

LC オートサンプラを用いた段階希釈に おける再現性

著者

野田 莉帆

アジレント・テクノロジー 株式会社

要旨

さまざまな分析分野で、生産性向上や業務効率化を支援する自動化ワークフローの需要が高まっています。通常 HPLC を用いて定量する場合、検量線試料の調製などは手作業で実施され、多大な労力と時間がかかります。

Agilent HPLC オートサンプラの標準機能であるインジェクタプログラムにより、キャリブレーション溶液の調製などの分注のワークフローを自動化できます。分注手順の自動化により、手作業で生じる時間と費用を低減可能で、オペレータの習熟度によらず再現性の高い結果を得ることができます。本報では、HPLC のオートサンプラを用いた希釈の再現性の確認を行いました。

測定システム

Agilent 1260 Infinity III Prime LC System G7104C フレキシブルポンプ G7117C ダイオードアレイ検出器 G7129C バイアルサンプラ G7130A 内蔵型カラムオーブン OpenLab CDS 2.8

バイアルおよびキャップ

5182-0716 スクリューバイアル 2 mL 茶色 5183-2078 赤、スリット入り、PTFE/シリコンセプタム 5183-2086 不活性化ガラス平底インサート 400 µL

分析条件

表 1. 分析条件

LC	
移動相	12% アセトニトリル水溶液
UV	254 nm BW 4 nm, Ref 360 nm BW 100nm
Injection vol.	1 μL
流速	0.3 mL/min
Column	Poroshell 120 EC-C18 2.1*50 mm, 2.7 um PN699775-902
Column temp.	40 °C

20% アセトニトリル水溶液で溶解させた、100 mg/L カフェインを原液とし、ワークフローテンプレートを用いて試料 $20~\mu$ L、希釈溶媒として超純水 $40~\mu$ L をバイアルに吐出し、エアーにより混合して 3 倍希釈を 5 段階実施しました(図 1、2)。その後希釈試料および原液を分析しました。さらに再現性確認するため、上記操作を 5 回繰り返しました。オートサンプラでの吸引、吐出速度はデフォルト(吸引 $100~\mu$ L/min, 吐出 $400~\mu$ L/min)を使用しました。

シーケンスでは、1 行目で段階希釈のサンプルプレップメソッドを選択し、試料調製を実行しました。2 行目以降、ブランクおよび調製試料の分析を実施しました。

図 1. バイアル設置例

図 2. サンプルプレップメソッド設定

バイアル 中	サンブルタイプ 中	タイプ セ	レベル	サンプル名 中	測定メソッド 中	サンプルプレッ 🕏
P1-A6	● サンブル			希釈行	Caffeine.amx	段階希釈.smx
P1-A11	ブランク			blank	Caffeine.amx	
P1-A1	● キャリブレー	検量線をすべて	1	100/3^5	Caffeine.amx	
P1-A2	● キャリブレー		2	100/3^4	Caffeine.amx	
P1-A3	● キャリブレー		3	100/3^3	Caffeine.amx	
P1-A4	● キャリブレー		4	100/3^2	Caffeine.amx	
P1-A5	● キャリブレー		5	100/3	Caffeine.amx	
P1-A6	キャリブレー		6	100	Caffeine.amx	

図 3. シーケンス設定

結果

検量線各ポイントにおけるクロマトグラムの重ね書きを図 4 に、検量線の 重ね書きを図 5 に示します。表 2 には各ポイントにおける面積値および 再現性、検量線データを示します。5 回繰り返しの再現性が良好である ことが確認できました。

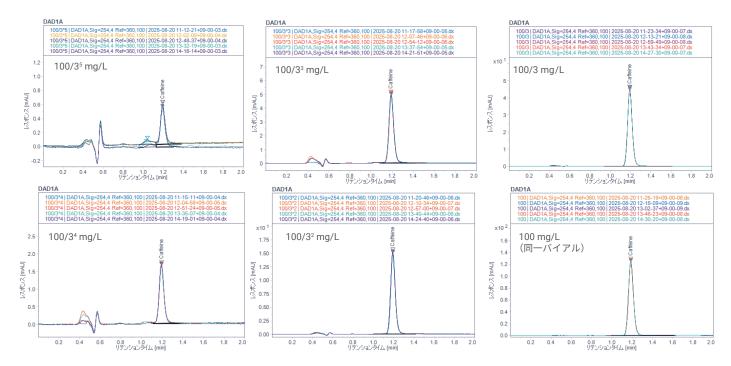


図 4. 段階希釈サンプル重ね書き (n=5)

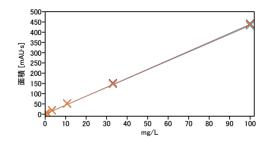


図 5. 検量線重ね書き (n=5)

表 2. 各濃度面積値および検量線回帰式 (y=ax+b)、決定係数データ

濃度 mg/L	1	2	3	4	5	Ave.	SD	RSD %
0.412	1.938	1.915	2.051	1.875	1.992	1.954	0.061	3.145
1.235	5.401	5.560	5.443	5.509	5.635	5.510	0.083	1.510
3.704	15.654	16.321	16.311	16.172	16.162	16.124	0.245	1.517
11.111	49.184	48.469	49.042	48.050	48.560	48.661	0.410	0.842
33.333	145.890	146.245	147.261	146.083	148.208	146.738	0.875	0.596
100.000	434.891	433.228	432.138	433.076	438.029	434.273	2.077	0.478
а	4.350	4.333	4.323	4.332	4.383	4.344		
b	0.199	0.381	0.665	0.255	0.296	0.359		
R2	0.99999	0.99998	0.99995	0.99998	0.99997	0.99998		

まとめ

Agilent Infinity III LC システムのオートサンプラを用いて標準試料の希釈を行いました。希釈試料を用いて検量線を作成したところ、決定係数は 0.999 以上を示し、良好な直線性を示ました。5 段階の希釈試料においてもピーク面積の RSD% は 3.145 % となり、良好な再現性を示しました。

参考文献

- 1) サンプル前処理をすばやく簡単に自動化
- 2) オートサンプラによるピペッティングの自動化

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE-009303

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2025 Printed in Japan, September 4, 2025 5994-8655JAJP

