

ハートカット多次元 GC を用いたディーゼル および残渣燃料油中の硫黄含有成分の分析

Agilent 8890 GC システム

著者

Brian Fitz Agilent Technologies, Inc. Wilmington, DE, USA.

概要

Agilent 8890 GC、炎光光度検出器 (FPD)、水素炎イオン化検出器 (FID) を用いて、ディーゼルおよび 残渣燃料油 (RFO) 中の炭化水素と硫黄含有成分の分布を分析しました。硫黄含有成分 (主にアルキル 化ジベンゾチオフェン) の分離を支援するため、Agilent キャピラリ・フロー・テクノロジー Deans スイッ チを用いて多次元ハートカット GC を行い、非極性 1 次カラムから中極性 2 次カラムへの領域のサンプ リングを行いました。中極性カラムを用いることで、FPD による検出時の成分のクエンチングを抑制で きます。FPD Plus による 4,6-ジメチルジベンゾチオフェンの検量線作成では、1 ~ 100 ppm の 2 桁 異なる範囲で直線性が示されました。PSD と呼ばれる EPC (エレクトロニックニューマティクスコント ロール) モジュールを用いて、Deans スイッチの流量を制御しました。また、PSD は拡張バックフラッシュ 機能も提供します。

はじめに

世界各地の環境規制機関は数十年間にわた り、路上、農業、鉄道、および海上アプリケー ション用炭化水素燃料中の許容硫黄含有量を 一貫して引き下げてきました。この引き下げは 今後も続くことが見込まれます^{1、2}。経済的な 方法で十分な量の低硫黄燃料を生産すること が石油・石油化学業界の現在の課題です。接 触分解の性能を最適化するため、炭化水素原 料中の硫黄含有成分の分布を把握することが 重要です。また、精製品で一貫性、最適な性 能、コンプライアンスを確保することも重要で す。GC/FPD は複雑な炭化水素サンプル中の 硫黄のスペシエーションに一般的に使用され るツールです。再設計されたアジレントの炎光 光度検出器 (FPD Plus) では、不活性化トラン スファーラインと個別の温度ゾーンによって、 活性高沸点化合物をカラムからフレーム発光 領域へ確実に移送できます³。

多次元 GC (MDGC) では複数のカラムを直 列に接続することで、システムの分離能と選 択性を向上させます。Deans スイッチを使用 して、対象領域 (ハートカットとも呼ばれます) を 1 次カラムから 2 次カラムヘカットします。 2 次カラムには異なる固定相があり、分離さ れていない成分を最初の次元から適切に分 離できます。このアプリケーションノートでは、 1 次カラムとして非極性の Agilent J&W DB-1ms ウルトライナート (100 % ジメチルポリシ ロキサン) を使用し、2 次カラムとして中極性 の Agilent J&W DB-17ht (50 % フェニルメチ ルポリシロキサン)を使用しました。 FPD Plus でのクエンチングを抑えるため、中 極性の J&W DB-17ht を利用して硫黄含有 成分の分離を行います。また、Deans スイッ チはバックフラッシュに対応しており、分析終 了時に過剰なベイクアウト時間をかけずに システムから高沸点化合物を除去できます。 Deans スイッチとバックフラッシュの Aux 圧 力源として PSD を使用しました。

このアプリケーションノートでは、8890 GC、 Agilent キャピラリ・フロー・テクノロジー (CFT) Deans スイッチ、FID および FPD Plus を組み合わせて使用しました。中間留分およ び重質留分、ディーゼル、RFO をそれぞれ用 いてシステムの試験を行いました。

実験方法

図 1 に使用した 8890 GCシステムの概略図 を示します。作動バルブがオフのときにカラム 1 の流出物が (FID への) リストリクタを通過 するように Deans スイッチを構成しました。 バルブが作動するとカラム 2 (FPD Plus) への 流れに切り替わります。Agilent Deans スイッ チカリキュレータを使用して、リストリクタの適 切な長さを計算しました。マルチモード注入口 (MMI)を使用し、スプリットモードとスプリット レスモードのいずれでも温度プログラムモード で運用しました。すべての分析で、ヘリウムを キャリアガスとして、定流モードで使用しまし た。使用したその他の機器パラメータについて は、表 1 を参照してください。表 2 に、バック フラッシュ設定を示しています。

図 1.8890 GC システムと FID および FPD Plus への Deans スイッチの構成の概略図

疑似蒸留分離を行って、RFO 中の炭素鎖の 分布を分析しました。DB-HT Sim Dis カラム (5 m × 530 μ m、0.15 μ m)を使用しました。 ただし、この実験では Deans スイッチ装置を 使用しませんでした。表 3 に、疑似蒸留メソッ ドで使用したパラメータを示しています。

サンプル

試験した中間留分はディーゼル燃料油中の NIST SRM 2724 硫黄 (425 μ g/g) でした。 スプリット比 100:1 で 1 μ L をそのまま注入し ました。重質留分は RFO 中の NBS 1622c-2 % 硫黄でした。トルエンで 1:40 に希釈し、 1 μ L をスプリットレス注入しました。4,6-ジメ チルジベンゾチオフェン (4,6-DMDBT) をト ルエンで 1、5、10、25、50、100 ppm に段 階希釈しました。これらの注入量はスプリッ ト比 25:1 で 1 μ L でした。ポリエチレン標準 (Polywax 500) をトルエンで 0.1 % に希釈 し、1 μ L をスプリットレス注入しました。表 4 は使用した消耗品を示しています。

表1.機器パラメータ

パラメータ	設定値
ガスクロマトグラフ	8890 シリーズ GC
オートサンプラ	Agilent 7693A オートサンプラ (注入量 1 µL)
注入口タイプ	MMI
MMI プログラム	100 ° C (0.02 分間)、900 ° C/min で 450 ° C まで昇温
オーブンプログラム	50 ° C (1 分間)、10 ° C/min で 350 ° C まで昇温 (1.5 分間)
カラム 1	DB-1ms UI (30 m × 250 μm、0.25 μm)、2 mL/min (He)
カラム 2	DB-17ht (30 m $ imes$ 250 µm, 0.15 µm), 3 mL/min (He)
リストリクタ	0.77 m × 100 μm 不活性フューズドシリカ、3 mL/min (He) (カラム 2 で制御)
Aux 圧力源	PSD
PSD パージフロー	3 mL/min (デフォルト)
FPD+	硫黄フィルタ (394 nm) トランスファーライン: 350 ° C エミッションブロック: 150 ° C 空気: 60 mL/min 水素: 60 mL/min 窒素: 60 mL/min
Deans スイッチ時間帯	ディーゼル: 18 ~ 24 分 4,6-DMDBT: 20.1 ~ 20.4 分

表 2. バックフラッシュパラメータ

パラメータ	設定値
オーブン (ポストラン)	360 ° C (5 分)
注入口温度	450 ° C
注入口パージフロー	100 mL/min
PSD	70 psi (4.5 mL/min カラム 2/3)
注入口	2 psi (-4.5 mL/min カラム 1)

表 3. 疑似蒸留パラメータ

パラメータ	設定値
カラム	J&W DB-HT Sim Dis (5 m $ imes$ 530 µm, 0.15 µm)
キャリアフロー	5 mL/min ヘリウム (定流量)
注入口 (MMI)	100 ° C (0.02 分間)、900 ° C/min で 450 ° C まで昇温
オーブンプログラム	40°C (保持時間なし)、10°C/min で 430°C まで昇温 (5 分間)
FID	450 ° C
	空気: 450 mL/min
	水素: 40 mL/min
	窒素: 30 mL/min

表4.使用した消耗品

パラメータ	設定値
シリンジ	5 μL テーパード (ブルーライン) (p/n G4513-80206)
ライナ	ウルトライナート、スプリット、ウール (p/n 5190-2295)
フェラル	フレキシブルメタルフェラル (p/n G3188-27501)
カラム 1	DB-1ms UI (p/n 122-0132UI)
カラム 2	DB-17ht (p/n 122-1831)
ソフトウェア	Agilent OpenLab 2.3

結果と考察

最初に分析したサンプルはディーゼル燃料油 サンプル中の NIST 2724 硫黄でした。総硫黄 量の認証値は 0.0425 % (425 ppm) です。 図 2Aは FID で検出された領域のハートカットを 行わない場合のディーゼルの全体分離を示し ています。このサンプルは温度プログラム内で 完全に溶出し、バックフラッシュは不要でした。 図 2B は 18 ~ 24 分で Deans スイッチによ るハートカットを行った場合のディーゼルの分 離を示しています。これは、複雑なマトリック スから単一化合物 (または短い時間帯) をカッ トして近隣の干渉を解決する Deans スイッチ の従来の運用と対照的です。この場合は、大 きい分離領域をサンプリングして化合物群を 解明しました。図 2C は 2 次カラム DB-17ht で分離され FPD Plus で検出された図 2B か らのハートカット領域を示しています。この領 域にはアルキル化ジベンゾチオフェンの分布 があります。この化合物群、特に4または6 (または両方)の位置に置換基を持つものは水 素化脱硫プロセス中に立体障害が生じ、その まま高濃度で残ります⁴。このため、処理後の 硫黄レベルを十分な低さに保ち規制項目をク リアするには、反応の遅いこれらの化合物の モニタリングが役立ちます。米国環境保護庁 (US EPA) が認める高速道路用ディーゼル燃 料の総硫黄量は15 ppm 以下です²。

図 2. A) FID で検出された NIST 2724 (ディーゼル燃料中の硫黄) の分離 B) 18 ~ 24 分の領域を FPD Plus ヘカットした NIST 2724 の分離 C) 2 次カラム J&W DB-17ht で分離され FPD Plus で検出された (B) からの領域

次に分析したサンプルは総硫黄量が約2%の NBS 1622c RFO でした。これらの RFO は バンカー燃料や第6号燃料油とも呼ばれ、由 来する原油の供給元によって硫黄含有量が非 常に高い場合があります。硫黄含有量に関す る世界的な規制はまもなく大きな影響を及ぼ します。これらの燃料のほとんどは船舶用と して使用されており、現在の制限において認 められている最大硫黄含有量は 3.5% です。 2020年、この制限は 0.5% (5,000 ppm) に 引き下げられ、硫黄排出規制区域 (SECA) 内 では 0.1 % (1,000 ppm) 以下が要求されま す。これらの超低硫黄燃料油 (ULSFO) の生 産が重要です。しかし、多くの外航船は硫黄ス クラバを使用することにより、硫黄排出限度内 を維持しつつ高硫黄燃料油を引き続き使用で きます1。

図 3A は DB-1ms UI カラムで分離され FID で検出された NBS 1622c RFO の分離を示し ています。サンプルをトルエンで 1:40 に希釈 し、スプリットレス注入しました。1次カラムの 出口の後に Aux 圧力源を持つ Deans スイッ チの性質により、バックフラッシュを利用する ことができます。バックフラッシュは 32 分 (C₃₆ 付近) に開始しました。表2に、バックフラッ シュのパラメータを示しています。PSD はバッ クフラッシュの実行に適した検出器です。パー ジフローが一定 (デフォルトでは 3 mL/min) であるため、バックフラッシュが高圧で実行さ れ、パージフローが過剰になりません。ほとん どのバックフラッシュ実装では静的リストリク タ (ティと固定長のキャピラリーチューブなど) を使用します。これらのシステムでは高圧での バックフラッシュ時にパージフローが非常に高 くなる (>500 mL/min) 場合があります。

図 3. A) FID で検出された NBS 1622c (RFO 中の硫黄) の分離。溶出する重化合物 (>C₃₆) を 32 分に バックフラッシュ。B) FPD Plus で検出された NBS 1622c の分離。Deans スイッチでサンプル全量を 2 次カラムへ送り、硫黄含有成分全体を表示。C) 20.1 ~ 20.4 分の狭いハートカットによる NBS 1622c の 分離。D) 4,6-DMDBT の (C) からのカット

図 3A ではサンプル全量を FID に送ったのに 対し、図 3B ではサンプル全量を 2 次カラムか ら FPD Plus へ送るように構成した Deans ス イッチの分離を示しています。これは Deans スイッチの通常の使用法ではありませんが、さ まざまな検出器を用いた未知サンプルの調査 において高い柔軟性を実現できます。このメ ソッドでは、小さい領域だけではなくサンプル 全体の硫黄化合物の分布が得られます。FPD Plus のクエンチングがある程度発生する可能 性がありますが、図 3A に示されているよう に、ジベンゾチオフェンの溶出が始まる前に炭 化水素の大半が分離されます (5~20分)。 NIST ディーゼルサンプルと同様、サンプル中 に大量のアルキル化ジベンゾチオフェンが存 在しますが、濃度はかなり高くなっています。 図 3C は FID で検出され 20.1 ~ 20.4 分の 短い時間帯でカットされた NBS 1622c RFO を示しています。このメソッドではハートカッ トとバックフラッシュを両方用いています。図 3D はこのハートカットに 4,6-DMDBT のほか に 2 つの未同定化合物が含まれていることを 示しています。

トルエンで1~100 ppm に希釈した 4,6-DMDBT の検量線を作成しました。1次 カラムにサンプルを注入し、ハートカット時間 帯を20.1~20.4分にしました。PMT の飽 和を防ぐため、サンプルを25:1で分配しまし た。検出器では硫黄化合物の応答の二乗が示 されるため、応答の平方根を計算してデータ を線形化します。図4はこの検量線を示して います。最も低い1ppm (スプリット25:1)の キャリブレーションレベルでは、硫黄5.7 pg がカラムに注入されています。FPD Plus の最 小検出下限 (MDL)は2.5 pg S/sec です。 最後に、NBS 1622c RFO 中の炭素鎖の分 布を調査するための実験を行いました。こ の実験では、短いメガボアカラム (DB-HT Sim Dis、5 m × 530 μ m、0.15 μ m)を使用 しました。ポリエチレン標準 (Polywax 500) を使用して炭素数の分布を確認しました。 Polywax 500 には C₂₀ ~ C₇₀ のポリエチレ ン鎖の分布が含まれています。図 5 は NBS 1622c RFO と Polywax 500 標準溶液の重 ね表示です。Polywax の分布の最後の C₇₀ 付 近で RFO の上限が次第に減少しています。こ れによってバックフラッシュを使用する必要性 (と利点) がわかります。

図 4.1~100 ppm の 4,6-ジメチルジベンゾチオフェンの検量線

図 5. NBS 1622c とポリエチレン標準溶液 (Polywax 500) のクロマトグラムの重ね表示 NBS RFO サンプルには $C_{10} \sim C_{70}$ ポリエチレン鎖が含まれる

結論

8890 GC システムと FID および FPD Plus へ の Deans スイッチを使用して、中間留分およ び重質留分炭化水素サンプル中のさまざまな 硫黄含有成分を分離し、同定することができ ました。非極性の J&W HP-1ms の 1 次カラ ムと中極性の J&W DB-17ht の 2 次カラムを 用いることで、FPD Plus における共溶出とク エンチングの可能性を抑制できます。PSD に はバックフラッシュ機能があり、パージフロー が一定であるためキャリアガス消費量を大幅 に減らすことができます。また、このシステム で C_{70} までの炭素数のサンプルのバックフラッ シュができることが示されました。

参考文献

- Molloy, N. The IMO's 2020 Global Sulphur Cap – What a 2020 Sulfur Constrained World Means for Shipping Lines, Refineries, and Bunker Suppliers. Retrieved from www.platts.com, **2016**.
- Highway and Nonroad, Locomotive, and Marine (NRLM) Diesel Fuel Sulfur Standards. Retrieved from United States Environmental Protection Agency. https://www.epa. gov/emission-standards-referenceguide/epa-standards-fuel-sulfur, 2016.
- Firor, R. An Improved Flame Photometric Detector for the Analysis of Dibenzothiophenes in Diesel, Distillates, and Feedstocks Using the Agilent 7890B Series GC. Agilent Technologies Technical Overview, publication number 5991-1752EN, 2013.
- Ma, X.; Sakanishi, K.; Mochida, I. Hydrodesulfurization Reactivities of Various Sulfur Compounds in Vacuum Gas Oil. *Ind. Eng. Chem. Res.* 1996, *35(8)*, 2487-2494.

ホームページ www.agilent.com/chem/jp

カストマコンタクトセンタ 0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2018 Printed in Japan, December 6, 2018 5994-0488JAJP

