

Agilent トリプル四重極 GC/MS による 農薬 175 種の微量分析メソッド

アプリケーション

食品安全性

著者

Philip L. Wylie and Chin-Kai Meng Agilent Technologies, Inc. 2850 Centerville Rd. Wilmington, DE 19808 USA

概要

Agilent 7890A/7000A GC トリプル四重極質量分析計システム (GC/QQQ) を用いて、一般 に分析される農薬 175 種のための GC/MS/MS マルチプルリアクションモニタリング (MRM) メソッドを開発しました。このメソッドと GC シングル四重極質量分析計 (GC/Q) により、多数の果実および野菜抽出液を分析し、結果を比較しました。GC/Q の 測定モードとしては、選択イオンモニタリング (SIM) モードとスキャンモードを使用し ました。スキャン結果の評価にあたっては、アジレントのデコンボリューションレポー ト作成ソフトウェア (DRS) と RTL 農薬および内分泌かく乱物質データベースを使用しま した。マルチモード注入口を搭載した GC/Q 機器を使用し、コールドスプリットレス モードで 5 µL を注入しました。これらの結果を、GC/QQQ で同じ抽出液 1 µL を注入し た分析結果と比較しました。GC/QQQ の感度と選択性は、GC/Q のいずれのモードも大 きく上回りました。これは主に、共抽出されたマトリックスに由来する干渉が大幅に低 減するためです。ただし、MRM モードの GC/QQQ が適用できるのはターゲット化合物 分析のみであることから、DRS により 900 種以上の農薬や他の汚染物質をスクリーニン グできる GC/Q メソッドが必要であることには変わりありません。

はじめに

残留農薬分析は、多様な農作物マトリックス中に含まれる数十 種類、ときには数百種類もの化合物を検査することが求められ る複雑な作業です。QuEChERS メソッド [1-3] などの抽出テク ニックでは、抽出液中に多量の物質が残存します。より徹底的 なクリーンアップ手順を用いると、マトリックスに加えて残留 農薬も除去されてしまうおそれがあります。多くの農薬では 10 μg/Kg (10 ppb) 以下の検出下限が求められることから、より高度 な分析ツールが必要とされています。

GC で分析できる農薬の場合、多くのラボではスクリーニングお よび確認のために 2 つの補完的なテクニックが用いられていま す。5~100 ppb レベルの広範なスクリーニングでは、アジレン トのデコンボリューションレポート作成ソフトウェア (DRS) と RTL 農薬および内分泌かく乱物質ライブラリを組み合わせた GC/ シングル四重極 (GC/Q) が適用されます [4-6]。このメソッ ドは、GC で分析できる 927 種類の農薬と内分泌かく乱物質を1 回の GC/MS 分析でスクリーニングできるスキャンメソッドで す。ほとんどの農薬の検出下限は 5~100 ppb 程度で、マトリッ クスや注入量により異なります [4]。より複雑なマトリックス中 のターゲット農薬分析では、Agilent 7890A/ 7000A GC/ トリプル 四重極 (GC/QQQ) が比類のない性能を発揮します。

本論文では、幅広い農作物マトリックスに含まれる残留農薬を 分析する3種類の質量分析テクニックを比較します。GC/Qでは 選択イオンモニタリング (SIM) モードおよびDRS 分析を組み合 わせたスキャンモードにより、添加および非添加サンプルを分 析しました。GC/QQQでは同じサンプルを、農薬175種を対象に したマルチプルリアクションモニタリング (MRM) メソッドによ り分析しました。実験の目的は、複数の農作物マトリックスに 含まれる微量農薬の検出における GC/Q および GC/QQQ メソッ ドの性能を比較することです。

実験手法

サンプル

青果の添加および非添加抽出液は、米国食品医薬品局 (FDA、CFSAN、カレッジパーク、メリーランド州)と米国農務省 (USDA ARS、ERRC、ウィンドムーア、ペンシルベニア州) から 入手しました。FDA のサンプルについては、追加の吸着剤とし て活性炭を用いるように修正した QuEChERS [1-3] メソッドによ り調製しました。このメソッドにより得られたトルエン溶液 は、1 mL あたり農作物 4.5 g が含まれています。USDA のサンプ ルについては、公表されている QuEChERS メソッドを用いて抽 出しました。このサンプルでは、アセトニトリル溶媒 1 mL あた り農作物1gが含まれます。

使用機器

本実験に用いた GC/Q および GC/QQQ システムを表1および表 2にまとめます。

表 1 GC/0 システムの機器設定および分析条件

2011 007 00 000 000	
GC オートサンプラ	Agilent 7890A シリーズ Agilent 7693A インジェクタおよびサンプルト レイ
注入口 キャリアガス	マルチモード注入口 ヘリウム
注入口圧力	分析時 18.420 psi (コンスタントプレッシャー モード)、2.0 psi (バックフラッシュ時)
スプリットレスモード注入口が 温度	パラメータ 250 °C
油皮 注入ロライナ	ヘリックスダブルテーパ、不活性 (P/N 5188- 5398)
注入量	1 μL
スプリットベントの パージ流量	0.75 minで 30 mL/min
コールドフプリットレフモー	ド注入口パラメータ
コールドスクラットレスと 温度プログラム 注入ロライナ	12年入口ハワス 9 60°C (0.01 min) - 700°C/min - 280°C ヘリックスダブルテーパ、不活性 (P/N 5188-
注入量	5398) 5 ul
スプリットベントの パージ流量	1.25 minで 30 mL/min
オーブン温度プログラム	70 °C (1 min) - 50 °C/min - 150 °C - 6 °C/min - 200 °C - 16 °C/min - 280 °C (5 min)
キャピラリ・フロー・	1 ポートに蓋をした 2 ウェイスプリッタ
テクノロジー	――分析カラムおよびリテンションギャップ のバックフラッシュに使用
圧力/流量制御モジュール (PCM)	ヘリウムを 2 ウェイスプリッタに配管
PCM 圧力	分析時 4.0 psi、バックフラッシュ時 60.0 psi
分析カラム	Agilent J&W HP-5ms UI 15 m × 0.25 mm × 0.25 um (P/N 19091S-431UI)
接続	リテンションギャップと 2 ウェイスプリッタ 間
リテンションギャップ	2.0 m × 0.25 mm Siltek 不活性フューズドシリ カチューブ (Restek、ベルフォンテ、ペンシル ベニア州)
接続	注入口と分析カラム間、アルティメットユニ オン (P/N G3182-61580) を用いてリテンショ ンギャップとカラムを連結
リストリクタ	80 cm × 0.15 mm 不活性フューズドシリカ チューブ (Agilent)
接続	2 ウェイスプリッタと MSD 間
初期カラム流量	2.705 mL/min
リテンションタイム ロッキング	クロルビリホスメチルで 8.298 minにロック
質量選択検出器	Agilent 5795C シリーズ、パフォーマンス ターボポンプ
モード	EI
トランスファライン温度	280 °C
イオン 源温度 四重極温度	230 °C 150 °C
コミュニーク	100
サンプリングレート	A/D = 4
ゲインファクタ SIM ドウェルタイム	1 425 mg
SIMI トワェルダイム 微量イオン検出	4 ~ 25 ms オン
溶媒ディレイ	2.5 min
バックフラッシュ条件	
タイミング	分析後に 5 min
オーブン温度	280 °C

表 1. GC/Q システムの機器設定および分析条件 (続き)

Aux EPC 圧力 注入口圧力	60 psi 2 psi
ソフトウェア GC/MSD	Agilent GC/MS ChemStation コントロールお よびデータ解析ソフトウェア (P/N G1701EA E.02.00 SP1)
デコンボリューションレポー	ト作成ソフトウェア Agilent P/N G1716AA (Ver. A.04.00)
ライブラリ検索ソフトウェア	NIST MS Search (Ver 2.0d) (NIST 質量スペク トルライブラリに搭載 – Agilent P/N G1033A)
デコンボリューション ソフトウェア	自動質量スペクトルデコンボリューション および同定ソフトウェア (AMDIS_32 バー ジョン 2.62 以降;NIST 質量スペクトルライ ブラリに搭載 – Agilent P/N G1033A)
MS ライブラリ	NIST 08 質量スペクトルライブラリ (Agilent P/N G1033A) 農薬および内分泌かく乱物質データベース (Agilent P/N G1672AA)

表 2. GC/000 システムの機器設定および分析条件

GC	Agilent 7890A シリーズ
オートサンプラ	Agilent 7683A インジェクタおよびサンプル
	トレイ
注入口	スプリット/スプリットレス
注入ロライナ	ヘリックスダブルテーパ、不活性 (P/N 5188-
	5398)
キャリアガス	ヘリウム
	分析時 18 350 nsi (コンスタントプレッシャー
	モード)、10 nsi (バックフラッシュ時)
注入口温度	250 °C
注入量	1 ul
フプリットベントの	0.75 min 7° 30 ml /min
パージ流量	
ガフセーバー	オン (2.0 minで 20 ml /min)
オーゴン涅度プログラム	$70 \circ (1 \text{ min}) = 50 \circ (7 \text{ min}) = 150 \circ $
	$200 ^{\circ}\text{C} = 16 ^{\circ}\text{C} / \text{min} = 280 ^{\circ}\text{C} (55 ^{\circ}\text{min})$
キャピラリ・フロー・	パージ付アルティメットファオン
	// ノロ/ルノイ/ノー/ユニオノ (P/N C3186B)——分析カラムお上びリテン
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1/10031000) の のの ひの ひの ひの ひ の ひ の ひ の ひ の ひ の ひ の
	ハリウムをハーク内ノルノィスクトユニオ
	ノ に叱邑 公抵時 4 0 mai バックフラッシュ 時 90 0 mai
	Jが時 4.0 pSi、バックフラックエ時 60.0 pSi
万利リノム	Agileili JAVV HF-5ilis UI 15 ili × 0.25 ililii ×
拉结	0.25 µm (F/N 190915-43101)
按杭	
リニンションギャップ	ティブットユニオノ(F/N G3100D) 回
リテノショノキャッノ	2.0 m×0.25 mm Silter 小冶性フューストシリ
	リテューフ (Rester、ハルフォフテ、ハフシ
拉结	
按杭	注入口と万竹刀フム间、アルティメットユー
	オフ (P/N G3182-01580) を用いてりテノジョ
	ノキャッノとハフムを連結
リストリシダ	65 cm × 0.15 mm 不活性ノユーストシリル
++++++	
按統	ハーショアルティメットユニオン(P/N
初期上二人法国	し3180B)と MSD 間
初期リフム流軍	2.000 mL/mln クロルパルナス パチルズ
リテンションタイム	シロルヒリホスメナルで
ロッキンク	8.298 minにロック

トリブル四重極質量分析計 モード トランスファライン温度 溶媒ディレイ イオン源温度 四重極温度	Agilent 7000A シリーズ El 280 °C 2.3 min 300 °C Q1 および Q2 = 150 °C
MRM モード条件	
MS1 分解能	1.2 u
MS2 分解能	1.2 u
コリジョンガスフロー	N2 : 1.5 mL/min、He : 2.35 mL/min
バックフラッシュ条件	
タイミング	分析後に 3min
オーブン温度	280 °C
Aux EPC 圧力	80 psi
注入口圧力	1 psi
ソフトウェア	
データ採取	Agilent MassHunter データ取得ソフトウェア
	(Ver. B.04.00)
定性分析	定性分析用 MassHunter Workstation ソフト ウェア (Ver. B.03.01)
定量分析	定量分析用 MassHunter Workstation ソフト ウェア (Ver. B.03.01)

結果と考察

GC 構成

いずれの GC システムでも、15-m × 0.25 mm × 0.25 µm Agilent J&W HP-5ms UI カラムを使用し、2 倍のスピードで Agilent 標準 農薬メソッド [7] を実行しました。このメソッドで適用される 初期オーブン温度は 70 °C です。この温度の場合、リテンショ ンギャップを用いなくてもほとんどの GC 溶媒に対応できま す。ただし、トルエン中のサンプル 1-µL を注入する場合はピー ク形状が悪くなるため、2-m 不活性リテンションギャップをカ ラム前面に接続しました。これにより、ピーク形状が向上しま した。

食品抽出物を分析する場合、一般に沸点の高い化合物が多く含 有されているため、カラムのバックフラッシュが欠かせません [4,8–9]。わずか数回の分析を行っただけで、そうした高沸点化 合物がカラムヘッド(またはリテンションギャップ)に蓄積し、 ピークテーリングやリテンションタイムの変動を引き起こすこ とがあります。そうした蓄積物は、やがてカラムから質量分析 計のイオン源へと移動し、洗浄の必要が生じます。

アジレントのキャピラリ・フロー・テクノロジーは、カラムの バックフラッシュをルーチン手順に組み込むものです (4,8–9)。 各種のキャピラリ・フロー・デバイスをバックフラッシュに使 用することができます。GC/QQQ システムでは パージ付アル ティメットユニオン、GC/Q システムでは 2 ウェイスプリッタ (1 ポートに蓋)を使用しました。いずれのケースでも、分析カ ラムをキャピラリ・フロー・デバイスに接続しました。短いリ ストリクタを使用し、キャピラリ・フロー・デバイスと質量分 析計を接続しました。図1に各機器の構成を示しています。

図 1A. スキャンおよび SIM 分析に使用した GC/MSD は、a) マルチモード注入口、b) 2 m × 0.25 mm 不活性リテンションギャップ、c) アルティメットユニオン、d) 15 m × 0.25 X 0.25 µm Agilent J&W HP-5ms UI カラム、e) 1 ポートに蓋をした 2 ウェイパージドスプリッタ、f) 圧 力/流量制御モジュール (PCM) でコントロールしたヘリウムパージフロー、g) 80 cm × 0.15 mm 不活性リストリクタで構成されています。

図 1B. MRM 分析に使用した GC/000 は、a) スプリット/スプリットレス注入口、b) 2 m × 0.25 mm 不活性リテンションギャップ、c) アルティメットユニオン、d) 15 m × 0.25 × 0.25 µm Agilent J&W HP-5ms UI カラム、e) パージ付アルティメットユニオン、f) ヘリウムパージフ ロー、g) 65 cm × 0.15 mm 不活性リストリクタで構成されています。

MRM メソッド

ー般に分析される農薬 175 種類を分析するためのメソッドを開 発しました。各化合物について 2 つのトランジションを決定 し、それぞれについてコリジョンエネルギーを最適化しまし た。このメソッドは Agilent 農薬メソッド (オリジナルスピード の 2 倍で実施) に対してロックされているため、アジレントの RTL 農薬および内分泌かく乱物質データベース (P/N G1672AA) に記載されている物質に対応するリテンションタイムを2で割 りました。データベースとここで示す値には若干の違いがあり ます。これは、このメソッドではリテンションギャップ、キャ ピラリ・フロー・デバイス、リストリクタを使用したためで す。表3に、各農薬をアルファベット順に記載しています。各 農薬のリテンションタイム、定量および定性トランジション、 コリジョンエネルギーも併せて記載しています。

表 3. 農薬 175 種類の定量および定性トランジション

化合物名	RT (分)	定量 プリカーサイオン	≣トランジショご プロダクトイ	ン オン CE	プリカーサイオン	定性トランジション プロダクトイオン	CE
アクリナトリン	15.371	181.1	152.1	25	181.1	127.1	30
アクトン	11.403	282.9	219.0	10	282.9	184.0	25
アラクロール	8.507	188.1	130.1	40	188.1	160.1	10
アルドリン	9.247	262.9	192.9	40	262.9	190.9	40
アレスリン	10.908	123.1	81.1	10	123.1	79.1	20
アトラジン	6.581	200.1	122.1	10	200.1	104.0	20
アザメチダホス (アザメチホス)	13.248	215.0	171.0	15	215.0	128.0	30
アジンホス-メチル	14.835	160.1	77.1	20	160.1	132.1	0
ベンフルラリン	5.842	292.1	264.0	10	292.1	160.1	20
ΒΗC, α-	6.025	181.0	145.0	15	181.0	109.0	30
BHC, ß-	6.595	181.0	145.0	15	181.0	109.0	30
BHC, δ-	7.266	181.0	145.0	15	181.0	109.0	30
ビフェントリン	14.428	181.1	165.1	30	181.1	166.1	15
ブロマシル	9.186	205.0	132.0	30	205.0	187.9	20
ブロモホス	10.020	330.9	315.9	20	330.9	285.9	35
ブロモホス-エチル	11.261	358.9	302.9	15	358.9	284.8	35
ブロモプロピラート	14.320	183.0	155.0	15	183.0	76.0	35
カプタン	10.617	79.1	77.1	10	79.1	51.1	25
カルボフェノチオン	13.316	157.0	121.0	25	157.0	75.1	40
クロルデン, cis-	11.410	372.9	265.9	40	372.9	263.9	30
クロルデン, trans-	11.010	372.9	265.9	20	372.9	263.9	25
クロルディーン, α-	8.562	230.0	160.0	40	230.0	195.0	25
クロルディーン, ß-	9.376	230.0	160.0	35	230.0	195.0	25
クロルディーン, γ-	9.314	230.0	160.0	40	230.0	195.0	25
クロルフェンビンホス, ß-	10.779	267.0	159.0	20	267.0	81.0	40
クロルベンジレート	12.706	139.0	111.0	15	139.0	75.0	30
クロロネブ	4.323	191.0	113.0	15	191.0	141.0	10
クロロタロニル	7.395	265.9	133.0	40	265.9	230.9	20
クロルピリホス	9.606	196.9	168.9	15	196.9	107.0	40
クロルピリホス-メチル	8.284	286.0	93.0	25	286.0	270.9	20
クロルチオホス	13.051	268.9	205.0	15	268.9	177.0	25
クマホス	15.859	362.0	109.0	15	362.0	81.0	40
シアナジン	9.694	212.1	123.1	20	212.1	151.1	10
シアノホス	6.887	243.0	109.0	10	243.0	79.0	30
シフルトリン 1	16.144	163.0	127.1	5	163.0	91.1	15
シフルトリン 2 5	16.212	163.0	91.1	15	163.0	127.1	

	(1)	定	量トランジション	ン		定性トランジション	
	RT (分)	フリカーサイオン	7092F1	オンCE	フリカーサイオン	フロタクトイオン 01.1	15
シブルトリンス	10.273	103.0	127.1	5 E	103.0	91.1	10
	15.202	103.0	127.1	20 20	103.0	91.1 127.1	25
	10.200	101.1	152.1	30 2E	101.1	127.1	30
	10.301	101.1	152.1	20	101.1	127.1	30
	10.403	101.1	152.1	30	101.1	127.1	30
シベルメトリンろ	10.531	181.1	152.1	25	181.1	127.1	30
	10.558	181.1	152.1	25	181.1	127.1	30
タクタール (DCPA) (クロルタール-ジメチル)	9.721	300.9	222.9	25	300.9	166.9	40
DDD, o,p'-	12.170	235.0	165.1	30	235.0	199.1	15
DDD, p,p'-	12.841	235.0	165.1	25	235.0	199.1	20
DDE, o,p'-	11.241	246.0	176.1	40	246.0	211.0	20
DDE, p,p'-	12.007	246.0	176.1	40	246.0	175.1	40
DDT, o,p'-	12.882	235.0	165.1	30	235.0	199.1	20
DDT, p,p'-	13.492	235.0	165.1	30	235.0	199.1	20
DEF (トリブホス)	12.054	169.0	57.1	5	169.0	112.9	5
デルタメトリン	18.016	181.1	152.1	25	181.1	127.1	25
デメトン-S	6.303	88.1	60.0	5	88.1	59.0	20
デメトン-S-メチル	5.230	88.1	60.0	5	88.1	59.0	15
ジアリホス	15.432	208.0	102.1	40	208.0	89.0	40
ダイアレート 1	5.957	234.1	150.0	20	234.1	192.0	10
ダイアレート 2	6.127	234.1	150.0	20	234.1	192.0	10
ダイアジノン	7.226	179.1	121.1	40	179.1	137.2	20
ジカプトン	9.694	262.0	216.0	15	262.0	123.0	40
ジクロフェンチオン	8.067	279.0	223.0	15	279.0	205.0	30
ジクロフルアニド	9.199	123.0	77.1	20	123.0	51.1	40
ジクロロベンゾフェノン, 4.4'-	9.593	139.0	111.0	15	139.0	75.1	30
ジクロルボス	2.905	109.0	79.0	5	109.0	47.0	15
ジクロベニル	3.367	171.0	100.0	25	171.0	136.0	15
ジクロラン	6.269	206.0	176.0	10	206.0	124.0	30
ディルドリン	11.926	262.9	192.9	40	262.9	190.9	35
ジメタクロール	8.080	134.1	105.1	15	134.1	77.1	30
ジオキサチオン	15 934	125.0	97.0	5	125.0	65.0	25
ジスルホトン	7.260	88.1	60.0	5	88.1	59.0	25
ジタリムホス	11.586	130.0	102.1	15	130.0	75.0	30
エディフェンホス	13.377	173.0	109.0	15	173.0	65.1	40
エンドスルファンエーテル	7.660	240.9	205.9	20	240.9	203.9	20
エンドスルファント	11.308	240.9	205.9	15	240.9	136.0	40
エンドスルファン=	12.570	195.0	125.0	25	195.0	159.0	10
硫酸エンドスルファン	13.377	271.9	236.9	20	271.9	116.9	40
エンドリン	12.366	262.9	193.0	35	262.9	190.9	35
エンドリンアルデヒド	12.956	249.9	214.9	35	249.9	141.9	40
エンドリンケトン	14.116	316.9	101.0	20	316.9	245.0	20
EPN	14 333	157.0	77.1	25	157.0	110.0	15
エタルフルラリン	5 632	276 1	105.1	35	276 1	202.0	20
エチオン	12 997	231.0	128.9	25	231.0	174.9	10
エトプロップ (エトプロホス)	5 357	158.0	97.0	15	158.0	114.0	5
エトリジアゾール	3.963	183.0	139.9	20	183.0	108.0	40

		定量	トランジショ	ン		定性トランジション	
化合物名	RT (分)	プリカーサイオン	プロダクトイ	イオン CE	プリカーサイオン	プロダクトイオン	CE
ファムフール	13.329	218.0	109.0	15	218.0	79.0	30
フェナミホス (フェナミホス)	11.803	303.1	80.0	40	303.1	154.0	20
フェナリモル	15.222	139.0	111.0	15	139.0	75.0	35
フェンクロルホス (ロンネル)	8.650	284.9	269.9	15	284.9	239.9	35
フェニトロチオン	9.030	277.0	109.0	20	277.0	260.0	5
フェンプロパトリン	14.503	181.1	152.1	30	181.1	127.1	35
フェンスルホチオン	12.780	292.0	156.0	25	292.0	109.0	20
フェンチオン	9.552	278.0	109.0	20	278.0	125.0	20
フェンバレレート 1	17.202	167.1	125.0	15	167.1	89.1	40
フェンバレレート 2	17.412	167.1	125.0	10	167.1	89.1	35
フルクロラリン	7.321	306.1	264.1	5	306.1	206.0	15
フルシトリネート 1	16.571	199.1	107.1	30	199.1	157.1	10
フルシトリネート 2	16.741	199.1	107.1	25	199.1	157.1	5
フルリドン	16.944	328.1	259.0	30	328.1	189.1	40
フルバリネート τ-1	17.412	250.1	55.1	15	250.1	200.1	20
フルバリネート τ-2	17.480	250.1	55.1	15	250.1	200.1	25
ホルペット	10.807	147.1	103.1	5	147.1	76.0	30
ホノホス	6.934	246.1	109.0	15	246.1	137.0	5
ヘプタクロル	8.379	271.9	236.8	25	271.9	116.9	40
ヘプタクロル exo-エポキサイド異性体 A	10.474	183.0	118.9	30	183.0	154.9	15
ヘプタクロル exo-エポキサイド異性体 B	10.352	352.9	262.8	25	352.9	281.9	20
ヘキサクロロベンゼン	6.168	283.9	213.9	35	283.9	248.8	25
ヘキサジノン	13.702	171.1	71.1	15	171.1	85.1	15
イプロベンホス (IBP)	7.660	204.0	91.1	10	204.0	121.0	40
イプロジオン	14.211	187.0	124.0	25	187.0	159.0	15
イサゾホス	7.517	161.1	119.0	10	161.1	146.0	5
イソフェンホス	10.813	213.1	121.0	20	213.1	185.0	5
ヨードフェンホス (ヨードフェンホス)	11 776	376.9	361.9	20	376.9	93.0	35
	14 876	171.0	77 1	25	171.0	124 1	10
リンデン (v-BHC)	6 710	181.0	145.0	15	181.0	109.0	30
マラチオン	9 3 9 6	173.1	99.0	15	173.1	117.0	10
メチダチオン	11 146	145.0	85.1	5	145.0	58.1	15
	13 730	227.1	121.1	15	227.1	91.1	35
	14 442	227.1	141.1	40	227.1	169 1	30
	9.450	162.1	133.1	15	162.1	132.1	25
メビンホフ	3 782	102.1	100.1	10	102.1	95.0	15
マイレックフ	14 923	271.9	236.9	15	271.9	116.9	40
	12 848	408.8	109.0	20	408.8	299.9	25
	11 520	400.0	200.0	20	400.0	203.0	20
	12 210	400.0	233.0	25 15	400.0	76 1	30 40
	0 622	201.1	100.0	10	201.1	70.1	40
パラテオン	9.000	291.1	109.0	10	291.1	01.U 70.0	40 25
	0.204	203.0	109.0	10	203.0	79.0	30
	1.701	204.9	193.9	30	204.9	100.9	30
	4.459	249.9	214.9	25	249.9	142.0	40
	0.866 0.900	2/4.9	239.9	20	2/4.9	204.9	35
	0.283	264.9	236.9	10	264.9	142.9	40
ペンダクロロチオアニソール	9.016	295.9	245.8	40	295.9	262.9	15

		定量	【トランジショ 】	ン	5	定性トランジション	,
化合物名	RT (分)	プリカーサイオン	プロダクトイ	オン CE	プリカーサイオン	プロダクトイオン	CE
ペルメトリン, cis-	15.703	183.1	153.1	15	183.1	168.1	15
ペルメトリン, trans-	15.798	183.1	155.1	10	183.1	165.1	10
フェナントレン-d10	6.863	188	160	10	188	186	10
フェノトリン	14.713	183.1	153.1	15	183.1	168.1	15
フェントエート	10.861	274.0	121.0	10	274.0	125.0	20
ホレート	5.961	231.0	128.9	25	231.0	174.9	10
ホサロン	14.855	182.0	111.0	15	182.0	75.1	40
ホスメット	14.259	160.0	77.1	30	160.0	133.0	15
ピリミホスエチル	10.332	318.1	166.1	15	318.1	182.1	15
ピリミホスメチル	9.138	290.1	125.0	25	290.1	233.0	10
プロシミドン	10.983	283.0	96.1	10	283.0	67.1	40
プロフェノホス	11.953	207.9	63.1	40	207.9	99.0	25
プロパクロル	5.164	120.1	77.1	20	120.1	92.1	5
プロパルギット	13.858	135.1	107.1	15	135.1	77.1	30
プロパジン	6.676	214.1	172.0	10	214.1	104.0	20
プロペタンホス	6.948	138.0	110.0	5	138.0	64.0	15
プロピザミド	6.975	173.0	145.0	15	173.0	109.0	35
プロチオホス	11.878	162.0	63.1	40	162.0	98.0	20
ピラクロホス	15.439	360.0	96.9	35	360.0	194.0	15
ピラゾホス	15.351	221.1	193.1	10	221.1	149.1	15
ピリダフェンチオン	14.272	340.1	199.1	5	340.1	97.0	40
キナルホス	10.827	146.1	118.1	10	146.1	91.1	30
キントゼン	6.832	236.9	118.9	25	236.9	142.9	30
レスメトリン	13.994	123.1	81.1	5	123.1	95.1	5
シマジン	6.473	201.1	173.1	5	201.1	138.1	10
スルホテップエチル	5.902	322.0	146.0	25	322.0	65.0	40
スルプロホス	13.180	322.0	97.0	30	322.0	156.0	5
テブピリムホス	7.687	261.1	137.1	15	261.1	153.1	20
テクナゼン (TCNB)	5.110	202.9	83.0	25	202.9	142.9	20
テフルトリン	7.524	177.1	127.1	20	177.1	137.0	20
テメホス	20.525	125.0	47.0	20	125.0	79.0	10
テルブホス	6.890	231.0	128.9	25	231.0	174.9	10
テルブチラジン	6.907	214.1	104.0	20	214.1	132.0	10
テトラクロロアニリン, 2,3,5,6-	5.293	230.9	158.0	25	230.9	122.0	40
テトラクロルビンホス	11.478	329.0	109.0	25	329.0	79.0	35
テトラメトリンI	14.299	164.1	107.1	15	164.1	135.1	10
テトラメトリンⅡ	14.421	164.1	107.1	10	164.1	135.1	5
チオメトン	6.161	125.0	47.0	20	125.0	79.0	10
トルクロホスメチル	8.392	265.0	250.0	15	265.0	93.0	25
トリフルアニド	10.623	137.0	91.1	20	137.0	65.1	35
トリアレート	7.470	268.0	183.9	25	268.0	226.0	15
トリアゾホス	13.241	161.0	134.1	10	161.0	91.1	20
トリフルラリン	5.808	306.1	264.0	5	306.1	160.0	30
リン酸トリフェニル	13.865	326.1	169.1	35	326.1	233.0	10
ビンクロゾリン	8.311	212.0	145.0	25	212.0	109.0	40
				=-			

ニンジン抽出液

残留農薬を含むニンジン抽出液をスキャンおよび SIM モードの GC/0 で分析しました。いずれのケースでも、アジレントの新 しいマルチモード注入口をコールドスプリットレスモードで操 作し、5-µLを注入しました。3 つの SIM メソッドを用いて、各 メソッドで 60 種類ずつ、合計 170 種類以上の化合物をモニタ リングしました。また、各化合物について4 種類のイオンをモ ニタリングしました。アジレントのデコンボリューションレ ポート作成ソフトウェアと927 種類の化合物を含む RTL 農薬お よび内分泌かく乱物質データベースを用いて、スキャンデータ を自動的に解析しました。

同じニンジンサンプルを、表3の MRM トランジションを用いた 7890A/ 7000A GC/QQQ システムでも分析しました。3.33 µg/kg (ppb)~6670 µg/kg の農薬170 種類について、ニンジンマ

表 4.	DRS 分析を用いたスキャンモードの GC/MS、SIM モードの
	GC/MS、MBM モードの GC/MS/MS による含農薬ニンジン抽
	出液の分析結果(X はメソッドにより化合物が検出されたこと
	な示しています)。

農薬	G(5 µL (マ) コールド SL スキ + DRS	C/Q レチモ・ Fャン	ード注入口) コールド SL SIM	GC/QQQª 1μL ホット SL (ppb)
ジクロベニノ	ν			0.38 ^b
ペンタクロロ	コベンゼン			0.75 ^b
トリフルラリ	リン			2.3 ^b
テフルトリン	2			0.53 ^b
4,4'-ジクロロ	ベンゾフェノン			1.2 ^b
クロルピリオ	れス			24.7
o,p'-DDE				3.7
p,p'-DDE	X	(Х	240
o,p'-DDD				9
p,p'-DDD o,p'-DDT) >	((Sum = 45
p,p'-DDT	X	(Х	130
フェナザキン	у ×	(当	該メソッドでは 出されず	当該メソッドでは 検出されず

a. 抽出メソッドにより、抽出液1mL あたり農作物 4.5 g を含む溶液に濃縮されて いるため、オリジナルのニンジンサンブルに含まれるこれらの化合物の濃度 は、実際には4.5倍低くなります。

b. ここに記載した値は、検量線の最小ポイントを下回るものです。

トリックスで 11 ポイントの検量線を作成しました。表 4 に各 分析の結果を示しています。

シングル四重極メソッドは定量的ではないため、DRS または SIM データの手動評価のいずれかによる農薬検出の有無のみを 示しています (X でマーク)。トリプル四重極メソッドは検量線 によって各農薬の量を決定することが可能でした。記載された 濃度は、抽出液中で検出された値です。抽出メソッドにより 4.5:1 (最終抽出液 1.0 mL にニンジン 4.5 g) の比率でサンプルが 濃縮されているため、オリジナルのニンジンサンプルの濃度 は、実際にはその分低くなります。

DRS 分析を用いたスキャンメソッドは、データベースに収録された 927 種類の化合物を検出できます。一方、SIM および MRM メソッドは、表 3 に示す 175 種類のターゲット化合物に 制限されます。DRS ではフェナザキンが検出されましたが、こ の農薬は SIM または MRM メソッドでは対象外でした。このこ とは、ターゲット化合物分析用のGC/MS/MS と組み合わせ て、スクリーニングのために DRS を用いた GC/MS を使用する ことの利点を示しています。

ニンジンマトリックスが濃縮されているにもかかわらず、 GC/000 分析では、1 ppb (1 µg/kg) 未満の農薬 3 種類と、5 ppb 未満の農薬 3 種類を検出することができました。最小レベルの 検量線は 3.33 ppb で作成したため、記載されている値のうち、 このレベルを下回るものは外挿値となります。p.p'-DDD および o.p'-DDT は最適な MRM トランジションが同じ値で、いずれも クロマトグラムが部分的にしか分離されなかったため、これら 2 つの化合物については値を合算して記載しています。

図 2A は、ニンジンサンプルのスキャン分析により得られた p,p'-DDE の定量用マスクロマトグラム (m/z 246) を示していま す。これらのクロマトグラムでは干渉が存在するため、スペク トルを最初にデコンボリューションしなければ、正確な定量分 析を行うのは困難です。デコンボリューション後 (図 2B) は、 クロマトグラムが明瞭になっています。図 2C には、同じサン プルの GC/MS SIM 分析で得られた SIMクロマトグラム (m/z 246) を示しています。シグナル/ノイズ比 (S/N) は 10 倍向上し ていますが、干渉は増加しているように見えます。

ターゲット化合物分析では、GC/QQQ の効果が現れています。 ニンジン抽出液 1-µL を注入した GC/QQQ 分析では、5-µL を注 入した GC/Q SIM 分析(S/N = 375)に比べ、S/N (434) が良好で明 瞭な MRM クロマトグラムが得られました (図 2C)。

図 2. A) 農薬を含むニンジン抽出液 5-μL のコールドスプリットレス注入により得られた p,p'-DDE 定量イオン (m/z 246) のマスクロマトグラム。 B) デコンボリューション後の (A) と同じクロマトグラム。C) 同じサンブル 5-μL のコールドスプリットレス注入により得られた p,p'-DDE 定量イオン (m/z 246) の SIMクロマトグラム。D) 同じニンジン抽出液 1-μL のホットスプリットレス注入による GC/MS/MS 分析の定量および 定性トランジション (各 246.0 → 176.1 および 246.0 → 175.1)。S/N は抽出イオンおよび定量トランジションの peak-to-peak シグナル/ノイ ズ比を示しています。2 つのトランジションイオン (D) の比率は 23.8 で、p,p'-DDE の存在を裏付けています。

各種マトリックスにおける GC/MS SIM と GC/MS/MS MRM の比較

図 3 は、各種農作物に p.p'-DDE 10 ppb を添加した場合の GC/MS SIM 分析結果と GC/MS/MS MRM 分析結果を比較して います。左側の図を見ると、定量イオン (m/z 246)の SIM クロ マトグラムでは、リンゴ、キャベツ、ヤクヨウニンジン、オレ ンジ、ホウレンソウサンプルのマトリックス干渉が増加してい ることがわかります。それに対して、右側の p,p'-DDEの GC/MS/MS トランジションでは、どの抽出液でも干渉は見ら れません。定量トランジションに見られる S/N 値の大きさ (246.0 → 176.1) は、サブ ppb レベルで p,p'-DDE を検出できるこ とを示しています。

図 3. 5 種類の農作物抽出液に p.p[.]-DDE 10 ppb (10 µg/kg) を添加した場合の GC/MS SIM 分析結果と GC/MS/MS MRM 分析結果の比較。左側の p.p[.]-DDE 定量イオン (m/z 246) の SIMクロマトグラム は、マトリックスの 干渉が増加していることを示しています。右側の p.p[.]-DDE のトランジション (246.0 → 176.1 および 246.0 → 175.1) はクリーンで、S/N は 241~448 です。注入量はすべて 1 µL です。

トマト抽出液

ここで取り上げている 3 種類のテクニックは、いずれもトマト 抽出液に 1 ppm で含まれるクロロタロニルを検出できました。 しかし、クロロタロニル代謝物であるペンタクロロベンゾニト リルを検出できたのは GC/000 だけで、測定濃度は 9.3 ppb で した。図 4 には、ペンタクロロベンゾニトリルの MRM トラン ジションと、3.33 ppb~6670 ppb の範囲における検量線を示し ています。

カラムのバックフラッシュ

GC/MS で不純物の多いサンプルを分析する場合、頻繁に注入 ロライナを交換し、カラムを切断する必要があります。多くの ラボでは、そうした作業を日常的に行っています。これを行わ なければ、マトリックスがライナやカラムに蓄積し、クロマト グラフィに悪影響を及ぼします。やがて、そうした蓄積物が GC カラムを経由して移動し、イオン源を汚染します。そうな ると、イオン源を洗浄しなければなりません。この問題には、 GC/000 機器の構造も関係しているものと考えられます。 GC/000 機器はマトリックスの蓄積が目に付きにくいため、イ オン源 (場合によっては最初の四重極)の洗浄が必要になるまで メンテナンスが先延ばしにされがちです。

Agilent 7000A シリーズトリプル四重極 GC/MS は、5975C MSD と同じ不活性イオン源と金メッキ石英四重極を採用しています。これらの部品は、それぞれ 350 ℃ および 200 ℃ までの加熱 が可能です。これにより、高沸点マトリックス成分が検出器に 到達する場合でも、洗浄の手間が大幅に低減されます。

クロマトグラフィ性能の悪化を防ぎ、イオン源洗浄の必要性を 減らすための最良の方法は、分析中または分析後に GC カラム をバックフラッシュすることです。図1 に示している構成の場 合、キャピラリ・フローデバイス (2 ウェイスプリッタまたは パージ付アルティメットユニオン)の圧力を上げ、注入口圧力 を下げれば、バックフラッシュを分析後の3~5 分で実施でき ます。このバックフラッシュにより、カラムフローが逆流し、 高沸点マトリックス成分がカラムヘッドから押し出され、注入 ロのスプリットベントから排出されます。

本実験では、濃縮食品抽出液 1-µL を GC/QQQ システムに約 100 回注入しても、カラムや MS 性能に明らかな問題は生じません でした。GC/Q システムでは、カラムおよび注入口のメンテナ ンスの必要が生じるまでに、同じ抽出液ほぼ 300 µL を注入する ことができました。キャピラリ・フローデバイスを設置すれ ば、質量分析計の真空解除を行わずにメンテナンスを実施する こともできます。

結論

Agilent 7890A/7000A トリプル四重極 GC/MS システムは、農薬 のターゲット分析に適した感度と堅牢性を備えています。シン グル四重極メソッドに比べてマトリックス由来の干渉が大幅に 減るため、現在の法規制で求められる低 ppb 域の農薬の定量を 容易に行うことができます。多くのケースでは、GC/QQQ にサ ンプル 1-μL を注入した分析のほうが、GC/Q にサンプル 5-μL を 注入した場合よりも良好な結果が得られました。

ただし、数百種類の農薬を検出できるスクリーニングメソッド は依然として必要です。このメソッドとしては、アジレントの 新しいマルチモード注入口による大容量注入を用いたスキャン モードでの GC/Q 分析と、アジレントの農薬および内分泌かく 乱物質データベースおよびデコンボリューションレポート作成 ソフトウェアを用いたデータ解析を組み合わせた手法を推奨し ます。900 種類の以上の汚染物質をスクリーニング (DRS を組み 合わせた GC/Q) する一方で、それよりも少数のターゲット化合 物の超微量分析 (GC/QQQ) を実施する場合には、この 2 つのア プローチが最良の組み合わせといえます。いずれのアプローチ も、カラムのバックフラッシュを利用することができます。食 品抽出液などの不純物の多いサンプルを分析する場合には、 バックフラッシュを強く推奨します。

図 4. A) トマト抽出液から濃度 9.3 ppb で検出されたペンタクロロベンゾニトリルの MRM トランジション。B) 3.33~6,670 ppb におけるペンタ クロロベンゾニトリルの検量線、二次曲線適合 > 0.999。

References

- M. Anastassiades, S. J. Lehotay, D. Stajnbaher, and F. J. Schenck, J AOAC Int, 86 (2003) 412.
- S.J. Lehotay, A. de Kok, M. Hiemstra, and P. Bodegraven, J AOAC Int, 88 (2005) 595.
- 3. QuEChERS Web site, http://www.quechers.com
- M. Mezcua, M. A. Martínez-Uroz, P. L. Wylie, and A. R. Fernández-Alba, "Simultaneous screening and target analytical approach by GC-q-MS for pesticide residues in fruits and vegetables," Accepted for publication by J. AOAC Int.
- Chin-Kai Meng and Mike Szelewski,「フルスキャンGC/MS による対象外農薬のスクリーニング分析における生産性の 向上-従来のGC及びGC/MS(SIM)による各50分の分析 時間を15分に短縮」、アジレント資料番号 5989-7670JAJP.
- Philip L. Wylie,「926種類の農薬物質と外因性内分泌撹乱物 質のスクリーニング-デコンボリューションレポート作成 ソフトウェアと新農薬物質ライブラリによるGC/MS 分 析」、アジレント資料番号 5989-5076JAJP.
- Bruce D. Quimby, Leonid M. Blumberg, Matthew S. Klee, and Philip L. Wylie, "Precise Time-Scaling of Gas Chromatographic Methods Using Method Translation and Retention Time Locking," Agilent Technologies publication 5967-5820E.
- Chin-Kai Meng,「バックフラッシュによる生産性の向上と カラム寿命の延長」、アジレント資料番号 5989-6018 JAJP.
- Philip L. Wylie,「GC-ECD への直接注入による魚油中のPCB 分析:Deans スイッチデバイスを用いたバックフラッシング の結果」、アジレント資料番号 5989-6095JAJP.

謝辞

多数の標準物質と食品抽出液を提供してくださった米国食品医薬品局 (カレッジパーク、メリーランド州、米国)の Jon Wong 博士と、米国農務省 (ARS、ERRC、ウィンドムーア、ペンシル ベニア州、米国)の Steven Lehotay 博士に感謝します。

詳細情報

アジレント製品とサービスの詳細については、アジレントの ウェブサイト www.agilent.com/chem/jp をご覧ください。

www.agilent.com/chem/jp

アジレントは、本文書に誤りが発見された場合、また、本文書の使用により付随的または間接的に生じる損害について一切免責とさせていただきます。

本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。著作権法で許されている 場合を除き、書面による事前の許可なく、本文書を複 製、翻案、翻訳することは禁じられています。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc., 2009 Printed in Japan February 25, 2009 5990-3578JAJP

