中小企業のための 分析機器利用マニュアル

高性能におい嗅ぎ付きガスクロマトグラフ質量分析装置

香気成分分析

(独) 産業技術総合研究所 関西センター 和歌山県工業技術センター

はじめに

食品や医薬品、化粧品、化学工業材料などの製造分野において、分析技術は製造・加工法確立や 品質管理の一翼を担っています。最新の分析機器を活用すれば、さまざまな化合物の成分を分子 や原子のレベルで知ることができます。分析によって得られる情報は、高付加価値の製品づくりや 安全・安心の追求などに大いに役立てられます。

平成21年度、近畿地域イノベーション創出協議会の構成機関のうち4つの公設試験研究機関に、 新しい分析機器が導入されました。各機関が分析対象や目的に応じたシステムを確立し、技術課題 を抱える中小企業に開発環境を提供しています。

本書では、和歌山県工業技術センターに導入された高性能匂いかぎ付きガスクロマトグラフ質量分析装置を使って、香気成分を分析する方法を紹介します。

※本書で示す分析方法および結果は一例であり、標準的な公定法と必ずしも同じではありません。研究開発 などの参考としてお読みください。

目次

3	概要	分析原理4 分析結果の応用例6 連携研究「清酒もろみ」7 分析機器の仕様8
9	前処理	試料の調製10 試料の設置11
13	測定	分析機器の構成
31	分析例	清酒もろみ32清酒(吟醸酒)33焼酎・泡盛34ミカンワイン35ウメ果実36梅酒37金山寺味噌38ジャバラ果皮39

分析原理	4
分析結果の応用例	6
連携研究「清酒もろみ」	7
分析機器の仕様	8
	 分析原理 分析結果の応用例 連携研究「清酒もろみ」 分析機器の仕様

分析原理

ガスクロマトグラフ質量分析と官能検査で匂いの元を探る

試料を気体状態にして成分・質量分析を行うガスクロマトグラフ質量分析と、匂いかぎによる官能検査で生体香気 成分や香料成分を測定します。和歌山県工業技術センターに導入された匂いかぎ付きガスクロマトグラフ質量分 析装置に沿って、その仕組みを説明します。

ガスクロマトグラフ質量分析装置(GC/MS)

内部にガス (キャリアーガス) が流れる細い管 (カラム) に試料を導入し、カラムの中で試料中の化合物を分離 する手法がガスクロマトグラフィー(GC) です。カラムで分離された物質の定性、定量を行うのが質量分析で す。

試料を気体に保つため、ガスクロマトグラフ内は高温になります。揮発性が高く熱に対して安定である物質の 分析に適しています。

カラムについて

GCで使用するカラムには、カラムの内側に液相を塗布したキャピラリーカラムと、内側に充填剤を詰めたパッ クドカラムの2種類があり、分析目的や対象に応じて使い分けます。本書で紹介する分析で使用するのはキャ ピラリーカラムで、内径0.2mm~0.5mm、長さ10m~60mほどのヒューズドシリカ(溶融石英)製です。 キャピラリーカラムは一般的にパックドカラムより高い分解能を持ち、成分の分離に優れています。 試料はカラム内を流れる移動相(キャリアガス)に乗って飛び回ったり、固定相(液相または充填剤)にもぐりこ んだりしながら移動します。試料に含まれる各成分の吸着性や分配係数の違いから移動速度に差が生じ、成

分の分離が行われます。

キャピラリーカラム内での試料成分の分離

匂いかぎ装置 (ODP)

GCのカラム内で分離された匂いをかぎ、記録するための装置です。

測定者がノーズコーン (鼻をつけるガラス部分)から放たれる匂いを感じたときにボタンを押すことで、GC/ MS分析装置と接続されたPCにシグナルが送られ、ピークが描かれます。匂いの強弱に応じ、ボタンを深く または浅く押すことでシグナルに強弱がつきます。ピークは同時に取り込んでいるMS分析装置のクロマトグ ラムと重ねることができます。

装置の特徴

質量分析装置 (MS) 部は、安定した不活性イオン源と全質量範囲にわたる最適な分解能と感度を有する一体型石英金電極四重極マスフィルター、S/N比を向上させるトリプルアクシスディテクタなどで構成されており、 高感度で安定した分析が可能となります。

分析結果の応用例

食品の個性付けや品質評価・管理 香気成分分析が活躍

本装置を用いることで、食品やフレーバー、フレグランスなど、あらゆる匂い・香りに影響を与えている成分を明らかにできます。香気成分分析は食品の開発や品質評価・管理などに利用されています。以下にその例を紹介します。

高付加価値製品の開発

和歌山県には、果実などの天然素材や、清酒・醤油などの発酵 食品が豊富です。それら地域特産品の匂い・香りを生かした食 品づくりに、香気成分分析は大いに活用できます。

品質評価・管理

清酒の中でも吟醸酒はそのフルーティーな香りが特徴です。その 品質は香味のバランスで決まりますが、品質管理の上で、きき酒 評価とともに香気成分分析が大きな役割を果たしています。 また、一般的な食品において、異臭が問題となることがあります。 その原因物質を特定する手段としても、香気成分分析は有効です。

香気成分の探索やフレーバーの開発

果物や野菜をはじめとする天然素材や発酵食品などには、未知の 微量成分が含まれています。本装置を用いることで、そのような 未知成分の探索・同定が可能です。分析結果は新しいフレーバー の開発などに利用できます。

連携研究「清酒もろみ」

近畿4公設試験研究機関の共通分析テーマ

近畿では伏見、灘、伊丹をはじめ古くから日本酒(清酒)づくりが盛んに行われており、各地で独特かつ高品質な地酒に出会うことができます。日本 酒醸造には伝統的な手法はもちろん、科学的見地からの研究も重要な役 割を果たしており、地方公設試験研究機関の技術が各地の酒造産業に寄 与するところは大きいと言えます。

近畿地域イノベーション創出協議会の構成機関のうち4つの公設試験研究 機関では、連携して「清酒もろみ」の分析に取り組み、新しい醸造技法の 開発を支援します。

今回分析対象としたのは、和歌山県工業技術センター所有の「和歌山酵母」 を用いて醸造された純米酒のもろみです。分析値は日本酒度-0.5、アル コール分16.3%、酸度2.6で、上槽直前のものです。

和歌山県工業技術センターでは、導入された装置を使い、香気成分分析 を実施しました。

詳しい分析結果は32ページをご覧ください。

分析機器の仕様

質量分析装置 (Agilent 5975C)

EI (Electron Impact	キャリアーガスHe使用	SCAN mode:1 pg OFN* で S/N 400:1以上	
Ionization) のSCANと		SIM mode:20 fg OFN で S/N 10:1以上	
SIMの感度	キャリアーガスH2使用	SCAN mode:1 pg OFN で S/N 100:1以上	
マスフィルター	ー体型のハイパボリック金属	電極四重極	
最大加熱温度	200℃		
マス軸安定性	±0.10 amu/48 hr		
マスレンジ	1.6~1,050 amu		
検出器	四重極から、トリプルアクシス (X-Y-Zの3軸) 方向にオフセット配置		
スキャン速度	最高12,500 amu/sec		
イオン化電圧	5~240eV		
イオン化電流	0~315μA		
イオン源温度	最大350℃		
イオン源のフィラメント	2個		
寸法	W 300mm × H 410mn	n× D 540mm	
重量	39kg		

※ OFN:オクタフルオロナフタレン

ガスクロマトグラフ(Agilent 7890)

注入システム	バックプレッシャー制御方式のスプリット/スプリットレス注入システム
最大圧力	970kPa
寸法 (W×H×D mm)	W 580 mm \times H 500 mm \times D 540 mm
重量	45kg

オートサンプラ (MPS2)

設置可能サンプル数	液体注入 (2 ml バイアル)	98検体	
	ヘッドスペース (20 mlバイアル)	32 検体	
分析方法	液体注入法 / HSS法		
寸法	W 828mm × H 648mm × D 3	385 mm	
重量	10kg		

匂いかぎ装置(ODP)

寸法	W 400mm × H 500mm × D 500mm
重量	2 kg

試料の調製	10
試料の設置	11

試料の調製

測定試料をガスクロマトグラフに導入できる状態にします。 定量分析の場合、あわせて香気成分標準液も調製する必要があります。

定量分析の試料調製(ヘッドスペース法)

香気成分標準液を調製する

- 1 20 ml バイアル瓶を6本用意し、濃度の異なる香気成分標準液(各 1.8 ml) をそれぞれ採取します。
- ② それぞれの香気成分標準液に内部標準溶液 (0.2 ml) を加え、バ イアル瓶のふたを閉めます。

定量分析 試料中に含

試料中に含まれている特定の成分の量を調 べることをいいます。 試料中にどんな成分が含まれているかわか らない場合は、先に定性分析が必要です。

📕 香気成分標準液

香気分析をする場合の標準液です。対象と する成分によって標準物質の種類や濃度も 異なります。

🚪 内部標準溶液

ガスクロマトグラフィーで定量分析を行う 場合、すでに量がわかっている物質(内部 標準物質)を試料に添加し、その物質量あ るいは香気成分標準液との比率から試料中 の物質量を算出します。内部標準物質を溶 かした溶液が内部標準溶液です。

0ppm

測定試料溶液を調製する

測定試料 [1.8 ml] を20 ml バイアル瓶に採取します。
 内部標準溶液 [0.2 ml] を加えてふたを閉めます。

定性分析の試料調製(ヘッドスペース法)

測定試料を採取する

測定試料 [2.0 ml] を 20 ml バイアル瓶に採取し、ふたを閉めます。

試料中にどんな成分が含まれているか調べることをいいます。

試料の設置

調製した試料をサンプルトレイに並べ、オートサンプラーに設置します。

バイアル瓶をサンプルトレイに並べる

オートサンプラーのサンプルトレイ (VT32) にバイアル瓶を並べます。 このとき、サンプルトレイに書かれているウェル番号と溶液の対応を 記録しておいてください。

ク オートサンプラーに設置する

ウェル番号1のバイアル瓶が左奥になるように設置します。

■ サンプルトレイのウェル番号

GC/MS分析装置およびオートサンプラー のシーケンスを設定する際に、ウェル番号 で溶液を指定します。

📕 液体注入で分析する場合

シリンジを液体注入用に交換します。 試料は2mlのバイアル瓶に入れ、専用の サンプルトレイ (VT98)に並べてオートサ ンプラーに設置します。

概

要

分析機器の構成	14
GC/MS分析装置の設定	15
オートサンプラーの設定	20
測定の開始と終了	23
スニッフィング (匂いかぎ)	24
スニッフィング (匂いかぎ) データ解析	24 25

分析機器の構成

分析に使用する機器は、匂いかぎ付きGC/MS分析装置(アジレント社製)、オートサンプラー (ゲステル社製)と制御用PCから構成されています。

く 匂いかぎ付き GC/MS 分析装置・オートサンプラー

に分離します。

▲ 制御用 PC

装置の制御、設定、測定の実行、測定データの表示や解析 などはPCで行います。

ます。

GC/MS分析装置の設定

GC/MS分析装置のメソッドとシーケンスを設定します。メソッドではカラムの流量やオーブン温度など、シーケンスでは分析スケジュールを設定できます。

GCパラメータを編集する

目的に応じてアイコンをクリックし、設定を編集します。

[OK] をクリックしてパラメータ編集画面を閉じます。設定値がGCに ダウンロードされます。

GCリアルタイムプロットを設定する

分析中にOIDのシグナルをリアルタイムで表示するための設定です。 [シグナル1]の[表示]にチェックを入れ、[OK]をクリックします。

ックナル 1(1)	_ シグナル 2(2)	シグナル 3(3)	シグナル 4(4)
▼ 表示	□ 表示	□ 表示	□ 表示
Attn: 7 2^	Attn: 0 2^	Attn: 0 2^	Attn: 0 2^
オフセット: 10 %	オフセット: 10 %	オフセット: 10 %	オフセット: 10 %
時間 100 min	時間 50 min	時間: [50 min	時間: <u>5.0</u> min

MS チューニングファイルを選択する

MS分析装置を調整するためのチューニングファイルを選択します。 通常は [atune.u] を選択し、[OK] をクリックします。

7- / 11	99401		
771 JU	10.U 2011		
000	ÚLDOWNdb-1.U DLDOWNdb-wax.U		
dftp	p.u		<u> </u>

[GC パラメータ] おもな設定項目は以下のとおりです。詳し くはメーカー発行のマニュアルをお読みく ださい。 注入口 ٦Ï 注入口の温度や圧力、流量などを設 定できます。 **カラム流量** カラノ (の) カラムの流量や圧力を設定できます。 オーブン温度 カラムオーブンの初期温度と到達温 度、昇温速度などを設定できます。 ここでランタイムを記録し、オート サンプラーにおけるメソッド編集の Runtimeと合わせます (p20 3 シス テム設定)。 Aux ヒーター温度 GC/MS分析装置トランスファーライ ン温度を設定できます。 **シグナル** シグナルソースおよびデータ速度、

シグナルソースおよびデータ速度
 最小ピーク幅を設定できます。

[GC リアルタイムプロット]

[表示]

匂いかぎ装置 (ODP) を使用して測定を行 うため、[シグナル 1] の [表示] にチェックを 入れます。

匂いかぎを行わずMS分析のみの場合、 GCシグナルの表示は必要ありませんの で、すべてチェックを外します。

[Attn]

フルスケールを表示する検出器シグナルの 範囲です。2の累乗として示されます。

[オフセット]

プロットを開始するウィンドウ下端からの距 離 (ウィンドウの高さに対する%) です。

[時間]

ー度に表示するクロマトグラムの時間範囲 です。 要

分

析

例

測定

2 シーケンス編集画面を開く メニューから [シーケンス] → [シーケンスの編集] を選びます。

シーケンスを編集する

分析を実行したい順番に入力します。

	タイプ	バイアル	サンブル	メンッド/キーワード	データファイル	コメント/キーワード
1	サンプル	1	清酒香気標準0ppm	HP-5ScanSake(HS)	100126HP5std0ppm	
2	サンブル	1	清酒香気標準1ppm	HP-5SCANSAKE(HS)	100126HP5std1ppm	
3	サンブル	1	清酒香気標準3ppm	HP-5SCANSAKE(HS)	100126HP5std3ppm	
4	サンブル	1	清酒香気標準5ppm	HP-5SCANSAKE(HS)	100126HP5std5ppm	
5	サンブル	1	清酒香気標準8ppm	HP-5SCANSAKE(HS)	100126HP5std8ppm	
6	サンブル	1	渚酒香気標準10ppm	HP-5SCANSAKE(HS)	100126HP5std10ppm	
7	サンブル	. 1	清酒1	HP-5SCANSAKE(HS)	100126HP5seishu1	
8	サンブル	1	;音;酉2	HP-5SCANSAKE(HS)	100126HP5seishu2	
9	-					
11						
12						
13			6			
14				8	0	
15						
16						
17						
18				8	5	
19	-					
20					I	

🖌 シーケンスの編集を終了する

[OK]をクリックして編集画面を閉じます。

シーケンスを保存する

 メニューから [シーケンス] → [名前を付けてシーケンスを保存] を 選びます。

2 ファイル名を入力し、[保存]をクリックします。

📕 シーケンスの編集

[データパス]

[参照] をクリックして測定データの保存先 を選びます。新しいフォルダを作ることも できます。フォルダ名には日付や企業名な ど、任意の名前をつけます。

[タイプ]

すべて [サンプル] を選択します。

[バイアル] すべて1を入力します。

[サンプル] 分析する試料または標準液の名称を任意で 入力します。

[メソッド / キーワード] セルを右クリックして [メソッドの参照] を選 びます。使用するメソッドを選択し、[OK] をクリックします。

[データファイル] 保存されるデータのファイル名を入力しま す。

■ シーケンスの保存先

通常は sequence フォルダに保存されます。

概

要

前

処

理

オートサンプラーの設定

オートサンプラのメソッドとシーケンスを設定します。 試料の注入速度や注入量、シリンジの洗浄回数などを設定できます。

Maestroを起動する

デスクトップのショートカット 🖉 をダブルクリックします。

[Gerstel Maestro 1] ウィンドウが開きます。

¢ Run	sequence	PrepSequence	Sto) Eryo Cooling	Logbook	
м	PS	Sampler: Syringe:	MPS 2.5ml-HS	Vial: SeqLine:	N/A N/A	
Ext. Device: MPS Status:	N/A Idle			J Janpie.	1005	
Method	Agitat	и Temp.	Syringe Temp	h		

🥊 メソッドの読み込みと編集

既存のメソッドを読み込む

 メニューから [Method] → [Load...] を選びます。 [HS(Sake).mth]を選択して[Open]をクリックします。

ilename	Liquid Syr.	Headspace Syr.	Method Information	Created	Modified
Default.mth	10ul	2.5ml-HS		11/10/2009 11:	11/06/2008 07:
HS(sake).mth	10ul	2.5ml-HS		12/28/2009 11:	01/25/2010 03:
HSS1.mth	10ul	2.5ml-HS		10/29/2009 01:	11/10/2009 02
Kouyamaki.mth	10ul	2.5ml-HS		12/10/2009 01:	12/10/2009 03
🗍 Liquid.mth	10ul	2.5ml-HS		10/28/2009 04:	11/09/2009 05:
🗍 Liquid091125-2.mth	10ul	2.5ml-HS		11/25/2009 01:	11/25/2009 01:
Liquid091125.mth	10ul	2.5ml-HS		11/25/2009 01:	11/25/2009 01:
Liquid091201.mth	10ul	2.5ml-HS		12/01/2009 12:	12/01/2009 12
🗍 Liquid091203-2.mth	10ul	2.5ml-HS		12/03/2009 04:	12/03/2009 04:
🗓 Liquid091203.mth	10ul	2.5ml-HS		12/03/2009 11:	12/03/2009 06:
Liquid091204.mth	10ul	2.5ml·HS		12/04/2009 03:	12/03/2009 06
				_	

オートサンプラーのメソッド

シリンジのサイズや注入量、注入速度など の設定をまとめたファイルです。 [HS(Sake).mth] は和歌山県工業技術セン ターが開発したメソッドで、清酒の香気成 分分析に最適化されています。

メソッド編集画面を開く

メニューから [Method] → [Edit] を選びます。

システム設定をする

ランタイムとGCの冷却時間を設定します。

Information	GERSTE
System Settings	
Settings	
Runtime Este min Enter the Runtime of the GC Oven Program here (including the GC PostRunTime if used)	
Minimum Runtime: 0.00 min	
GC Cool Down Time 7.00 min	
	Information Image: System Settings Settings Runtime Enter the Runtime of the GC Oven Program here (including the GC PostRunTime if used) Minimum Runtime: 0.00 min GC Cod Down Time 7.00 min

MPSの設定をする

SYSTEM	Headspace Injection Settings Options			GERS
MPS	Syringe Settings	Sample		
	Syringe 2.5ml/HS	τ Inj. Volume (μL)	1000.0	
Liquid		Inj. Speed (µL/s)	200.00	
-	Syringe Temp. (°C) 50 35.0	Pullup Delay (s)	0	
Headspace	Flush Time (s) 300	Fill Volume (μL)	2500.0	
LVI Calc		Fill Strokes	0	
	Sample Preparation	Fill Speed (µL/s)	200.00	
	Headspace from Tray	Pre Inj. Delay (s)	0	
	Uniting and has believe	Post Inj. Delay (s)	0	
	meaning and includation	Inj. Penetration (mm)	25.00	
	Incubator Agitator	Sample Tray Type	VT 32-20 💌	
	✓ Incubation Temp. (*C) 50 <u>35.0</u>	Vial Penetration (mm)	22.00	
	Incubation Time (min) 30.00			
	Agitator On Time (s) 10			Hal
	Agitator Off Time (s) 1			And
	Agitator Speed (rpm) 250			

設定を終了する

[OK]をクリックして編集画面を閉じます。

メソッドを保存する

メニューから [Method] → [Save as] を選びます。
 ファイル名を入力し、[保存] をクリックします。

📕 システム設定

[Runtime]

測定時間(分)を入力します。 ChemStationで設定した値(17ページ [GCパラメータ]の[オーブン温度]にお けるランタイム)に合わせます。

[GC Cool Down Time] 測定後にGCを冷却するのに必要とされる 時間(分)を入力します。

MPS

主要な設定項目のみ紹介します。 詳しくはメーカー発行のマニュアルをお読 みください。

[Headspace]

ヘッドスペース注入時のみ設定できます。

[Syring Temp.] 分析中のシリンジの温度を設定します。

[Incubation Temp.] アジテーターの温度を設定します。

[Incubation Time] アジテーターでの加熱時間を設定します。

[Liquid] 液体注入時のみ設定できます。

[Inj. Volume] 注入するサンプルの量を設定します。

[**Inj. Speed**] サンプルの注入速度を設定します。 概要

前

伔

玾

測定

シーケンスの読み込みと編集	
 シーケンスを読み込む ① メニューから [Sequence] → [Load] を選びます。 ② [Sake(HS).seq] を選び、[Open] をクリックします。 	
Construinent 1 Select Sequence Folder Current Folder: C VProgram File/V Gestel/Maestro/Y1VS equence// Free squence Folder Current Folder: C VProgram File/V Gestel/Maestro/Y1VS equence// Free squence Folder Int/doi/2008 00 Int/doi/2008 00 Open Status eq Doi Int/doi/2008 00 Int/doi/2008 00 Open Status eq Doi Int/doi/2008 01 Int/doi/2008 03 ExecuteStatus eq Doi Int/doi/2008 03 Int/doi/2008 03 ExecuteStatus eq Doi Int/doi/2008 03 Int/doi/2008 03 Int/doi/2008 03 ExecuteStatus eq Doi Int/doi/2008 03 Int/doi/2008 03 Int/doi/2008 03 Int/doi/2008 03 ExecuteStatus eq Doi Int/doi/2008 01 Int/doi/2008 01 Int/doi/2008 01 Int/doi/2008 01 Int/doi/2008 01 Int/doi/2008 01	
2 シーケンス編集画面を開く メニューから [Sequence] → [Edit]を選びます。	
3 シーケンスを編集する 先に設定したGC/MS分析装置のシーケンスと同じ順番になるように 編集します。	■ オートサンプラーのシーケンス [Vial] サンプルトレイのウェル番号を入力します。 [Method] 使用するメンッドを選択します
WHSS Sequence Table 1 - C-YFrorram Files/Gerste/HMaestro/HSequence/Sake/US3.eq Stroop Cold Cold	<pre>[Volume] 1000.0とします。 [Tray] ヘッドスペース法の場合は、[Tray2-20, VT32-20]を選択します。 [Injector] S/SL-Bを選択します。 [Sample Name] 溶液名を入力します。</pre>
Modified Val 3 - sealbul2 4 シーケンス編集を終了する [OK] をクリックしてシーケンス編集画面を閉じます。	

5 シーケンスを保存する

メニューから [Sequence] → [Save as...] を選びます。
 ファイル名をつけて [保存] をクリックします。

測定の開始と終了

測定を開始します。GC/MS分析装置とオートサンプラーの両方でシーケンスを実行します。

スニッフィング (匂いかぎ)

ノーズコーンとOID (匂い強度入力装置)を使って、匂いかぎを行います。

匂いかぎを始める

GC分析が開始されたら、鼻をノーズコーンに近づけ、匂いをかぎます。OIDを握り、指はボタンの上に置きます。

⑦ 匂いを感じたら、OIDのボタンを押す

時間とともに匂い成分がGCで次々と分離されてくるので、目的の匂いなど、匂いを感じた時にボタンを押します。 強い匂いを感じたときはボタンを深く押し、弱い匂いのときは浅く押すことで、匂いの強弱をシグナルとして取り込むことができます。シ グナルはPCの画面に表示されます。

データ解析

測定したデータを取り込んで解析します。定性と定量のデータ解析ができます。

/(X: [D#201001#20100125		
パス変更(C)	オペレータ: 三宅英伸	
100122HP5moromi D		
100122HP5ptest1.D	一 般(情報限:	
100122HPorashomona.D 100122HP5sekai3.D	サンプル名: 清酒1	
100122HP5sekai7.D	アバンガンス	
	600000-	
	400000-	
	200000-	

25

③ データファイルを選んで [OK] をクリックします。

パス: D¥201001¥20100125	- <u></u>		
パス変更(C)	オペレータ:	三宅英伸	
100122HP5moromiD		1	
100122HP5ptest1.D	一般情報		
100122HP5sekai3.D	サンブル名	清酒1	
	アパンダンス 600000	L.	
	400000 -		
	200000-		
		u.l.L.	
	時間>	10.00	20.00
	OK キャンセル	1 NJJ7(H)	

3

解析メソッドを読み込む

メニューから [メソッド] → [メソッドの読み込み] を選びます。
 確認メッセージが表示されるので、[はい] をクリックします。

③ [HP-5ScanSake(HS).M] を選んで [OK] をクリックします。

メンクトョルのユ	Ø	
	COOLDOWNDE-1.M COOLDOWNDE-1.M COOLDOWND-wax.M DOULDOWNHP5.M DB-15.M DB-15.CanSake(HS).M DB-WAXM DB-WAXM DB-WAXM DB-WAXSCANSAKE(HS-2).M DB-WAXSCANSAKE(HS-1).M De-WAXSCANSAKE(HS).M	
		-

ピークを拡大する

クロマトグラム上で、解析したいピークを含む範囲を、**マウスの左ボ** タンでドラッグして囲みます。

左ボタンから手を離すと、選択した範囲が拡大表示されます。

📕 解析メソッド

通常、測定に使ったメソッドを選択します。 [HP-5ScanSake(HS).M] は和歌山県工業 技術センターが開発したメソッドで、香気 成分分析に最適化されています。

■ 拡大した表示を元に戻すには

クロマトグラム上で**マウスの左ボタンをダ** ブルクリックすると、ひとつ前の大きさに 戻ります。

マススペクトルを表示させる

画面上段のMSクロマトグラム上で、見たいピークにラインカーソル を合わせ、マウスの**右ボタンをダブルクリック**します。 画面下段にマススペクトルが表示されます。

同定する

マススペクトル上でマウスの右ボタンをダブルクリックします。

同定結果のウィンドウが開きます。

🧧 マススペクトル

質量分析の結果を表すスペクトルで、横軸 に質量電荷比(m/z)、縦軸に検出強度を とったものです。

測定

分

析例

前処理

概要

📕 同定結果の見かた

[ウィンドウ #XX]

上下2つのマススペクトルが表示されます。 上が測定試料のスペクトルです。 下はライブラリに存在する化合物のうち、 測定試料にもっとも近いと思われるものの スペクトルです。

[PBM 検索結果]

画面左下に表示されます。ライブラリの化 合物が一致率の高い順に表示されます。

[(化合物名)]

画面右下に表示されます。ライブラリの化 合物の構造式です。

Aroma office の使用

香気成分の化合物情報や文献情報を収録 したデータベースソフトAroma Officeを 使用できます。 メニューから [Aroma Office] → [Aroma Office サーチ] を選んで起動します。

定量のデータ解析

データを読み込む

- メニューから [ファイル] → [データファイルの読み込み] を選びます。
- ② PPM1の香気成分標準溶液を選び、[OK]をクリックします。

🔵 自動積分を行う

- メニューから[クロマトグラム]→[自動積分実行]を選びます。
 確認メッセージが表示されるので、[はい]をクリックします。
 自動積分パラメータがメソッドに保存されます。
- ③ ファイル名が表示されるので、[OK] をクリックします。

積分で認識されたピークのベースラインに赤線が引かれ、上に保 持時間が表示されます。

え 積分条件を設定する

 メニューから [クロマトグラム] → [MSシグナル積分パラメータ] を選びます。

[積分条件設定] ウィンドウが開きます。

 ② 小さなピーク値を積分します。[初期スレッショルド]を選び、[値] に 現在表示されている数値より小さい値を入力し、[入力] → [適用] の順にクリックします。

積分条件 リスト(P):		積分条件		值(\/):	時間(T)
[•	物期スレッショルド		17.1	同期
		積分イベント名	値	時間	
		*初期面積リジェクト *初期ピーク幅	0 0.022	≱刀其月 ≱刀其月	
	(ショルション 1800 初期スレッショルド	17.1	初期	
		1			

対象とするピークが積分されなかった場合は、入力する数値をさらに下げ、積分されるまで[入力]→[適用]を繰り返し行います。

保持時間(リテンションタイム) 試料を注入してから成分が検出器で検出されるまでの時間のことです。

▋ 初期スレッショルド

スレッショルドが1増加すると、感度は2分の1に低下し、検出されるピークの数は減少します。 設定可能範囲は -12~25です。初期設定値は18です。

積分が不要な箇所を指定する

1 [積分条件リスト]から [積分 OFF] を選び、[時間] に OFF にする開始時間を入力して [入力] をクリックします。

- 2 [適用]をクリックします。
- ③ [積分条件リスト] から [積分ON] を選び、[時間] にONにする開 始時間を入力して [入力] をクリックします。

■ 盤拡張データ解析 - HP-5SCANSAKE(HS).M /	100122HP5STD10PPM.D (ミックスデータ: 未定量)	
ファイル(F) メソッド(M) 再解析(R) クロマトグラム(C) スペクトル(S) キャリブレーション(B) 定量(Q) レポートをエクスポート(R) ツール(T) オブション(O)	表示(V)
<u>*************************************</u>	🏧 🗄 🔜 🖶 🖽 🗉 🖾 🖾 🖾 🖾 🎽 🎢 72 73 72 7	5
		5
[2] TIC: 100122HP5std10ppm.D¥data.ms		
700000		
600000		
500000		
400000		
300000		
200000		
100000		
		1600
100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100		<u>' 16hn</u>
100000 100000 10000-2 位 4 位 4 位		'isho
100000 100000 100000 100000 100000 200 400 400 400 400 400 400		ndar '
100000 100000 100000 100000 2/10 2/10 4/10 4/10 4/10 4/10	Khn - 11 nhn - 12 hn - 14 hn - 14 hn - 12 hn - 14 hn -	<u>, 1900</u>
100000 100000 100000 100000 100000 200 400 400 400 400 400 400	客内 10hn 12hn 14hn 客分余件: 値(い): 時間(1) 種分余件: 値(1) 12 種分不少た名 値(1) 12 種分子(小た名) 値(1) 12	<u>, 1991</u>
100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000	高内 高内 10 hn 12 hn 14 hn 電分条件: (回い): 時間(1) (国分 ペント名 (回 時間) 「御子 小田 70時 「御子 小田 0022 「御子 小田 0022 「御子 小田 007 「御子 小田 007	<u>16hn</u>
100000 100000 100000 100000 100000 100000 200 400 400 400 400 400 400	福倉 10hn 12hn 14hn 福分半(年: (首小): 時間の) 12 福分子(年: (首小): 12 種分子(本): (首小): 12 種分子(本): (首 時間) 12 種分子(本): (首 時間) 12 種分子(本): (首 時間) 12 種分子(本): (音 時間) 12 種分子(本): (5 0) (5 0) 「第二日 (7 0) (7 0) 「第二日 (7 0)	<u>' 'isho</u>
100000	福倉 10hn 12hn 14hn 福台会(中) 10hn 12hn 14hn 福台会(中) 600 12 福台会(中) 1 1 第四日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の	<u>' 16hn</u>
100000	福伯 福伯 10hn 12hn 14hn 福分奈信: (個小) 10hn 12hn 14hn 福分奈信: (個小) 12hn 112hn 福分奈介: (個小) 0 13月 福分子(小) 0 13月 114hn 福分子(小) 0 13月 114hn 福分子(小) 0 13月 114hn 13月 14D 1500 114hn 140 140 1500 114hn	<u>16hn</u>

- ④ [適用]をクリックします。
- ⑤ [OK]をクリックします。
 変更の保存をたずねるメッセージが表示されるので、[はい]をクリックします。
- 6 別名で保存します。

「積分を実行する

- メニューから[クロマトグラム]→[積分]を選びます。 積分が行われます。
- ② メニューから[クロマトグラム]→[積分結果]を選びます。
 [テーブル表示] ウィンドウに積分結果が表示されます。

2-ク#	RT.	タイプ	幅	面積	開始時間	終了時間		
	1.319	BB	0.052	1027795	1.201	1.465	3).	
	2.046	BB	0.024	1426388	1.991	2.196		
	3.055	BB	0.033	5706883	2.992	3.190		
	4.611	BB	0.023	11079493	4.533	4.776		

6 上記手順1~5の作業を、ほかの香気成分標準液および 測定試料に対しても同様に行う

これにより、以下の溶液すべてのピーク面積が算出されます。

- 香気成分標準液 (PPM 0、1、3、5、8、10)
- 測定試料

7 香気成分標準液の検量線を作成する

1 各香気成分濃度と面積比率で検量線を作成します。
 2 測定試料の面積比率を求めます。

③ 検量線を用いて各香気成分量を算出します。

清酒もろみ	32
清酒 (吟醸酒)	33
焼酎·泡盛	34
ミカンワイン	35
ウメ果実	36
梅酒	37
金山寺味噌	38
ジャバラ果皮	39

清酒もろみ

共通の分析試料である清酒もろみですが、和歌山県工業技術センター所有の酵母 「和歌山酵母」を用いて醸造されている純米酒のもろみです。ここでは上槽直前のものを試料とし、本装置により香気成分を分析した例を示します。

分析方法: ヘッドスペース法

前処理方法 清酒もろみ [1.8 ml] と内部標準溶液 [0.2 ml] を 20 mlのバイアル瓶に入れ、50 ℃で 30 分間イン キュベートします。

分析条件
 【カラム】HP5 30 m×250 µm×0.25 µm
 【昇温条件】50 ℃ 0分→10 ℃/分→250 ℃ 5分
 【注入温度】250 ℃ 【注入量】1 ml 【スプリット法】スプリット17:1 【カラム流量】1.6 ml/分

※匂いかぎシグナルは、匂いかぎ装置を用いて、鼻で匂いを感じたときに検出したものです。MSとあわせることで匂い成分を特定することができます。

吟醸酒は特定名称酒のひとつで、特有の「香り」が重要視されます。最終的な評価は香味のバランスで決まりますが、 品質管理を行う上で、きき酒評価とともに香気成分分析も重要な役割を果たしています。 ここでは、平成20酒造年度の吟醸酒を分析した例を紹介します。原料米は山田錦、精米歩合は40%で、吟醸酒 用の清酒酵母を使用しています。

分析方法:ヘッドスペース法

前処理方法 清酒 [1.8 ml] と内部標準溶液 [0.2 ml] を20 mlのバイアル瓶に入れ、50 ℃で30 分間インキュ ベートします。

分析条件
 【カラム】HP5 30 m×250 µm×0.25 µm
 【昇温条件】50 C 0分→10 C/分→250 C 5分
 【注入温度】250 C 【注入量】1 ml 【スプリット法】スプリット17:1 【カラム流量】1.6 ml/分

焼酎は、近年の焼酎ブームで大きく需要を拡大し、原料や製法にこだわった個性的な製品が多く開発、発売されています。ここではウメを原料とした焼酎や麦焼酎、芋焼酎、泡盛についての香気成分を本装置により分析した例を示します。

分析方法: ヘッドスペース法

前処理方法 焼酎 (泡盛) [1.8 ml] と内部標準溶液 [0.2 ml] を 20 mlのバイアル瓶に入れ、50 ℃で 20 分間イン キュベートします。

分析条件
 【カラム】DB-WAX 30m×250µm×0.25µm
 【昇温条件】50℃ 5分→10℃/分→220℃ 5分
 【注入温度】230℃ 【注入量】1ml 【スプリット法】スプリット17:1 【カラム流量】1.5ml/分

分析結果

- 1 Ethyl Acetate
- 2 1-Propanol, 2-methyl-
- 3 1-Butanol, 3-methyl-, acetate
- 4 Hexanoic acid, methyl ester
- 5 1-Butanol, 2-methyl-
- 6 Hexanoic acid, ethyl ester
- 7 1-Pentanol
- 8 Octanoic acid, ethyl ester9 Benzaldehyde
- ※梅泡盛では、梅特有の香り成分で杏仁 豆腐に似た香りがするBenzaldehyde (ベンズアルデヒド)が多く含まれて、 素材の特徴がよく反映された製品と なっています。

ミカンワイン

ミカンは和歌山県の重要な特産品のひとつで、生産量は全国一(平成19年:全国生産量の約2割)です。県内では ミカンの加工も盛んで、ジュースや缶詰、ジャム、ゼリーのほかにミカンワインなども製造されています。ここで は異なる酵母で製造したミカンワインの香気成分を本装置により分析した例を示します。

分析方法:ヘッドスペース法

前処理方法 ミカンワイン [2 ml] を20 mlのバイアル瓶に入れ、50 ℃で10 分間インキュベートします。
 分析条件 【カラム】DB-WAX 30 m×250 µm×0.25 µm
 【昇温条件】50 ℃ 5分→10 ℃/分→220 ℃ 10 分
 【注入温度】230 ℃ 【注入量】1 ml 【スプリット法】スプリット17:1 【カラム流量】1.5 ml/分

分析結果

※2種類の酵母で製造したミカンワインには同じ香り成分が含まれていますが、それぞれの成分含量が異なり、官 能による香りの違いをよく現しています。

ウメは和歌山県の重要な特産品のひとつで、生産量は日本一(平成19年:全国生産量の約6割)です。ウメ果実 は生食することはなく、梅酒などに加工されますが、原料果実の状態が香りなどの加工品質に大きく影響すること が知られています。ここでは熟度が進んだウメ果実に含まれる香気成分を本装置により分析した例を示します。

分析方法:カラム濃縮法

前処理方法 ウメ果実 [100g] に蒸留水を同量加えてミキサーで粉砕し、遠心分離します。
 上澄みをガラスフィルターでろ過したあと、ポラパックQ(10ml)カラムに通し、吸着した香気成分をジエチルエーテル [100ml] で溶出します。
 溶出液に内部標準液として1%(V/V)シクロヘキサノール水溶液 [10μl]を加え、無水硫酸ナトリウムで脱水後、37℃・常圧下で100μl程度に濃縮し、香気濃縮液を試料とします。
 分析条件 【カラム】DB-WAX 30m×250μm×0.25μm

【昇温条件】40℃ 5分→4℃/分→220℃ 10分 【注入温度】230℃ 【注入量】1 ml 【スプリット法】スプリット5:1 【カラム流量】1.2 ml/分

分析結果

※完熟したウメ果実には、エステル類(果物らしい香り)やラクトン類(甘い香り)が多く含まれていることがわかり ます。

梅酒は梅干しとともにウメの代表的な加工品で、ビールなどの酒類が伸び悩むなか、他のリキュールとともに近年 需要は拡大しています。ここでは梅酒に含まれる香気成分を本装置により分析した例を示します。

分析方法

I. ヘッドスペース法	去(HS 法)「鼻先香」の成分分析に好適
前処理方法	梅酒〔1.8 ml〕と内部標準溶液〔0.2 ml〕を20 mlのバイアル瓶に入れ、50℃で20分間インキュベートします。
分析条件	【カラム】 DB-WAX 30m×250μm×0.25μm 【昇温条件】 40℃ 5分→4℃/分→220℃ 10分 【注入温度】 230℃ 【注入量】 1 ml 【スプリット法】 スプリット10:1 【カラム流量】 1.2 ml/分
Ⅱ. カラム濃縮法(PQ法)「口中香」の成分分析に好適
前処理方法	梅酒 〔100 ml〕 をポラパックQ (10ml) カラムに通し、吸着した香気成分をジエチルエーテル 〔100ml〕 で溶出します。溶出液に内部標準液として1% (V/V) シクロヘキサノール水溶液 〔10 μl〕

を加え、無水硫酸ナトリウムで脱水後、37℃・常圧下で100µl程度に蒸留濃縮し、香気濃縮液を

試料とします。分析条件 I. ヘッドスペース法 (HS法)と同じ

分析結果

測定

金山寺味噌

分析試料の特徴

金山寺味噌は和歌山県の特産品のひとつで、鎌倉時代の僧・心地覚心(しんちかくしん)が宋から帰朝し伝えた「径山寺(きんざんじ)味噌」が起源とされています。大豆・米・麦・野菜等を材料に1週間から3か月間発酵させて作られ、調味料としてではなく、おかずや酒の肴としてそのまま食します。ここでは金山寺味噌の香気成分を本装置で分析した例を示します。

分析方法: ヘッドスペース法

前処理方法
 ウメ果実[100g]に蒸留水を同量加えてミキサーで粉砕し、遠心分離します。
 上澄みをガラスフィルターでろ過したあと、ポラパックQ(10ml)カラムに通し、吸着した香気成分をジエチルエーテル[100ml]で溶出します。
 溶出液に内部標準液として1%(V/V)シクロヘキサノール水溶液[10µl]を加え、無水硫酸ナトリウムで脱水後、37℃・常圧下で100µl程度に蒸留濃縮し、香気濃縮液を試料とします。
 分析条件
 【カラム】DB-WAX 30m×250µm×0.25µm
 【昇温条件】40℃ 5分→4℃/分→220℃ 10分
 【注入温度】230℃ 【注入量】1ml 【スプリット法】スプリット5:1 【カラム流量】1.2ml/分

分析結果

ジャバラ果皮

ジャバラは和歌山県東牟婁郡北山村原産の柑橘で、「邪をはらう」 ことからこの名前がつけられました。「ゆず」 や 「すだち」 などの香酸柑橘類の仲間で、独特な風味をもち、皮や果汁はジャムやジュース、ポン酢などに加工されます。 ここではジャバラ果皮に含まれる香気成分を本装置により分析した例を示します。

分析方法:溶媒抽出法

前処理方法 果皮 [5g] にジエチルエーテル [20ml] を加え、三角フラスコ中で15時間撹拌します。 Na₂SO₄を添加し脱水後、エーテル抽出液を37℃・常圧下で100μl程度に蒸留濃縮し、試料とし ます。

分析条件 【カラム】DB-1 30m×250µm×0.25µm
 【昇温条件】40℃ 3分→5℃/分→260℃ 1分
 【注入温度】250℃ 【注入量】1ml 【スプリット法】スプリット20:1 【カラム流量】1.2ml/分

分析結果

近畿地域イノベーション創出協議会

事務局

 (独) 産業技術総合研究所 関西産学官連携センター 〒563-8577 大阪府池田市緑丘1-8-31
 電話:072-751-9004(代)
 FAX:072-751-9621(代)
 メール:techno-soudan@m.aist.go.jp
 ホームページ:http://unit.aist.go.jp/kansai/

問い合わせ先

和歌山県工業技術センター

〒649-6261 和歌山市小倉60 電話:073-477-1271(代) FAX:073-477-2880(代) メール:webmaster@wakayama-kg.go.jp ホームページ:http://www.wakayama-kg.go.jp/