1~ステップ 2) の手順に従って、後のステップで使用する Ligation Master Mix を調整します。

Step 4. 末端修復及びdA付加 (End repair/dA-tailing)

17 ページ (ステップ 1~ステップ 5) の手順に従って末端修復および dA 付加を行います。このセクションの最後には 70 μL の断片化/dA 付加された DNA サンプルがサーマルサイクラーに入った状態になります。

Step 5. アダプターライゲーション

18 ページ (ステップ 1~ステップ 4) の手順に従ってください。MBC 無しの全ゲノムシーケンスライブラリを作製するために、SureSelect Max MBC-free Adaptor Oligo Mix (黒いキャップ) を使用します。このセクションの最後には 100 µL のアダプター付加ライブラリがサーマルサイクラーに入った状態になります。

Step 6. 磁性ビーズを用いたライブラリの精製

19 ページ (ステップ 1~ステップ 17) の手順に従ってください。このセクションが完了すると約 20 μL nuclease-free water に溶出したアダプター付加ライブラリが得られます。 サンプルを氷上に置きます。

Step 7. インデックス付加と増幅

全ゲノムシーケンスライブラリ調製プロトコルではインデックス付加と増幅のために少ないサイクル数での PCR を行います。以下のステップに従ってください。

- 1. 各サンプルに割り当てる SureSelect Max UDI Primer を決めます。 同じレーンでシーケンスを行う各サンプルには、異なるインデックスプライマーペアを用いてください。
- 2. 表 22 のサーマルサイクルプログラムを設定します。蓋の温度は 105℃ に設定し、サンプルをセットする前に 予熱します。

NOTE

50 ng~200 ng の高品質 DNA から調製したライブラリの場合は、少なくとも 3 サイクルの PCR でインデックスを付加する必要があります (表 23 を参照)。 5 サイクル未満の PCR 増幅の場合は qPCR によりライブラリを定量する必要があります。 5 サイクル以上の PCR 増幅の場合には自動電気泳動を定量に使用することが出来ます。 33 ページを参照してください。

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

表 22 ライブラリ増幅サーマルサイクルプログラム (50 µL vol)

セグメント	サイクル数	温度	時間
1	1	98°C	45 seconds
2	2 3.38		15 seconds
	(表 23を参照) -	60°C	30 seconds
		72°C	30 seconds
3	1	72°C	1 minute
4	1	4°C	Hold

表 23 増幅プログラム推奨サイクル数

インプット DNA	インプット DNA 量	サイクル数
Intact DNA from fresh sample	50 ng∼200 ng	3∼5 cycles*
	10 ng	6 cycles
FFPE sample DNA	50 ng∼200 ng†	7 cycles
	10 ng [†]	8 cycles

^{*5} サイクル未満の PCR 増幅の場合は、シーケンシング用に qPCR によりライブラリを定量する必要があります (33 ページ参照)。

- **3.** Amplification Master Mix (赤いキャップまたはボトル) を転倒混和し (ボルテックスはしないこと)、軽くスピンダウンします。
- **4.** 25 μL の Amplification Maste Mix を、精製した DNA ライブラリ断片の入った、各サンプル (20 μL) に添加します。
- **5.** ステップ 1 で割り当てた SureSelect Max UDI primer pair 5 μL を各反応液に加えます。 蓋をして高速で 5 秒間ボルテックスし、軽くスピンダウンして液を底に集め気泡を取り除きます。
- 6. サンプルプレートまたはチューブをサーマルサイクラーにセットして表 22 の反応を行います。

CAUTION

サーマルサイクラーの蓋の温度が熱く、やけどをする恐れがあります。蓋の近くで操作する場合は気をつけて作業してください。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期の場合は-20°C で保存できます。

[†] qPCR による増幅可能な DNA の定量値または DIN に基づいて決められたインプット DNA 量

Step 8. 磁性ビーズを用いたインデックス付加ライブラリの精製

サーマルサイクラーが表 22 の最後の 4°C のステップに達したら、以下のように室温に戻した SureSelect Max Purification Beads または AMPure XP Beads を用いたライブラリの精製を行います。

全ゲノムシーケンスライブラリ調製プロトコルでは 2x 250 と 2x 150 のリード長によって精製条件が異なります。 精製プロトコルでの重要なパラメーターを表 24 に示します。

表 24 増幅後の磁性ビーズによる精製のパラメーター

ステップ/パラメーター	2x 150 リード長 NGS	2x 250 リード長 NGS
精製前のサンプルの 2 倍希釈	不要	必要 (50 µL の Nuclease-free water を 各ウェルに添加)
室温に戻した精製ビーズの各ウェルの液量	50 μL	60 μL
Sample/bead binding インキュベーション	10 minutes	10 minutes
溶出溶媒とその液量	26 μL of Low TE Buffer	26 μL of Low TE Buffer
溶出されたサンプルの回収量	約 25 μL	約 25 μL

重要:2x250 リード長のライブラリのみ、以下の手順に進む前に各サンプルを2倍量に希釈します。 50 µL の Nuclease-free water を 50 µL の各サンプルに添加します。

- 1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。
- 2. 室温にもどしたビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. 適切な量のビーズ懸濁液を各サンプルウェルに加えます。
 - 2x 150 NGS ライブラリの場合、50 μL のビーズを 50 μL のライブラリサンプルに加えます。
 - 2x 250 NGS ライブラリの場合、60 µL のビーズを 100 µL のライブラリサンプルに加えます。
- **4.** ピペッティングを 15~20 回または蓋をして高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽くスピンダウンします。
- 5. 室温で 10 分間インキュベーションします。
- **6.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 5 分)。
- **7.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- **8.** プレートもしくはストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 uL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- **10.** ステップ 8 と 9 をもう一度繰り返し、計 2 回洗浄します。
- **11.** プレートもしくはストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。プレートもしくはストリップチューブを再度磁石スタンドにおき、キャップをはずして 30 秒静置します。ビーズを吸い込まないように注意しながら、20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

NOTE

以下のビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

- 12. 蓋をせずにサンプルチューブを室温で2~5分乾燥させ、残存エタノールを完全に取り除きます。
- **13.** 26 µL の 1X Low TE Buffer を各サンプルウェルに加え、ライブラリ DNA を溶出します。
- **14.** ピペッティングを 10~15 回程度行うか、または蓋をして高速で 5 秒ボルテックスを行い、すべてのビーズが 再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。長時間のインキュベーションによって特に長い DNA フラグメントの回収効率が向上します。
- **16.** プレートもしくはストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長 5分)。
- **17.** 透明な上澄み液 (液量 約 25 μL) を新しい PCR プレートもしくは ストリップチューブに移し、氷上に置きます。ビーズはこの時点で廃棄します。

調製したライブラリはQCおよびマルチプレックスシーケンスのためのプール後にシーケンスに用いることが出来ます。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期の場合は-20°C で保存できます。

Step 9. ライブラリDNAの品質確認と定量

各ライブラリを表 25 のプラットフォームのいずれかを用いて分析してください。

全てのライブラリは TapeStation あるいは Fragment Analyzer でサイズを確認する必要があります。 最低でも 5 サイクルの PCR を行ったライブラリは自動電気泳動による定量を行うことが出来ます。 最少の 3~4 サイクルで 調製したライブラリは、シーケンシングのために qPCR で最終ライブラリを定量する必要があります。

表 25 ライブラリ分析オプション

目的	電気泳動装置	使用キット	サンプル必要量
すべてのライブラリのフラグメント 長解析および 5 サイクル以上	Agilent 4200/4150 TapeStation system	High Sensitivity D5000 ScreenTape	10 ng DNA インプットの場合: 2 μL の 5 倍希釈サンプル
で増幅したライブラリの定量			200 ng DNA インプットの場合: 2 µL の 50 倍希釈サンプル
	Agilent 5200, 5300 or 5400 Fragment Analyzer system	•	10 ng DNA インプットの場合: 2 μL の 5 倍希釈サンプル
			200 ng DNA インプットの場合: 2 μL の 50 倍希釈サンプル
5 サイクル未満で増幅したライ ブラリの定量	qPCR システム	qPCR ベースの NGS ライブラリ定量キット	メーカーのプロトコル参照

解析ソフトウェアの Region 機能を用いて 100~3500 bp の領域のライブラリ DNA の濃度と平均サイズを確認します。 DNA フラグメントのサイズ分布については表 26 のガイドラインを参照してください。 TapeStation のエレクトロフェログラムの典型例を図 5 と図 6 に示します。

表 26 期待されるライブラリフラグメントサイズ

インプット DNA	断片化の際に使用した NGS リード長	期待される平均フラグメントサイズ (100~3500 bp region)
Intact DNA	2x 150 reads	510 to 610 bp
	2x 250 reads	800 to 1000 bp
FFPE DNA	2×150 reads	250 to 450 bp

増幅が 5 サイクル未満のライブラリの定量には、適切な qPCR ベースの NGS ライブラリ定量キットを使用します。 自動電気泳動による定量は、qPCR による定量の際の希釈の目安として使用します。

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

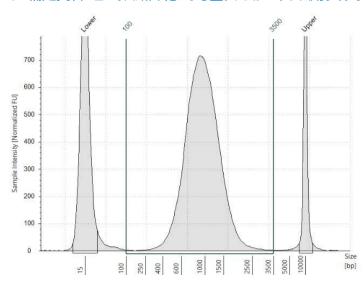


図 5 高品質な gDNA サンプルから 2x 250 リード長条件で調製したライブラリの泳動図 (High Sensitivity D5000 ScreenTape アッセイ)

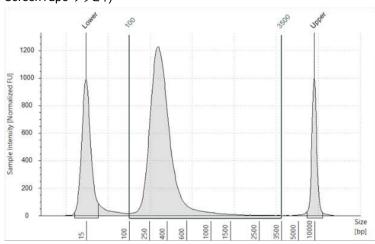


図 6 典型的な FFPE gDNA サンプルから 2x 150 リード長条件で調製したライブラリの泳動図 (High Sensitivity D5000 ScreenTape アッセイ)

Stopping Point

次のステップに進まない場合はサンプルウェルに蓋をしてサンプルを 4°C で一晩、さらに長期の場合は-20°C で保存してください。

NGSガイドライン

マルチプレックスシーケンスのためのライブラリのプール

SureSelect Max 全ゲノムライブラリは、そのままプールしてマルチプレックスシーケンスに使用することが出来ます。

NOTE

SureSelect Max UDI ストリップ「およびプレートはイルミナの 2-および 4-チャンネルシステムで適切なカラーバランスとなるようにデザインされています。カラーバランスが維持できる推奨のサンプルプール数は最少で 4 サンプルです。連続した 4 種の SureSelect Max UDI はイルミナのガイダンスを満たす、最適なカラーバランスとなっています。2 または 3 サンプルをプールする際のカラーバランスやプール方式の詳細に関してはイルミナのガイドラインを参照ください。

1 つのシーケンスレーンにマルチプレックスできるインデックスライブラリの数は、研究デザインで必要なシーケンス量と、使用するプラットフォームの仕様により異なります。1 レーンあたりのマルチプレックス数は、使用するプラットフォームのキャパシティや、1 サンプルあたりに必要とするシーケンスデータ量に基づいて計算します。

以下のいずれかの手順に従い、各インデックスライブラリをプール中で等モル量になるように混合します。希釈には、Low TE などシーケンスプロバイダーが指定した希釈液を使用してください。

方法 1: プールするサンプルそれぞれを、終濃度が同じになるように希釈します (典型的な濃度は 4~15 nM、もしくは最も濃度が低いサンプルに合わせます)。その後、全てのサンプルを同じ容量混合して、最終的なプールを調製します。

方法 2: プールするサンプルは異なる濃度のまま、それぞれ適切な量を混合して、最終的にプール中で等モル量になるようにします。その後、プールを Low TE を用いて必要とされる容量にします。以下の式はプールに加える各インデックスサンプルの量を計算するための式です。

Volume of Index =
$$\frac{V(f) \times C(f)}{\# \times C(i)}$$

V(f): プールされたサンプルの最終的な必要量

C(f): プールに含まれる全ての DNA の最終的な濃度

(典型的な濃度は4nM~15nM、もしくは最も濃度が低いサンプルに合わせます。)

#: プールするインデックスの数

C(i): 各インデックスサンプルの初期濃度

3. 補足資料: コバリス断片化による全ゲノムシーケンス用ライブラリ調製

表 27 に 4 種のインデックスサンプル (それぞれ異なる初期濃度) の量と、最終的に 20 μ L の 10 nM DNA 濃度にするのに必要な Low TE Buffer の例を示します。

表 27 10 nM の濃度でトータル 20 µL に調製する計算例

Component	V(f)	C(i)	C(f)	#	Volume to use (µL)
Sample 1	20 μL	20 nM	10 nM	4	2.5
Sample 2	20 µL	10 nM	10 nM	4	5
Sample 3	20 µL	17 nM	10 nM	4	2.9
Sample 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

ライブラリはシーケンスプロバイダーが提示している条件で保存してください。一般的には短期間であれば-20℃で保存します。

シーケンスセットアップとランのガイドライン

プール後ライブラリはそのままイルミナのペアエンドシーケンサーでシーケンスすることができます。各フラグメントはマルチプレックスシーケンスのためのシーケンスモチーフに挟まれたインサートで構成されます (ライブラリ構造については40ページを参照)。モチーフには8 bpの P5、P7 インデックスが含まれています。SureSelect Max UDI 情報については40ページを参照してください。

表 28 は、電気泳動によって定量した SureSelect Max DNA 全ゲノムシーケンス NGS ライブラリに適したシーケンサとケミストリの組み合わせのガイドラインです。 qPCR によって定量したライブラリの場合、および、その他のイルミナ社 NGS プラットフォームについては、キットの構成およびシーディング濃度のガイドラインについてイルミナ社のドキュメントを参照してください。

表 28 イルミナ社キット選択ガイドライン

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry	Seeding Concentration
MiSeq	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 500 Cycle Kit	v2	9-10 pM
			600 Cycle Kit	v3	12-16 pM
NextSeq 1000/2000	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 600 Cycle Kit	Standard SBS	650-1000 pM
			300 Cycle Kit	XLEAP-SBS	650-1000 pM
NovaSeq 6000	Standard Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	300-600 pM
	Xp Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	200-400 pM
iSeq 100			300 Cycle Kit	v2	50-150 pM
NextSeq 500/550	All Runs	2 x 100 bp or 2 x 150 bp	300 Cycle Kit	v2.5	1.2-1.5 pM
NovaSeq X	All Runs	2 x 150 bp	300 Cycle Kit	v1	90-180 pM

シーディング濃度とクラスタ密度は、ライブラリの DNA 断片のサイズレンジや、求められるアウトプットやデータの質に基づき、最適化が必要な場合もあります。表 28 またはイルミナ社提供の内容に記載されている範囲の中間のシーディング濃度から最適化を行ってください。より良好なシーケンス QC のための低濃度のスパイクインによる PhiX コントロールについては、イルミナ社の推奨に従ってください。

各サンプルの Read 1 および Read 2 の FASTQ ファイルを得るために、スタンドアローンモードで装置のソフトウェアを使用するか、Local Run Manger (LRM) や Illumina Experiment Manager (IEM)、または BaseSpaceなどのイルミナ社のラン管理ツールを使用して、シーケンシングのラン設定を行います。ライブラリのリード長や使用した 8 bp のデュアルインデックスリードに適切なサイクル数やリード長を入力します。表 29 は 2 x 150 bp のシーケンシングの設定例です。

表 29 2x 150 bp シーケンスのラン設定

Run Segment	Cycles/Read Length
Read 1	151*
Index 1 (i7)	8
Index 2 (i5)	8
Read 2	151*

^{*}追加の1 cycle についてはイルミナ社の推奨に従ってください。

イルミナの各プラットフォームおよびセットアップソフトウェアオプションに関する説明に従い、以下の追加セットアップガイドラインを組み込んでください。

- サンプルレベルインデックスには8 bp のインデックスリードが必要です。インデックス塩基配列情報については、44ページから51ページをご参照ください。
- SureSelect Max ライブラリのシーケンスにはカスタムプライマーは使用しません。ランセットアップ中の Read 1、Read 2、Index 1、Index 2 の項目は空欄または未選択にしてください。
- ・イルミナ社の LRM、IEM または BaseSpace を用いてランセットアップを行う場合には、イルミナ社のカスタムライブラリ調製キットと index kit を用いた場合のインストラクションとサポート情報に従ってセットアップを行ってください。もし選択したアプリケーションで SureSelect Max のラン設定についてサポートが必要な場合は、最終ページにある弊社サポート窓口にお問い合わせください。

解析パイプラインのガイドライン

SureSelect Max DNA ライブラリに適した、典型的な NGS リード処理および解析パイプラインのガイドラインです。 お客様の解析パイプラインは異なる場合があります。

- ・イルミナの bcl2fastq、BCL Convert または DRAGEN ソフトウェアを用いてデマルチプレックスし、デュアルイン デックスに基づいたペアエンドの生成や不正確な P5 および P7 インデックスペアの配列を除去します。イルミナの デマルチプレックスソフトウェアの MBC/UMI トリミング機能をオンにすることで MBC-free リードからのアダプター の除去もこのステップで行われます。
- BWA-MEM などのツールを用いてシーケンスアライメントを行います。

得られた BAM ファイルはバリアント検出を含む下流の解析に使用することが出来ます。

NOTE

MBC ありのアダプターを用いて SureSelect Max 全ゲノムライブラリ調製を行った場合は、Agilent の AGeNT ソフトウェアを用いて適切なアダプタートリミングと、MBC によるコンセンサスリードの生成を行う必要があります。 AGeNT ソフトウェアは、Java ベースのツールキットで、ライブラリのリード処理ステップに使用します。 AGeNT ツールは、内部解析パイプラインの構築用にバイオインフォマティクスの専門知識を持つユーザー向けに設計されています。 追加の情報やこのツールキットのダウンロードは AGeNT のサイトをご覧ください。 SureSelect XT HS2 用のインストラクションを SureSelect Max にも使用できます。

キットの内容	39
SureSelect Max ライブラリの構造	39
SureSelect Max UDI プライマー情報	40
トラブルシューティングガイド	52
クイックリファレンスプロトコル:ターゲットエンリッチメント用ライブラリ調製	54
クイックリファレンスプロトコル:全ゲノムシーケンス用ライブラリ調製	55

この章では、キットに含まれている試薬内容、インデックス配列、トラブルシュート情報、プロトコルのクイックリファレンスを記載しています。

キットの内容

酵素断片化法を用いた SureSelect Max DNA ライブラリ調製に使用するキットを表 30 に記載しています。各構成品内に含まれる試薬を表 31 から表 33 に記載しています。

表 30 酵素断片化によるライブラリ調製に使用する SureSelect Max DNA ライブラリ調製キット

Purchased Kit	Included Component	Component Kit Part Nu	ımber	Storage
	Kits	16 反応キット	96 反応キット	Condition
SureSelect Max Library Preparation Kit	SureSelect Max Library Preparation Module	5280-0065	5280-0066	−20°C
SureSelect Max Adaptors and UDI	SureSelect Max MBC Adaptor Oligo Mix for ILM	5282-0124	5282-0125	−20°C
Primers Kit for ILM	OR	OR	OR	
	SureSelect Max MBC-Free Adaptor Oligo Mix for ILM	5282-0126	5282-0127	
	SureSelect Max UDI Primers for ILM	5282-0138 (Index 1-16) 5282-0119 (Index 17-32)	5282-0120 (Index 1-96) 5282-0121 (Index 97-192) 5282-0122 (Index 193-288) 5282-0123 (Index 289-384)	-20°C
SureSelect Max Purifica	tion Beads	5282-0225	5282-0226	+4°C

各構成品の内容

表 31 SureSelect Max Library Preparation Module の内容

Kit Component	16 反応キット (p/n 5280-0065)	96 反応キット (p/n 5280-0066)
End Repair/A-Tailing Enzyme Mix	tube with orange cap	tube with orange cap
End Repair/A-Tailing Buffer	tube with yellow cap	bottle
T4 DNA Ligase	tube with blue cap	tube with blue cap
Ligation Master Mix	tube with purple cap	bottle
Amplification Master Mix	tube with red cap	bottle

表 32 SureSelect Max Adaptor Oligo Mix for ILM オプション

キットコンポーネント	16 反応キット	96 反応キット
SureSelect MBC Adaptor Oligo Mix for ILM	tube with white cap	tube with white cap
SureSelect MBC-Free Adaptor Oligo Mix for ILM	tube with black cap	tube with black cap

表 33 SureSelect Max UDI Primers for ILM オプション

キットコンポーネント	16 反応キット	96 反応キット
SureSelect Max UDI Primers for ILM*	Blue 8-well strip tube (index pairs 1-8), AND White 8-well strip tube (index pairs 9-16) OR Black 8-well strip tube (index pairs 17-24) AND Red 8-well strip tube (index pairs 25-32)	Orange 96-well plate (index pairs 1–96), OR Blue 96-well plate (index pairs 97–192), OR Green 96-well plate (index pairs 193–288), OR Red 96-well plate (index pairs 289–384)

^{*}インデックスストリップとプレートマップに関しては 42 ページから 43 ページを、インデックス配列情報に関しては 44 ページから 51 ページを参照ください。

SureSelect Maxライブラリの構造

イルミナに互換性のあるキットモジュールで調製した、SureSelect Max ライブラリ構造を図 7 に示します。調製されたライブラリの各フラグメントは、1 つのターゲットインサートが、イルミナ社のシーケンサを用いてマルチプレックスシーケンスするのに必要なシーケンスモチーフにはさまれている状態です。

各ライブラリ DNA フラグメントはイルミナシーケンスのための固有の 8 bp の P5 と P7 インデックスを持ちます。詳細に関しては SureSelect Max UDI プライマー情報を参照ください。

Libraries made with MBC Adaptor Read 1 PCR primer UDI ILM elements MBC Insert MBC ILM elements UDI PCR primer Read 2

Libraries made with MBC-Free Adaptor

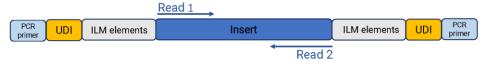


図 7 ILM シーケンス用 SureSelect Max ライブラリの構造

各フラグメントにはターゲットインサート (青)が含まれ、以下に示す各エレメントに挟まれています。イルミナペアエンドシーケンシングエレメント(灰色)、Unique Dual Index (黄)、ライブラリ PCR プライマー (水色)、オプションの分子バーコード (MBC) (オレンジ)。 MBC は 3bp のバーコード+1bp の dark base で構成されます。

SureSelect Max UDI プライマー情報

SureSelect Max unique dual indexing (UDI) Primers は混合された状態で提供されます。各プライマーペアはユニークな 8 bp の P5 または P7 インデックスを含み、デュアルインデックスの NGS ライブラリを作製できます。 1 つのプライマーペアは、8 ウェルストリップチューブ (16 反応キット、マップは図 8 参照) または 96 ウェルプレート (96 反応キット、マップは 42~43 ページ参照) の各ウェルで提供されます。各ウェルには、特定のフォワードおよびリバースプライマーの組み合わせの 1 回使用分が入っています。

インデックス部分の塩基配列は 44 ページの表 38 から 51 ページの表 45 に記載されています。インデックス配列は、"SureSelect Max Index Sequence Resource"から Excel スプレッドシートをダウンロードできます。

NOTE

このリンクからはウェブサイトは開かれず、エクセルスプレッドシートが自動的に使用しているウェブブラウザの既定のフォルダにダウンロードされます。ファイルは Microsoft Excel またはその他の互換性のあるソフトウェアで開くことができます。最初のタブにスプレッドシートの内容と使用に関するインストラクションが記載されています。

表 38 から表 45 およびエクセルスプレッドシートでは、P7 インデックスは、対応するイルミナプラットフォームに共通なフォワード方向で記載されています。P5 インデックスは、プラットフォーム、シーケンスランセットアップおよび管理ツール (Local Run Manager や Instrument Run Setup など) に応じて、2 つの方向で示されています。イルミナのサポートドキュメントも併せて参照し、正しい P5 インデックスの方向を確認してください。

Index Primer Pair Strip Tubeとプレートマップ

SureSelect Max UDI プライマー1~16 と 17~32 (16 反応キットの場合) は下図のように 8 ウェルストリップチューブで納品されます。

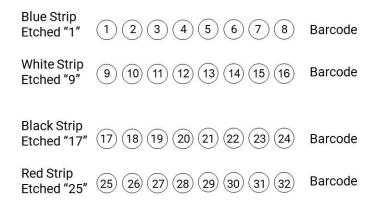


図 8 16 反応キットで提供される SureSelect Max Index Primer Pairs ストリップチューブマップ

- 青のストリップには index Primer 1-8 が含まれており、タブに 1 と記載されている側のウェルに#1 が入っています。
- 白のストリップには index Primer 9-16 が含まれており、タブに 9 と記載されている側のウェルに#9 が入っています。
- ・ 黒のストリップには index Primer 17-24 が含まれており、タブに 17 と記載されている側のウェルに#17 が入っています。
- ・ 赤のストリップには index Primer 25-32 が含まれており、タブに 25 と記載されている側のウェルに#25 が入っています。

ライブラリ調製中に、ストリップチューブに入っているインデックスプライマーペアを使用する時は、溶液をピペッティングする直前に使用するウェルのホイルシールをピペットチップで突き刺します。操作中に使用しないウェルのホイルシールが破けた場合は、ストリップチューブについている新しいホイルシールで未使用のウェルに蓋をしてください。付属のホイルシールは、使用済みウェルの密閉にも使用でき、その後の使用時にインデックスペアの二次汚染を防ぐことができます。

96 反応キットの SureSelect Max UDI プライマーペアのプレートマップは表 34 から表 37 をご覧ください。

CAUTION

SureSelect Max UDI Primer Pairs には 1 回分ずつが含まれています。ライブラリのクロスコンタミネーションを防ぐため、各ウェルはライブラリ調製反応 1 回のみ使用してください。残った溶液を繰り返し実験に使用しないでください。

表 34 SureSelect Max UDI プライマー 1-96 プレートマップ (オレンジ色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	9	17	25	33	41	49	57	65	73	81	89
В	2	10	18	26	34	42	50	58	66	74	82	90
С	3	11	19	27	35	43	51	59	67	75	83	91
D	4	12	20	28	36	44	52	60	68	76	84	92
E	5	13	21	29	37	45	53	61	69	77	85	93
F	6	14	22	30	38	46	54	62	70	78	86	94
G	7	15	23	31	39	47	55	63	71	79	87	95
н	8	16	24	32	40	48	56	64	72	80	88	96

表 35 SureSelect Max UDI プライマー 97-192 プレートマップ (青色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
A	97	105	113	121	129	137	145	153	161	169	177	185
В	98	106	114	122	130	138	146	154	162	170	178	186
С	99	107	115	123	131	139	147	155	163	171	179	187
D	100	108	116	124	132	140	148	156	164	172	180	188
E	101	109	117	125	133	141	149	157	165	173	181	189
F	102	110	118	126	134	142	150	158	166	174	182	190
G	103	111	119	127	135	143	151	159	167	175	183	191
н	104	112	120	128	136	144	152	160	168	176	184	192

表 36 SureSelect Max UDI プライマー 193-288 プレートマップ (緑色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	193	201	209	217	225	233	241	249	257	265	273	281
В	194	202	210	218	226	234	242	250	258	266	274	282
С	195	203	211	219	227	235	243	251	259	267	275	283
D	196	204	212	220	228	236	244	252	260	268	276	284
E	197	205	213	221	229	237	245	253	261	269	277	285
F	198	206	214	222	230	238	246	254	262	270	278	286
G	199	207	215	223	231	239	247	255	263	271	279	287
Н	200	208	216	224	232	240	248	256	264	272	280	288

表 37 SureSelect Max UDI プライマー 289-384 プレートマップ (赤色のプレート)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	289	297	305	313	321	329	337	345	353	361	369	377
В	290	298	306	314	322	330	338	346	354	362	370	378
С	291	299	307	315	323	331	339	347	355	363	371	379
D	292	300	308	316	324	332	340	348	356	364	372	380
Е	293	301	309	317	325	333	341	349	357	365	373	381
F	294	302	310	318	326	334	342	350	358	366	374	382
G	295	303	311	319	327	335	343	351	359	367	375	383
Н	296	304	312	320	328	336	344	352	360	368	376	384

SureSelect Max Index 配列情報

表 38 SureSelect Max Index Primer Pairs 1-48 (ストリップチューブまたはオレンジ色のプレート)

Primer	Index		P5 Index Forward	P5 Index Reverse Complement	Primer		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
1	A01	CAAGGTGA	ATGGTTAG	CTAACCAT	25	A04	AGATGGAT	TGGCACCA	TGGTGCCA
2	B01	TAGACCAA	CAAGGTGA	TCACCTTG	26	B04	GAATTGTG	AGATGGAT	ATCCATCT
3	C01	AGTCGCGA	TAGACCAA	TTGGTCTA	27	C04	GAGCACTG	GAATTGTG	CACAATTC
4	D01	CGGTAGAG	AGTCGCGA	TCGCGACT	28	D04	GTTGCGGA	GAGCACTG	CAGTGCTC
5	E01	TCAGCATC	AAGGAGCG	CGCTCCTT	29	E04	AATGGAAC	GTTGCGGA	TCCGCAAC
6	F01	AGAAGCAA	TCAGCATC	GATGCTGA	30	F04	TCAGAGGT	AATGGAAC	GTTCCATT
7	G01	GCAGGTTC	AGAAGCAA	TTGCTTCT	31	G04	GCAACAAT	TCAGAGGT	ACCTCTGA
8	H01	AAGTGTCT	GCAGGTTC	GAACCTGC	32	H04	GTCGATCG	GCAACAAT	ATTGTTGC
9	A02	CTACCGAA	AAGTGTCT	AGACACTT	33	A05	ATGGTAGC	GTCGATCG	CGATCGAC
10	B02	TAGAGCTC	CTACCGAA	TTCGGTAG	34	B05	CGCCAATT	ATGGTAGC	GCTACCAT
11	C02	ATGTCAAG	TAGAGCTC	GAGCTCTA	35	C05	GACAATTG	CGCCAATT	AATTGGCG
12	D02	GCATCATA	ATGTCAAG	CTTGACAT	36	D05	ATATTCCG	GACAATTG	CAATTGTC
13	E02	GACTTGAC	GCATCATA	TATGATGC	37	E05	TCTACCTC	ATATTCCG	CGGAATAT
14	F02	CTACAATG	GACTTGAC	GTCAAGTC	38	F05	TCGTCGTG	TCTACCTC	GAGGTAGA
15	G02	TCTCAGCA	CTACAATG	CATTGTAG	39	G05	ATGAGAAC	TCGTCGTG	CACGACGA
16	H02	AGACACAC	TCTCAGCA	TGCTGAGA	40	H05	GTCCTATA	ATGAGAAC	GTTCTCAT
17	A03	CAGGTCTG	AGACACAC	GTGTGTCT	41	A06	AATGACCA	GTCCTATA	TATAGGAC
18	B03	AATACGCG	CAGGTCTG	CAGACCTG	42	B06	CAGACGCT	AATGACCA	TGGTCATT
19	C03	GCACACAT	AATACGCG	CGCGTATT	43	C06	TCGAACTG	CAGACGCT	AGCGTCTG
20	D03	CTTGCATA	GCACACAT	ATGTGTGC	44	D06	CGCTTCCA	TCGAACTG	CAGTTCGA
21	E03	ATCCTCTT	CTTGCATA	TATGCAAG	45	E06	TATTCCTG	CGCTTCCA	TGGAAGCG
22	F03	GCACCTAA	ATCCTCTT	AAGAGGAT	46	F06	CAAGTTAC	TATTCCTG	CAGGAATA
23	G03	TGCTGCTC	GCACCTAA	TTAGGTGC	47	G06	CAGAGCAG	CAAGTTAC	GTAACTTG
24	H03	TGGCACCA	TGCTGCTC	GAGCAGCA	48	H06	CGCGCAAT	CAGAGCAG	ствстств

表 39 SureSelect Max Index Primer Pairs 49-96 (オレンジ色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward				P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
49	A07	TGAGGAGT	CGCGCAAT	ATTGCGCG	73	A10	AACGCATT	ATAGTGAC	GTCACTAT
50	B07	ATGACGAA	TGAGGAGT	ACTCCTCA	74	B10	CAGTTGCG	AACGCATT	AATGCGTT
51	C07	TACGGCGA	ATGACGAA	TTCGTCAT	75	C10	TGCCTCGA	CAGTTGCG	CGCAACTG
52	D07	AGCGAGTT	TACGGCGA	TCGCCGTA	76	D10	AAGGCTTA	TGCCTCGA	TCGAGGCA
53	E07	TGTATCAC	AGCGAGTT	AACTCGCT	77	E10	GCAATGAA	AAGGCTTA	TAAGCCTT
54	F07	GATCGCCT	TGTATCAC	GTGATACA	78	F10	AAGAACCT	GCAATGAA	TTCATTGC
55	G07	GACTCAAT	GATCGCCT	AGGCGATC	79	G10	CTGTGCCT	AAGAACCT	AGGTTCTT
56	H07	CAGCTTGC	GACTCAAT	ATTGAGTC	80	H10	TACGTAGC	CTGTGCCT	AGGCACAG
57	A08	AGCTGAAG	CAGCTTGC	GCAAGCTG	81	A11	AAGTGGAC	TACGTAGC	GCTACGTA
58	B08	ATTCCGTG	AGCTGAAG	CTTCAGCT	82	B11	CAACCGTG	AAGTGGAC	GTCCACTT
59	C08	TATGCCGC	ATTCCGTG	CACGGAAT	83	C11	CTGTTGTT	CAACCGTG	CACGGTTG
60	D08	TCAGCTCA	TATGCCGC	GCGGCATA	84	D11	GCACGATG	CTGTTGTT	AACAACAG
61	E08	AACTGCAA	TCAGCTCA	TGAGCTGA	85	E11	GTACGGAC	GCACGATG	CATCGTGC
62	F08	ATTAGGAG	AACTGCAA	TTGCAGTT	86	F11	CTCCAAGC	GTACGGAC	GTCCGTAC
63	G08	CAGCAATA	ATTAGGAG	CTCCTAAT	87	G11	TAGTCTGA	CTCCAAGC	GCTTGGAG
64	H08	GCCAAGCT	CAGCAATA	TATTGCTG	88	H11	TTCGCCGT	TAGTCTGA	TCAGACTA
65	A09	TCCGTTAA	GCCAAGCT	AGCTTGGC	89	A12	GAACTAAG	ATACGAAG	CTTCGTAT
66	B09	GTGCAACG	TCCGTTAA	TTAACGGA	90	B12	AAGCCATC	GAGATTCA	TGAATCTC
67	C09	AGTAACGC	GTGCAACG	CGTTGCAC	91	C12	AACTCTTG	AAGCCATC	GATGGCTT
68	D09	CATAGCCA	AGTAACGC	GCGTTACT	92	D12	GTAGTCAT	AACTCTTG	CAAGAGTT
69	E09	CACTAGTA	CATAGCCA	TGGCTATG	93	E12	CTCGCTAG	GTAGTCAT	ATGACTAC
70	F09	TTAGTGCG	CACTAGTA	TACTAGTG	94	F12	AGTCTTCA	CAGTATCA	TGATACTG
71	G09	TCGATACA	TTAGTGCG	CGCACTAA	95	G12	TCAAGCTA	CTTCGTAC	GTACGAAG
72	H09	ATAGTGAC	TCGATACA	TGTATCGA	96	H12	CTTATCCT	TCAAGCTA	TAGCTTGA

表 40 SureSelect Max Index Primer Pairs 97-144 (青色のプレート)

Primer	Index		P5 Index Forward	P5 Index Reverse Complement	Primer		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
97	A01	TCATCCTT	CTTATCCT	AGGATAAG	121	A04	CAGGCAGA	AGACGCCT	AGGCGTCT
98	B01	AACACTCT	TCATCCTT	AAGGATGA	122	B04	TCCGCGAT	CAGGCAGA	TCTGCCTG
99	C01	CACCTAGA	AACACTCT	AGAGTGTT	123	C04	CTCGTACG	TCCGCGAT	ATCGCGGA
100	D01	AGTTCATG	CACCTAGA	TCTAGGTG	124	D04	CACACATA	CTCGTACG	CGTACGAG
101	E01	GTTGGTGT	AGTTCATG	CATGAACT	125	E04	CGTCAAGA	CACACATA	TATGTGTG
102	F01	GCTACGCA	GTTGGTGT	ACACCAAC	126	F04	TTCGCGCA	CGTCAAGA	TCTTGACG
103	G01	TCAACTGC	GCTACGCA	TGCGTAGC	127	G04	CGACTACG	TTCGCGCA	TGCGCGAA
104	H01	AAGCGAAT	TCAACTGC	GCAGTTGA	128	H04	GAAGGTAT	CGACTACG	CGTAGTCG
105	A02	GTGTTACA	AAGCGAAT	ATTCGCTT	129	A05	TTGGCATG	GAAGGTAT	ATACCTTC
106	B02	CAAGCCAT	GTGTTACA	TGTAACAC	130	B05	CGAATTCA	TTGGCATG	CATGCCAA
107	C02	CTCTCGTG	CAAGCCAT	ATGGCTTG	131	C05	TTAGTTGC	CGAATTCA	TGAATTCG
108	D02	TCGACAAC	CTCTCGTG	CACGAGAG	132	D05	GATGCCAA	TTAGTTGC	GCAACTAA
109	E02	TCGATGTT	TCGACAAC	GTTGTCGA	133	E05	AGTTGCCG	GATGCCAA	TTGGCATC
110	F02	CAAGGAAG	TCGATGTT	AACATCGA	134	F05	GTCCACCT	AGTTGCCG	CGGCAACT
111	G02	ATTGATGC	AGAGAATC	GATTCTCT	135	G05	ATCAAGGT	GTCCACCT	AGGTGGAC
112	H02	TCGCAGAT	TTGATGGC	GCCATCAA	136	H05	GAACCAGA	ATCAAGGT	ACCTTGAT
113	A03	GCAGAGAC	TCGCAGAT	ATCTGCGA	137	A06	CATGTTCT	GAACCAGA	TCTGGTTC
114	B03	CTGCGAGA	GCAGAGAC	GTCTCTGC	138	B06	TCACTGTG	CATGTTCT	AGAACATG
115	C03	CAACCAAC	CTGCGAGA	TCTCGCAG	139	C06	ATTGAGCT	TCACTGTG	CACAGTGA
116	D03	ATCATGCG	CAACCAAC	GTTGGTTG	140	D06	GATAGAGA	ATTGAGCT	AGCTCAAT
117	E03	TCTGAGTC	ATCATGCG	CGCATGAT	141	E06	TCTAGAGC	GATAGAGA	TCTCTATC
118	F03	TCGCCTGT	TCTGAGTC	GACTCAGA	142	F06	GAATCGCA	TCTAGAGC	GCTCTAGA
119	G03	GCGCAATT	TCGCCTGT	ACAGGCGA	143	G06	CTTCACGT	GAATCGCA	TGCGATTC
120	H03	AGACGCCT	GCGCAATT	AATTGCGC	144	H06	CTCCGGTT	CTTCACGT	ACGTGAAG

表 41 SureSelect Max Index Primer Pairs 145-192 (青色のプレート)

	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
145	A07	TGTGACTA	CTCCGGTT	AACCGGAG	169	A10	CGCTCAGA	CTAACAAG	CTTGTTAG
146	B07	GCTTCCAG	TGTGACTA	TAGTCACA	170	B10	TAACGACA	CGCTCAGA	TCTGAGCG
147	C07	CATCCTGT	GCTTCCAG	CTGGAAGC	171	C10	CATACTTG	TAACGACA	TGTCGTTA
148	D07	GTAATACG	CATCCTGT	ACAGGATG	172	D10	AGATACGA	CATACTTG	CAAGTATG
149	E07	GCCAACAA	GTAATACG	CGTATTAC	173	E10	AATCCGAC	AGATACGA	TCGTATCT
150	F07	CATGACAC	GCCAACAA	TTGTTGGC	174	F10	TGAAGTAC	AATCCGAC	GTCGGATT
151	G07	TGCAATGC	CATGACAC	GTGTCATG	175	G10	CGAATCAT	TGAAGTAC	GTACTTCA
152	H07	CACATTCG	TGCAATGC	GCATTGCA	176	H10	TGATTGGC	CGAATCAT	ATGATTCG
153	A08	CAATCCGA	CACATTCG	CGAATGTG	177	A11	TCGAAGGA	TGATTGGC	GCCAATCA
154	B08	CATCGACG	CAATCCGA	TCGGATTG	178	B11	CAGTCATT	TCGAAGGA	TCCTTCGA
155	C08	GTGCGCTT	CATCGACG	CGTCGATG	179	C11	CGCGAACA	CAGTCATT	AATGACTG
156	D08	ATAGCGTT	GTGCGCTT	AAGCGCAC	180	D11	TACGGTTG	CGCGAACA	TGTTCGCG
157	E08	GAGTAAGA	ATAGCGTT	AACGCTAT	181	E11	AGAACCGT	TACGGTTG	CAACCGTA
158	F08	CTGACACA	GAGTAAGA	TCTTACTC	182	F11	AGGTGCTT	AGAACCGT	ACGGTTCT
159	G08	ATACGTGT	CTGACACA	TGTGTCAG	183	G11	ATCGCAAC	AGGTGCTT	AAGCACCT
160	H08	GACCGAGT	ATACGTGT	ACACGTAT	184	H11	GCCTCTCA	ATCGCAAC	GTTGCGAT
161	A09	GCAGTTAG	GACCGAGT	ACTCGGTC	185	A12	TCGCGTCA	GCCTCTCA	TGAGAGGC
162	B09	CGTTCGTC	GCAGTTAG	CTAACTGC	186	B12	GAGTGCGT	TCGCGTCA	TGACGCGA
163	C09	CGTTAACG	CGTTCGTC	GACGAACG	187	C12	CGAACACT	GCATAAGT	ACTTATGC
164	D09	TCGAGCAT	CGTTAACG	CGTTAACG	188	D12	TAAGAGTG	AGAAGACG	CGTCTTCT
165	E09	GCCGTAAC	TCGAGCAT	ATGCTCGA	189	E12	TGGATTGA	TAAGAGTG	CACTCTTA
166	F09	GAGCTGTA	GCCGTAAC	GTTACGGC	190	F12	AGGACATA	TGGATTGA	TCAATCCA
167	G09	AGGAAGAT	GAGCTGTA	TACAGCTC	191	G12	GACATCCT	AGGACATA	TATGTCCT
168	H09	CTAACAAG	AGGAAGAT	ATCTTCCT	192	H12	GAAGCCTC	GACATCCT	AGGATGTC

表 42 SureSelect Max Index Primer Pairs 193-240 (緑色のプレート)

Primer Pair #	Index Strip	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
193	A01	GTCTCTTC	GAAGCCTC	GAGGCTTC	217	A04	GCGGTATG	CACGAGCT	AGCTCGTG
194	B01	AGTCACTT	GTCTCTTC	GAAGAGAC	218	B04	TCTATGCG	GCGGTATG	CATACCGC
195	C01	AGCATACA	AGTCACTT	AAGTGACT	219	C04	AGGTGAGA	TCTATGCG	CGCATAGA
196	D01	TCAGACAA	AGCATACA	TGTATGCT	220	D04	CACAACTT	AGGTGAGA	TCTCACCT
197	E01	TTGGAGAA	TCAGACAA	TTGTCTGA	221	E04	TTGTGTAC	CACAACTT	AAGTTGTG
198	F01	TTAACGTG	TTGGAGAA	TTCTCCAA	222	F04	TCACAAGA	TTGTGTAC	GTACACAA
199	G01	CGTCTGTG	TTAACGTG	CACGTTAA	223	G04	GAAGACCT	TCACAAGA	TCTTGTGA
200	H01	AACCTAAC	CGTCTGTG	CACAGACG	224	H04	AGTTCTGT	GAAGACCT	AGGTCTTC
201	A02	AGAGTGCT	AACCTAAC	GTTAGGTT	225	A05	GCAGTGTT	AGTTCTGT	ACAGAACT
202	B02	TTATCTCG	AGAGTGCT	AGCACTCT	226	B05	AGGCATGC	GCAGTGTT	AACACTGC
203	C02	CATCAGTC	TTATCTCG	CGAGATAA	227	C05	AAGGTACT	AGGCATGC	GCATGCCT
204	D02	AAGCACAA	CATCAGTC	GACTGATG	228	D05	CACTAAGT	AAGGTACT	AGTACCTT
205	E02	CAGTGAGC	AAGCACAA	TTGTGCTT	229	E05	GAGTCCTA	CACTAAGT	ACTTAGTG
206	F02	GTCGAAGT	CAGTGAGC	GCTCACTG	230	F05	AGTCCTTC	GAGTCCTA	TAGGACTC
207	G02	TCTCATGC	GTCGAAGT	ACTTCGAC	231	G05	TTAGGAAC	AGTCCTTC	GAAGGACT
208	H02	CAGAAGAA	TCTCATGC	GCATGAGA	232	H05	AAGTCCAT	TTAGGAAC	GTTCCTAA
209	A03	CGGATAGT	CAGAAGAA	TTCTTCTG	233	A06	GAATACGC	AAGTCCAT	ATGGACTT
210	B03	CACGTGAG	CGGATAGT	ACTATCCG	234	B06	TCCAATCA	GAATACGC	GCGTATTC
211	C03	TACGATAC	CACGTGAG	CTCACGTG	235	C06	CGACGGTA	TCCAATCA	TGATTGGA
212	D03	CGCATGCT	TACGATAC	GTATCGTA	236	D06	CATTGCAT	CGACGGTA	TACCGTCG
213	E03	GCTTGCTA	CGCATGCT	AGCATGCG	237	E06	ATCTGCGT	CATTGCAT	ATGCAATG
214	F03	GAACGCAA	GCTTGCTA	TAGCAAGC	238	F06	GTACCTTG	ATCTGCGT	ACGCAGAT
215	G03	ATCTACCA	GAACGCAA	TTGCGTTC	239	G06	GAGCATAC	GTACCTTG	CAAGGTAC
216	H03	CACGAGCT	ATCTACCA	TGGTAGAT	240	H06	TGCTTACG	GAGCATAC	GTATGCTC

表 43 SureSelect Max Index Primer Pairs 241-288 (緑色のプレート)

		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
241	A07	AAGAGACA	TGCTTACG	CGTAAGCA	265	A10	CAATGCTG	CATGAATG	CATTCATG
242	B07	TAGCTATG	AAGAGACA	TGTCTCTT	266	B10	CTTGATCA	CAATGCTG	CAGCATTG
243	C07	TCTGCTAC	TAGCTATG	CATAGCTA	267	C10	GCGAATTA	CTTGATCA	TGATCAAG
244	D07	GTCACAGA	TCTGCTAC	GTAGCAGA	268	D10	GTTCGAGC	GCGAATTA	TAATTCGC
245	E07	CGATTGAA	GTCACAGA	TCTGTGAC	269	E10	GCCAGTAG	GTTCGAGC	GCTCGAAC
246	F07	GAGAGATT	CGATTGAA	TTCAATCG	270	F10	AAGGTCGA	GCCAGTAG	CTACTGGC
247	G07	TCATACCG	GAGAGATT	AATCTCTC	271	G10	AGTGAAGT	CACTTATG	CATAAGTG
248	H07	TCCGAACT	TCATACCG	CGGTATGA	272	H10	GTTGCAAG	ATAACGGC	GCCGTTAT
249	A08	AGAGAGAA	TCCGAACT	AGTTCGGA	273	A11	AGCCGGAA	GTTGCAAG	CTTGCAAC
250	B08	GATCGTTA	AGAGAGAA	ттстстст	274	B11	AACAGCCG	AGCCGGAA	TTCCGGCT
251	C08	GCGCTAGA	GATCGTTA	TAACGATC	275	C11	CTAGTGTA	AACAGCCG	CGGCTGTT
252	D08	ATGACTCG	GCGCTAGA	TCTAGCGC	276	D11	GAGGCTCT	CTAGTGTA	TACACTAG
253	E08	CAATAGAC	ATGACTCG	CGAGTCAT	277	E11	CTCCGCAA	GAGGCTCT	AGAGCCTC
254	F08	CGATATGC	CAATAGAC	GTCTATTG	278	F11	CGCTATTG	CTCCGCAA	TTGCGGAG
255	G08	GTCAGAAT	CGATATGC	GCATATCG	279	G11	GTGTTGAG	CGCTATTG	CAATAGCG
256	H08	CATAAGGT	GCACTACT	AGTAGTGC	280	H11	TCACCGAC	GTGTTGAG	CTCAACAC
257	A09	TGTTGGTT	GATTCGGC	GCCGAATC	281	A12	CGGTAATC	TCACCGAC	GTCGGTGA
258	B09	ATACTCGC	TGTTGGTT	AACCAACA	282	B12	GTGACTGC	CGGTAATC	GATTACCG
259	C09	AATGCTAG	ATACTCGC	GCGAGTAT	283	C12	CGACTTGT	GTGACTGC	GCAGTCAC
260	D09	GCCTAGGA	AATGCTAG	CTAGCATT	284	D12	GATAGGAC	CGACTTGT	ACAAGTCG
261	E09	GCAACCGA	GCCTAGGA	TCCTAGGC	285	E12	AAGTACTC	GATAGGAC	GTCCTATC
262	F09	ATACTGCA	GCAACCGA	TCGGTTGC	286	F12	GCTCTCTC	AAGTACTC	GAGTACTT
263	G09	TCTCCTTG	ATACTGCA	TGCAGTAT	287	G12	CTACCAGT	GCTCTCTC	GAGAGAGC
264	H09	CATGAATG	TCTCCTTG	CAAGGAGA	288	H12	GATGAGAT	CTACCAGT	ACTGGTAG

表 44 SureSelect Max Index Primer Pairs 289-336 (赤色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
289	A01	AGATAGTG	GATGAGAT	ATCTCATC	313	A04	AGCTACAT	GATCCATG	CATGGATC
290	B01	AGAGGTTA	AGATAGTG	CACTATCT	314	B04	CGCTGTAA	AGCTACAT	ATGTAGCT
291	C01	CTGACCGT	AGAGGTTA	TAACCTCT	315	C04	CACTACCG	CGCTGTAA	TTACAGCG
292	D01	GCATGGAG	CTGACCGT	ACGGTCAG	316	D04	GCTCACGA	CACTACCG	CGGTAGTG
293	E01	CTGCCTTA	GCATGGAG	CTCCATGC	317	E04	TGGCTTAG	GCTCACGA	TCGTGAGC
294	F01	GCGTCACT	CTGCCTTA	TAAGGCAG	318	F04	TCCAGACG	TGGCTTAG	CTAAGCCA
295	G01	GCGATTAC	GCGTCACT	AGTGACGC	319	G04	AGTGGCAT	TCCAGACG	CGTCTGGA
296	H01	TCACCACG	GCGATTAC	GTAATCGC	320	H04	TGTACCGA	AGTGGCAT	ATGCCACT
297	A02	AGACCTGA	TCACCACG	CGTGGTGA	321	A05	AAGACTAC	TGTACCGA	TCGGTACA
298	B02	GCCGATAT	AGACCTGA	TCAGGTCT	322	B05	TGCCGTTA	AAGACTAC	GTAGTCTT
299	C02	CTTATTGC	GCCGATAT	ATATCGGC	323	C05	TTGGATCT	TGCCGTTA	TAACGGCA
300	D02	CGATACCT	CTTATTGC	GCAATAAG	324	D05	TCCTCCAA	TTGGATCT	AGATCCAA
301	E02	CTCGACAT	CGATACCT	AGGTATCG	325	E05	CGAGTCGA	TCCTCCAA	TTGGAGGA
302	F02	GAGATCGC	CTCGACAT	ATGTCGAG	326	F05	AGGCTCAT	CGAGTCGA	TCGACTCG
303	G02	CGGTCTCT	GAGATCGC	GCGATCTC	327	G05	GACGTGCA	AGGCTCAT	ATGAGCCT
304	H02	TAACTCAC	CGGTCTCT	AGAGACCG	328	H05	GAACATGT	GACGTGCA	TGCACGTC
305	A03	CACAATGA	TAACTCAC	GTGAGTTA	329	A06	AATTGGCA	GAACATGT	ACATGTTC
306	B03	GACTGACG	CACAATGA	TCATTGTG	330	B06	TGGAGACT	AATTGGCA	TGCCAATT
307	C03	CTTAAGAC	GACTGACG	CGTCAGTC	331	C06	AACTCACA	TGGAGACT	AGTCTCCA
308	D03	GAGTGTAG	CTTAAGAC	GTCTTAAG	332	D06	GTAGACTG	AACTCACA	TGTGAGTT
309	E03	TGCACATC	GAGTGTAG	CTACACTC	333	E06	CGTAGTTA	GTAGACTG	CAGTCTAC
310	F03	CGATGTCG	TGCACATC	GATGTGCA	334	F06	CGTCAGAT	CGTAGTTA	TAACTACG
311	G03	AACACCGA	CGATGTCG	CGACATCG	335	G06	AACGGTCA	CGTCAGAT	ATCTGACG
312	H03	GATCCATG	AACACCGA	TCGGTGTT	336	H06	GCCTTCAT	AACGGTCA	TGACCGTT

表 45 SureSelect Max Index Primer Pairs 337-384 (赤色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
337	A07	TGAGACGC	GCCTTCAT	ATGAAGGC	361	A10	CTGAGCTA	GCACAGTA	TACTGTGC
338	B07	CATCGGAA	TGAGACGC	GCGTCTCA	362	B10	CTTGCGAT	CTGAGCTA	TAGCTCAG
339	C07	TAGGACAT	CATCGGAA	TTCCGATG	363	C10	GAAGTAGT	CTTGCGAT	ATCGCAAG
340	D07	AACACAAG	TAGGACAT	ATGTCCTA	364	D10	GTTATCGA	GAAGTAGT	ACTACTTC
341	E07	TTCGACTC	AACACAAG	CTTGTGTT	365	E10	TGTCGTCG	GTTATCGA	TCGATAAC
342	F07	GTCGGTAA	TTCGACTC	GAGTCGAA	366	F10	CGTAACTG	TGTCGTCG	CGACGACA
343	G07	GTTCATTC	GTCGGTAA	TTACCGAC	367	G10	GCATGCCT	CGTAACTG	CAGTTACG
344	H07	AAGCAGTT	GTTCATTC	GAATGAAC	368	H10	TCGTACAC	GCATGCCT	AGGCATGC
345	A08	ATAAGCTG	AAGCAGTT	AACTGCTT	369	A11	CACAGGTG	TCGTACAC	GTGTACGA
346	B08	GCTTAGCG	ATAAGCTG	CAGCTTAT	370	B11	AGCAGTGA	CACAGGTG	CACCTGTG
347	C08	TTCCAACA	GCTTAGCG	CGCTAAGC	371	C11	ATTCCAGA	AGCAGTGA	TCACTGCT
348	D08	TACCGCAT	TTCCAACA	TGTTGGAA	372	D11	TCCTTGAG	ATTCCAGA	TCTGGAAT
349	E08	AGGCAATG	TACCGCAT	ATGCGGTA	373	E11	ATACCTAC	TCCTTGAG	CTCAAGGA
350	F08	GCCTCGTT	AGGCAATG	CATTGCCT	374	F11	AGACCATT	ATACCTAC	GTAGGTAT
351	G08	CACGGATC	GCCTCGTT	AACGAGGC	375	G11	CGTAAGCA	AGACCATT	AATGGTCT
352	H08	GAGACACG	CACGGATC	GATCCGTG	376	H11	TCTGTCAG	CGTAAGCA	TGCTTACG
353	A09	AGAGTAAG	GAGACACG	CGTGTCTC	377	A12	CACAGACT	TCTGTCAG	CTGACAGA
354	B09	AGTACGTT	AGAGTAAG	CTTACTCT	378	B12	GTCGCCTA	CACAGACT	AGTCTGTG
355	C09	AACGCTGC	AGTACGTT	AACGTACT	379	C12	TGCGCTCT	GTCGCCTA	TAGGCGAC
356	D09	GTAGAGCA	AACGCTGC	GCAGCGTT	380	D12	GCTATAAG	TGCGCTCT	AGAGCGCA
357	E09	TCCTGAGA	GTAGAGCA	TGCTCTAC	381	E12	CAACAACT	GCTATAAG	CTTATAGC
358	F09	CTGAATAG	TCCTGAGA	TCTCAGGA	382	F12	AGAGAATC	CTCTCACT	AGTGAGAG
359	G09	CAAGACTA	CTGAATAG	CTATTCAG	383	G12	TAATGGTC	AGACGAGC	GCTCGTCT
360	H09	GCACAGTA	CAAGACTA	TAGTCTTG	384	H12	GTTGTATC	TAATGGTC	GACCATTA

トラブルシューティングガイド

サンプルから DNA 精製する時に DNA の収量が少ない

- ✓ gDNA の精製の際、サンプルを過剰に加えると収量が低くなるときがあります。 gDNA 精製プロトコルでの、 各組織種の推奨量に従って、調製してください。
- ✓ 組織サンプルの溶解が gDNA 精製の間に最適な条件でなされていない可能性があります。56°C での Proteinase K による分解反応中、20~30 分ごとに分解反応溶液を静かにピペッティングしながら、溶液 中の組織の塊の存在を確認しながらサンプルの溶解の状況を調べます。もし 56°C 1 時間のインキュベーション後にも組織の塊が存在する場合、Proteinase K 10 μL をさらに追加し定期的な撹拌を行い溶解の 状況を確認しながら、56°C のインキュベーションを続けます (追加分、2 時間まで)。サンプル中に組織の塊が見られなくなりましたら、サンプルを室温にうつし、その他のサンプルの溶解がおわるまで室温においておきます。ただし、過剰な分解反応は避けてください。室温に戻した後、各サンプルは、2 時間以内にプロトコルの 次のステップに進んでください。また、56°C のインキュベーションを3 時間以上行わないでください。

End Repair-A Tailing Buffer 中に固形物が見られた場合

✓ 固形物が溶解するまで、溶液を高速でボルテックスします。最初に解凍したときに固形物が見られたとしても、性能には影響しませんが、すべての溶質が溶解するまでバッファを混合することが重要です。

ライブラリ収量が少ない

- ✓ サンプル調製および希釈で指定されたステップでは 1X Low TE Buffer (10 mM Tris-HCl pH7.5~8.0,0.1 mM EDTA) を使用してください。 Nuclease-free water あるいは他のバッファを使用しないでください。
- ✓ ライブラリ調製のプロトコルには、粘性の高いバッファや酵素液について、最適な性能を得るために推奨とする溶解・温度管理・ピペッティング・混合の特異的な説明が記載されております。反応を行う際は、プロトコルに記載されているすべての内容に従って実施してください。
- ✓ PCR サイクル数は最適化が必要な場合があります。再度、そのサンプルについてはキャプチャ前 PCR 反応のサイクル数を 1~2 サイクル増やし、ライブラリ調製を試してください。ただし、収量の低いサンプルについて、電気泳動図 (electropherogram) 中に高分子量のピーク (> 500 bp) が確認される場合、そのDNA は増幅過多である可能性が示唆されます。そのサンプルについては、キャプチャ前 PCR のサイクル数を 1~3 サイクル減らしてください。
- ✓ FFPE 組織サンプルから調製した DNA は、過度に分解している場合や、ライブラリ調製を阻害するような 修飾をうけている場合があります。 Agilent NGS FFPE QC Kit を使用して、サンプル中の増幅可能な DNA の量を精密に測定してインプットする DNA の量を調整してください。
- ✓ AMPure XP ビーズの精製ステップからの収量が最適ではない可能性があります。以下の要因を考慮してく ださい。
 - ・ プロトコルに記載されているビーズと試薬の取り扱い手順をすべて守ってください。特にビーズを使用前に少なくとも30分室温で平衡化させ、各精製手順で新鮮な70%エタノール(使用当日に調製)を使用してください。
 - ・ サンプル溶出直前のステップで AMPure XP ビーズが過度に乾燥していないことを確認してください。ビーズを 37℃ 2 分で乾燥している場合は、室温 5 分で乾燥することを検討してください。
 - ・ 溶出のためのインキュベーション時間を延長することで (最長 10 分)、特に長い DNA 断片の収量が 改善することがあります。

エレクトロフェログラムのピーク位置が想定と異なる

- ✓ FFPE DNA のキャプチャ前のライブラリには、インプットしたサンプル中のターゲットフラグメント長より短い DNA の影響により、断片化後のターゲットサイズよりも短いものが含まれることがあります。 14 ページの DNA 品質のガイドラインに従ってください
- ✓ 磁性ビーズ精製における DNA のフラグメント長による選別は、サンプルと磁性ビーズとが正しい比率で存在 している状況で実施されていることに依存しています。精製ステップでビーズを分注するときは、ビーズを均等 な色の均一な状態になるまでよく混合し、各ステップで推奨されている容量を必ず分注してください。
- ✓ 2x 150 bp 条件で調製した全ゲノムシーケンスライブラリのフラグメント長は、31 ページのようにビーズとサンプルの比率を調整することで長くなる場合があります。通常のプロトコルではライブラリ DNA サンプル液量の1X のビーズ液量を使用しますが、ビーズ比率が 0.6~0.7X (30~35 μL の精製ビーズを 50 μL のサンプルに添加) することで平均フラグメント長が長くなる可能性があります。この方法はライブラリの収量が減少する点をご注意ください。

キャプチャ前ライブラリの QC で低分子量のアダプターダイマーピークが検出される

✓ 想定されるピーク以外の低分子量のピークは、ライブラリ中にアダプターダイマーが存在している可能性を示唆しています。アダプターダイマーの割合が低い場合は、次のターゲットエンリッチのステップに進んでも問題ありません。アダプターダイマーが多く含まれている場合は、キャプチャ前のライブラリの収量を低下させる可能性があります。アダプターライゲーションの工程が 16 ページに記載されている内容で実施されているかどうか確認してください。特に、Adaptor Oligo Mix をサンプルと混合してから、その後 Ligation Master Mix を混合する点に注意してください。 Ligation Master Mix と Adaptor Oligo Mix を同時にサンプルに入れてはいけません。

クイックリファレンスプロトコル:ターゲットエンリッチメント用ライブラリ 調製

実験操作に慣れた方向けに、プロトコルの手順を以下に要約します。試薬の混合手順や装置の設定など、プロトコル詳細の全てに慣れるまでは、11 ページから 26 ページ記載の完全なプロトコルを使用してください。

ステップ	工程のサマリー
DNA サンプルの準備と品質確認	10~200 ng gDNA を 50 μL の 1X Low TE Buffer で希釈し、氷上に置く。FFPE DNA の場合、分解度を評価し、13 ページを参照にインプット量を決定。
DNA サンプルの断片化	50 μL の gDNA を表 46 を参考にコバリスで断片化。 断片化後は新しいチューブ等へ移して氷上に置く。
Ligation Master Mix の調製	8 反応: 207 μL Ligation Buffer + 18 μL T4 DNA Ligase 24 反応: 598 μL Ligation Buffer + 52 μL T4 DNA Ligase 室温で調製し、ボルテックス後スピンダウン。 30~45 分室温で静置
End-Repair/dA-Tailing Master Mix の調製	8 反応: 144 μL End-Repair-A-Tailing Buffer + 36 μL End-Repair-A-Tailing Enzyme Mix 24 反応: 416 μL End-Repair-A-Tailing Buffer + 104 μL End-Repair-A-Tailing Enzyme Mix 氷上で調製し、ボルテックス後スピンダウン。 氷上に置く。
末端修復と dA 付加	50 μL 断片化 DNA sample + 20 μL End-Repair/dA-Tailing Master Mix 混合後、スピンダウン。 15 min @ 20°C, 15 min @ 65°C, Hold @ 4°C.
アダプターライゲーション	70 μL の DNA サンプルと 25 μL の Ligation Master Mix を加え、ピペッティングで混合し、スピンダウン。 5 μL の SureSelect Max Adaptor Oligo Mix (MBC or MBC-free)を混合し、スピンダウン。 サーマルサイクラーでインキュベート。 30 min @ 20°C, Hold @ 4°C.
DNA の精製	100 μ L DNA サンプルと、80 μ L のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。21 μ L の nuclease-free H_2 O を加え混合し 2~5 分インキュベーション。ビーズを集めた後、20 μ L の上清を回収。
インデックス付加と増幅	20 μL DNA サンプルと 25 μL の Amplification Master Mix、5 μL SureSelect Max UDI Primers for ILM を混合し、ボルテックス後、スピンダウン。 表 47 のプログラムで増幅。
増幅した DNA ライブラリの精製	50 μ L DNA サンプルと、50 μ L のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。 15 μ L の nuclease-free H_2 O を加え混合し 2~5 分インキュベーション。 ビーズを集めた後、14 μ L の上清を回収。
DNA の品質評価と定量	オプション: TapeStation または Fragment Analyzer でライブラリの品質確認と定量

表 46 ターゲットエンリッチメントシーケンスライブラリの断片化条件

Input DNA	リード長	断片化時間
高品質 DNA サンプル	2 ×100 reads	2 ×120 seconds
	2 ×150 reads	2 ×60 seconds
FFPE DNA サンプル	2 ×100 reads or 2 ×150 reads	240 seconds

表 47 ライブラリ増幅サーマルサイクルプログラム (50 µL、蓋は 105°C に加温)

セグメント	サイクル数	_	_	温度	時間
1	1			98°C	45 seconds
2	Intact DNA input	OR	FFPE DNA input	98°C	15 seconds
	200 ng: 7 cycles		100 \sim 200 ng: 11 cycles	60°C	30 seconds
	100 ng: 8 cycles		50 ng: 12 cycles	72°C	30 seconds
	50 ng: 9 cycles 10 ng: 10 cycles		10 ng: 13 cycles		
3	1			72°C	1 minute
4	1			4°C	Hold

クイックリファレンスプロトコル:全ゲノムシーケンス用ライブラリ調製

実験操作に慣れた方向けに、プロトコルの手順を以下に要約します。試薬の混合手順や装置の設定など、プロトコル詳細の全てに慣れるまでは、27ページから34ページ記載の完全なプロトコルを使用してください。

ステップ	工程のサマリー
DNA サンプルの準備と品質確認	10~200 ng gDNA を 50 μL の 1X Low TE Buffer で希釈し、氷上に置く。FFPE DNA の場合、分解度を評価し、13 ページを参照にインプット量を決定。
DNA サンプルの断片化	50 µLのgDNAを表 48を参考にコバリスで断片化。 断片化後は新しいチューブ等へ移して氷上に置く。
Ligation Master Mix の調製	8 反応: 207 µL Ligation Buffer + 18 µL T4 DNA Ligase 24 反応: 598 µL Ligation Buffer + 52 µL T4 DNA Ligase 室温で調製し、ボルテックス後スピンダウン。 30~45 分室温で静置
End-Repair/dA-Tailing Master Mix の調製	8 反応: 144 μL End-Repair-A-Tailing Buffer + 36 μL End-Repair-A-Tailing Enzyme Mix 24 反応: 416 μL End-Repair-A-Tailing Buffer + 104 μL End-Repair-A-Tailing Enzyme Mix 氷上で調製し、ボルテックス後スピンダウン。 氷上に置く。
末端修復と dA 付加	50 μL 断片化 DNA sample + 20 μL End-Repair/dA-Tailing Master Mix 混合後、スピンダウン。 15 min @ 20°C, 15 min @ 65°C, Hold @ 4°C.
アダプターライゲーション	70 μL の DNA サンプルと 25 μL の Ligation Master Mix を加え、ピペッティングで混合し、スピンダウン。 5 μL の SureSelect Max Adaptor Oligo Mix (MBC or MBC-free)を混合し、スピンダウン。 サーマルサイクラーでインキュベート。 30 min @ 20°C, Hold @ 4°C.
DNA の精製	100 μ L DNA サンプルと、80 μ L のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。21 μ L の nuclease-free H_2 O を加え混合し 2 \sim 5 分インキュベーション。ビーズを集めた後、20 μ L の上清を回収。
インデックス付加と増幅	20 μL DNA サンプルと 25 μL の Amplification Master Mix、5 μL SureSelect Max UDI Primers for ILM を混合し、ボルテックス後、スピンダウン。表 49 のプログラムで増幅。
増幅した DNA ライブラリの精製	50 μ L DNA サンプルと、50 μ L のビーズを混合し、5 分インキュベート。ビーズを集めた後上清を除去。 70%エタノールで 2 回洗浄。15 μ L の nuclease-free H_2 O を加え混合し 2~5 分インキュベーション。 ビーズを集めた後、14 μ L の上清を回収。
DNA の品質評価と定量	TapeStation または Fragment Analyzer でライブラリの品質確認と定量 3 サイクルまたは 4 サイクルで増幅したライブラリの場合は qPCR を、 5 サイクル以上で増幅したライブラリの場合は TapeStation または Fragment Analyzer を使用して、 ライブラリを定量する。

表 48 全ゲノムシーケンスライブラリの断片化条件

Input DNA	リード長	- 断片化時間
高品質 DNA サンプル	2 ×150 reads	2 ×15 seconds
	2 ×250 reads	2 ×5 seconds
FFPE DNA サンプル	2 ×150 reads	240 seconds

表 49 全ゲノムシーケンスライブラリ増幅サーマルサイクルプログラム (50 µL、蓋は 105°C に加温)

Segment	Number of Cycles	Temperature	Time
1	1	98°C	45 seconds
2	50~200 ng Intact DNA input libraries: 3−5 cycles	98°C	15 seconds
	10 ng Intact DNA input libraries: 6 cycles 50∼200 ng FFPE DNA input libraries: 7 cycles	60°C	30 seconds
	10 ng FFPE DNA input libraries: 8 cycles	72°C	30 seconds
3	1	72°C	1 minute
4	1	4°C	Hold

G250711

ゲノミクス関連製品に関するお問い合わせ

Tel: 0120 - 477 - 111

Mail: email_japan@agilent.com

電話・メール受付時間 土、日、祝祭日、5/1を除く

9:00~12:00、13:00~17:00

※プロトコル名とともに、テクニカルな質問と明示してください。

※価格、納期等のご質問は担当営業にご連絡ください。