ヘッドスペース GC/MS による VOC、MTBE 及び 1,4-ジオキサンの一斉分析

＜要旨＞ Agilent G1888 ヘッドスペースサンプラを用いる GC/MS（SIM/Scan 同時取り込み）による VOC、MTBE 及び 1,4-ジオキサンの一斉分析を行いました。試料量：15ml（塩析 30%）、加熱温度：60℃、加熱時間：30 分の試験法に従ったヘッドスペース条件によって測定を行いました。1,4-ジオキサンの基準値の 1/10 である 5µg/L においても、十分な感度が得られ、すべての化合物において良好な再現性及び直線性が得られました。

Key Words: VOC、MTBE、1,4-ジオキサン、ヘッドスペース、GC/MS、SIM/Scan 同時取り込み

1. はじめに
メチル-t-ブチルエーテル（MTBE）は、揮発性有機化合物（VOC）とともにヘッドスペース GC/MS 法あるいはパージトラップ GC/MS 法により測定が行われています。1,4-ジオキサンは、平成16年度に水質基準項目となり、試験法として固相抽出 GC/MS 法が採用されました。さらに平成19年度の改正によりヘッドスペース GC/MS 法及びパージトラップ GC/MS 法が試験法に追加されました。

本アプリケーションノートでは、ヘッドスペース GC/MS 法による VOC、MTBE 及び 1,4-ジオキサンの一斉分析（SIM/Scan 同時取り込み）について報告します。

2. 測定条件
装置: 7890 GC/5975C MSD with G1888 ヘッドスペースサンプラ
カラム: DB-1301 60m, 0.25mm, 1.0µm (G1888)
試料: 15ml（塩化ナトリウム 4.5g）/20ml バイアル
加熱温度: 60℃
加熱時間: 30 分
シェイキング: High
注入量: 3ml (GC/MS)
注入法: パルスドスプリット, 8:1
パルス压: 45psi, 1min
注入口温度: 200℃
オーブン: 40℃(7min)-10℃/min-180℃(0min)-20℃/min-230℃(3min)
カラム流量: 1.1ml/min（定流量モード）
インターフェース温度: 230℃
イオン源温度: 230℃
SIM/Scan 同時取り込み: 質量範囲 m/z 35-300（サンプリングレート 2.3'）；SIM イオン，Table 1 参照

3. 結果
Fig.1 に、VOC 及び MTBE の濃度 0.1µg/L、1,4-ジオキサンの濃度 5µg/L の SIM クロマトグラムを示しました。1,4-ジオキサンの基準値の 1/10 である 5µg/L においても、m/z 88 の SIM クロマトグラムで良好な感度が得られました。Table 1 に、その濃度における再現性（n=6）を示しました。RSD 値で、VOC 及び MTBE は 0.6~3.3%、MTBE は 2.6%、1,4-ジオキサンは 3.7%と良好な結果でした。検量線は、VOC 及び MTBE は濃度範囲 0.1〜50µg/L（7点）で R^2 = 0.9996〜1.0000、1,4-ジオキサンは濃度範囲 5〜100µg/L（5点）で R^2 = 0.9989 でした。Fig.2 に、VOC 及び MTBE の濃度 0.1µg/L、1,4-ジオキサンの濃度 5µg/L の SIM/Scan 同時取り込みモードの Scan のクロマトグラム（TIC）、SIM のクロマトグラム及び四塩化炭素のマススペクトルを示しました。Fig.3 に、四塩化炭素（0.1ppb）のライブラリ検索結果を示しました。ほとんどの化合物において、その濃度でスペクトル採取が可能でした。

ランタイムは 26.5 分で、サイクルタイムを 33 分にすることがで、1 時間当たり 1.8 サンプルの測定が可能です。Fig.1 では、1 時間当たり 43 サンプルの測定が可能です。

4. まとめ
VOC 及び MTBE の濃度 0.1µg/L、1,4-ジオキサンの濃度 5µg/L における SIM クロマトグラムの面積値の繰り返し再現性（n=6）は RSD 値で 3.7%以下と良好な結果でした。VOC 及び MTBE は濃度範囲 0.1〜50µg/L、1,4-ジオキサンは濃度範囲 5〜100µg/L で、良好な直線性を示しました。
Fig.1 VOC 及び MTBE の濃度 0.1µg/L、1,4-ジオキサンの濃度 5µg/L の SIM クロマトグラム

Fig.2 VOC 及び MTBE の濃度 0.1µg/L、1,4-ジオキサンの濃度 5µg/L の SIM/Scan 同時取り込みモードのデータ

Fig.3 四塩化炭素 (0.1ppb) のライブラリ検索結果

Table 1 RT (min)、T イオン (m/z)、Q イオン (m/z) 及び標準水溶液（VOC 及び MTBE 0.1µg/L、1,4-ジオキサン 5µg/L）の面積値の繰り返し再現性 (n=6)

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>RT (min)</th>
<th>T-イオン (m/z)</th>
<th>Q-イオン (m/z)</th>
<th>RSD (%) at 0.1µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1-dichloroethane</td>
<td>8.58</td>
<td>84</td>
<td>86</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>1,2-dichloroethane</td>
<td>10.54</td>
<td>61</td>
<td>96</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>trans-1,2-dichloroethylene</td>
<td>12.44</td>
<td>61</td>
<td>96</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>MTBE</td>
<td>17.97</td>
<td>63</td>
<td>95</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>1,1,1-trichloroethane</td>
<td>13.17</td>
<td>97</td>
<td>99</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>carbon tetrachloride</td>
<td>13.50</td>
<td>117</td>
<td>119</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>benzene</td>
<td>13.94</td>
<td>10</td>
<td>77</td>
<td>2.1</td>
</tr>
<tr>
<td>8</td>
<td>1,2-dichloroethane</td>
<td>13.97</td>
<td>62</td>
<td>94</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>dichloromethane</td>
<td>14.65</td>
<td>136</td>
<td>172</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>1,2-dichloroethane</td>
<td>15.32</td>
<td>63</td>
<td>93</td>
<td>2.4</td>
</tr>
<tr>
<td>11</td>
<td>1,4-dioxane *</td>
<td>15.55</td>
<td>88</td>
<td>58</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>bromodichloromethane</td>
<td>15.78</td>
<td>62</td>
<td>95</td>
<td>2.7</td>
</tr>
<tr>
<td>13</td>
<td>cis-1,2-dichloroethylene</td>
<td>16.47</td>
<td>75</td>
<td>110</td>
<td>1.8</td>
</tr>
<tr>
<td>14</td>
<td>toluene</td>
<td>16.84</td>
<td>93</td>
<td>92</td>
<td>1.6</td>
</tr>
<tr>
<td>15</td>
<td>trans-1,3-dichloropropene</td>
<td>17.28</td>
<td>79</td>
<td>110</td>
<td>2.6</td>
</tr>
<tr>
<td>16</td>
<td>1,1,1-trichloroethane</td>
<td>17.55</td>
<td>93</td>
<td>85</td>
<td>3.3</td>
</tr>
<tr>
<td>17</td>
<td>chloroform</td>
<td>17.71</td>
<td>166</td>
<td>193</td>
<td>2.7</td>
</tr>
<tr>
<td>18</td>
<td>dibromochloromethane</td>
<td>18.17</td>
<td>129</td>
<td>127</td>
<td>2.8</td>
</tr>
<tr>
<td>19</td>
<td>m-xylene</td>
<td>19.30</td>
<td>91</td>
<td>106</td>
<td>1.3</td>
</tr>
<tr>
<td>20</td>
<td>p-xylene</td>
<td>20.04</td>
<td>91</td>
<td>106</td>
<td>1.5</td>
</tr>
<tr>
<td>21</td>
<td>bromoform</td>
<td>20.25</td>
<td>173</td>
<td>171</td>
<td>2.8</td>
</tr>
<tr>
<td>22</td>
<td>p-dichlorobenzene</td>
<td>21.52</td>
<td>146</td>
<td>140</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* 1,4-ジオキサンは濃度 5µg/L