

Agilent 7000A GC/MS/MS による 漢方薬に含まれる低 ppb レベル農薬の スクリーニング

Wei Luan、 Melissa Churley、 Mike Szelewski

アプリケーション

残留農薬濃度の規制に対する関心は、世界的に高まっています。複数の国際機関や各 国政府が最大残留基準値 (MRL) を定めていますが、その対象となる農薬の種類は増加 の一途をたどり、使用される製品範囲も広がっています。残留農薬モニタリングラボ の主要業務は、限られた時間内に多数の微量化合物をスクリーニングできる分析メ ソッドを開発することです。こうした分析の一般的な手法としては、ガスクロマトグ ラフィー質量分析 (GC/MS) が用いられています。日本や欧州連合 (EU) の規制で残留 農薬の MRL が引き下げられているため、近年では、複雑なマトリックスに含まれる数 百種類の農薬を ppb レベルで分析できることが求められるようになっています。そう したことから、農薬スクリーニングの感度と効率を高める必要性が生じています。ト リプル四重極質量分析計をマルチプルリアクションモニタリング (MRM) モードで使用 すれば、マトリックス干渉をきわめて効果的に除去し、シグナル/ノイズ比 (S/N)を大 幅に向上させることが可能です。本書では、トリプルガスクロマトグラフィー質量分 析 (GC/MS/MS)を用いて、1 ppb という低濃度で漢方薬 (TCM) に含まれる農薬をスク リーニングする方法を紹介します。分析対象の農薬および関連する MRM 条件を表 1 に示しています。

要旨

- 幅広い直線範囲における一貫したイ オン比と、超低濃度での優れたピー ク面積再現性により、農薬スクリー ニングの信頼性が向上します。
- Agilent コリジョンセルにより、わずか 5 msのドウェルタイムでのマトリッ クス中濃度 2 ppbの農薬分析において も、優れた再現性が実現しています。 1 つのタイムセグメントで多くの MRM トランジションに対応し、生産 性を高めることが可能です。
- MRM モードを使用してマトリックス 干渉を低減することで、農薬スク リーニングの検出下限を大幅に引き 下げることが可能です。

表 1. 分析対象化合物リストと MRM 条件

セグメント	化合物名	R.T.	定量	コリジョン エネルギー	定性 1	コリジョン エネルギー	定性 2	コリジョン エネルギー
1	ジクロルボス	6.00	185 → 93	15	185 →109	15	109 → 79	5
1	メタミドホス	6.10	141 → 95	5	$95 \rightarrow 80$	5		
1	アセフェート	7.82	136 → 94	10	142 <i>-></i> 96	5		
1	ジメトエート	8.53	125 → 79	5	$125 \rightarrow 93$	15		
1	オメトエート	9.53	156 →110	5	156 → 79	20		
2	ジメチピン	11.12	$118 \rightarrow 90$	5	118 → 73	5		
2	シアノホス	11.41	243 →109	10	243 →116	5		
3	ホスファミドン-E	12.41	264 →127	15	127 →109	10		
3	パラチオンメチル	12.58	263 →109	10				
3	ホスファミドン-Z	13.13	264 →127	15	127 →109	10		
3	キノクラミン	13.23	207 →172	15	207 →179	12	172 →128	10
3	クロルピリホス	13.52	314 →258	15	314 →286	5	$197 \rightarrow 169$	15
3	シアナジン	13.52	225 →189	15	240 →225	5	198 → 91	10
3	パラチオン	13.54	291 →109	10	291 → 81	10		
3	ホスチオゼート 1-2	13.85	195 →103	5	195 →139	5		
4	フィプロニル	14.33	367 →225	25	367 →224	20		
4	キナルホス	14.36	146 →118	10	157 →129	15		
4	エンドスルファン-α	14.83	241 →206	15	229 →194	10	$195 \rightarrow 159$	10
4	クロルフェナピル	15.77	247 →227	15	247 →197	20	408 → 59	10
4	エンドスルファン-β	15.90	241 →206	15	229 →194	10	195 →159	10
5	トリアゾホス	16.38	161 →134	5	161 →106	10	257 →162	5
5	ブロモプロピレート	17.64	341 →183	20	341 →185	20		
5	アジンホスメチル	18.31	160 → 77	20	160 →132	5	132 → 77	15
6	カフェンストロール	19.92	100 → 72	5	188 →119	25	188 → 82	20
6	シフルトリン 1-4	20.03	163 →127	5	163 → 91	15	206 →151	25
7	フルシトリネート 1	20.46	199 →157	5	199 →107	30	157 →107	15
7	フルシトリネート 2	20.64	199 →157	5	199 →107	30	157 →107	15
8	フェンバレレート1	21.14	167 →125	10	225 →119	15		
8	フェンバレレート 2	21.33	167 →125	10	225 →119	15		
8	ジフェノコナゾール 1	21.53	323 →265	15	265 →202	20		
8	ジフェノコナゾール 2	21.60	323 →265	15	265 →202	20		
8	デルタメトリン	21.85	181 →152	30	253 →172	5	$253 \rightarrow 93$	20

実験手法

微量化合物の定量はマトリックスの存在により複雑化し、クオリファイアイオンが範囲外になったり、ターゲットイオンが複雑なバックグラウンドに埋もれたりする結果につながります。シングル四重極質量分析の場合、一般に選択イオンモニタリング (SIM) により、検出下限と定量の再現性を向上させます。SIM モードの MS では、各ターゲット化合物について、カラムからターゲットが溶出するリテンションタイム (RT) 範囲内で数個のイオンのみがモニタリングされます。数個の特定イオンのみをモニタリングすることで、シグナル/ノイズ比 (S/N) が劇的に向上します。しかし、SIM 中の干渉がスキャンモードと同様に存在するため、マトリックス中の微量化合物については、SIM では効果的に分析できません。トリプル四重極質量分析では、選択したプリカーサイオンがヘキサポールコリジョンセルでさらにフラグメンテーションされるため、マトリックス干渉が大幅に低減し、場合によっては完全に排除できることもあります。マルチブルリアクションモニタリング (MRM) と呼ばれるこのプロセスは、プリカーサイオンを採取し、マトリックス成分のフラグメンテーションからは生じる可能性のないプロダクトイオンにトランジションす

ることで成り立っています。プリカーサイオンの選択性は SIM と同じですが、生成され るプロダクトイオンのうち少なくとも1つは、きわめて高い確率で、マトリックス成分か らは生成されないプリカーサイオン固有の解離生成物となります。

このプロセスのおもな利点は、幅広い濃度範囲で一貫したクオリファイアイオン比が得ら れるため、きわめて複雑なマトリックスに含まれる超微量化合物の分析でも S/N が向上 することです。図1に、Agilent GC/MS/MS ワークステーションの定量画面を示していま す。赤枠に囲まれた数字は、TCM中濃度 0.1 ppb から約 1,000 ppb の範囲におけるシアノホ スのクオリファイアイオン比です。この数字を見れば、マトリックスにおいてきわめて高 い精度が得られていることがわかります。緑枠に囲まれた数字は、検量線の精度を示して います。この図には、検量線下端の拡大図も示されています。表 2 では、TCM マトリッ クス中に濃度 1 ppb で含まれる農薬について、6 回の繰り返し注入により得られたピーク 面積再現性を示しています。

図 1. TCM マトリックス中シアノホスの検量線とクオリファイアイオン比

表 2. TCM マトリックスに添加した農薬 1 ppb のピーク面積再現性

	ピーク面積の RSD (%)(n = 6)			
シアノホス	4.83			
ブロモプロピレート	5.12			

リニア加速度設計を備えた Agilent ヘキサポールコリジョンセルは、イオンゴーストやクロ ストークを生じずにハイスピード性能を実現できるように最適化されています。500 MRM/sec のハイスピード MRM 機能により、トランジション数が最大化するとともに、1 つのタイムセグメントにおける各トランジションのドウェルタイムが最小化します。これ により、1回の分析でより多くの化合物をスクリーニングすることが可能になります。ブロ モプロピレート 2 ppb を添加した TCMを用いたドウェルタイム実験の結果を、表3に示し ています。ドウェルタイムが短くなっても、5 ms までは各分析のピーク面積の RSD が 5.0% 未満に保たれています。2 ms の結果は精度が低くなっていますが、複雑なマトリック ス中に含まれる濃度 2 ppb の化合物を分析した結果としては、許容範囲にあるといえます。

表 3. ドウェルタイム実験結果:TCM マトリックス中 2 ppb ブロモプロピレート

	100 ms	50 ms	10 ms	5 ms	2 ms
面積 1	5849	5910	6265	6704	6747
面積 2	5712	6167	6189	6728	6279
面積 3	5895	5941	5966	6131	6523
面積 4	5921	6471	6551	6243	6397
面積 5	5999	6299	6119	6504	4831
面積 6	5999	6524	6415	6796	4737
合計	35375	37312	37505	39106	35514
平均	5895.83333	6218.667	6250.833	6517.667	5919
標準	107.618617	260.1528	209.5638	276.2496	893.2359
RSD	1.83	4.18	3.35	4.24	15.1

図 2 には、TCM 抽出液 1 µL を注入し、MRM モードの GC/MS/MS で分析して得られた トータルイオンクロマトグラムを示しています。表 4 に示すように、11 種類の農薬が ppb レベルで同定されています。

図 2. MRM モードの GC/MS/MS で分析した TCM 抽出液のトータルイオンクロマトグラム

表 4. GC/MS/MS による TCMブランクのスクリーニング結果

RT	化合物名	定量	マトリックス面積	計算結果
		トランジション	(無添加)	
5.995	ジクロルボス	$185.0 \rightarrow 93.0$	68	
6.100	メタミドホス	$141.0 \rightarrow 95.0$	0	—
7.760	アセフェート	136.0 → 94.0	0	
8.526	ジメトエート	125.0 → 79.0	0	
9.478	オメトエート	156.0 →110.0	0	
11.100	ジメチピン	118.0 → 90.0	0	—
11.414	シアノホス	$243.0 \rightarrow 109.0$	0	—
12.390	ホスファミドン-E	264.0 →127.0	0	—
12.560	パラチオンメチル	$263.0 \rightarrow 109.0$	1227	6.21*
13.200	キノクラミン	207.0 →172.0	38	—
13.500	シアナジン	225.0 →189.0	16	—
13.510	クロルピリホス	314.0 →258.0	1224	1.99*
13.520	パラチオン	$291.0 \rightarrow 109.0$	3950	5.62*
13.840	ホスチオゼート	195.0 →103.0	0	—
14.320	フィプロニル	$367.0 \rightarrow 255.0$	0	_
14.340	キナルホス	146.0 →118.0	3970	1.11*
14.820	エンドスルファン-α	$241.0 \rightarrow 206.0$	156	1.89*
15.750	クロルフェナピル	247.0 →227.0	0	_
15.880	エンドスルファン-β	$241.0 \rightarrow 206.0$	208	1.61*
16.360	トリアゾホス	$161.0 \rightarrow 134.0$	531	1.63*
17.620	ブロモプロピレート	341.0 →183.0	63	_
18.290	アジンホスメチル	160.0 → 77.0	0	_
19.900	カフェンストロール	100.0 → 72.0	1260	3.37*
20.026	シフルトリン	163.0 →127.0	0	
20.439	フルシトリネート 1	199.0 →157.0	0	_
20.624	フルシトリネート 2	199.0 →157.0	0	_
21.122	フェンバレレート1	167.0 →125.0	4188	1.79*
21.326	フェンバレレート 2	167.0 →125.0	13070	1.79*
21.520	ジフェノコナゾール 1	323.0 →265.0	0	_
21.574	ジフェノコナゾール 2	$323.0 \rightarrow 265.0$	0	_
21.840	デルタメトリン	181.0 →152.0	2078	3.53*

*検出の可能性があるサンプル

まとめ

残留農薬モニタリングにおいては、きわめて限られた時間内に、数百種類の超微量化合物 をスクリーニングできるメソッドの開発が求められています。。トリプル四重極ガスクロ マトグラフィー質量分析なら、きわめて選択性の高い MRM を実行することで、マトリッ クスに由来する化学ノイズを劇的に低減し、S/N と検出下限を向上させることが可能で す。本アプリケーションでは、TCM に含まれる ppb レベルの残留農薬をスクリーニング する手法を開発しました。超微量レベルの残留農薬スクリーニングの性能を向上させるう えで、GC/MS/MS はきわめて大きな威力を発揮します。

参考文献

 Wei Luan, and Zhixiu Xu, "Screening for 430 Pesticide Residues in Traditional Chinese Medicine Using GC/MS: From Sample Preparation to Report Generation in One Hour," Agilent Technologies publication 5989-9341EN

Wei Luan はアジレント・テクノロジー (上海、中国)のアプリケーションケミス トです。Melissa Churley はアジレント・ テクノロジー (サンタクララ、米国カリ フォルニア州)のアプリケーションケミ ストです。Mike Szelewski はアジレン ト・テクノロジー (ウィルミントン、米 国デラウェア州)のアプリケーションケ ミストです。

詳細情報

アジレント製品とサービスの詳細に ついては、アジレントのウェブサイト www.agilent.com/chem/jp を ご覧ください。

www.agilent.com/chem/jp

アジレントは、本文書に誤りが発見された場合、ま た、本文書の使用により付随的または間接的に生じ る損害について一切免責とさせていただきます。

本文書に記載の情報、説明、製品仕様等は予告なし に変更されることがあります。著作権法で許されて いる場合を除き、書面による事前の許可なく、本文 書を複製、翻案、翻訳することは禁じられています

© Agilent Technologies, Inc., 2009 Printed in Japan February 6, 2009 5990-3568JAJP

