

Agilent AdvanceBio SEC 120 Å 1.9 µm PEEK ライナ付きカラムを用いた 抗体フラグメント薬物複合体の分析

概要

抗体薬物複合体 (ADC) は通常、薬剤リンカー (約2 kDa) を IgG 抗体全体 (約 150 kDa) に複合化 して形成し、最大 8 の薬物抗体比 (DAR) で構成されます。こうして形成された抗体は約 10 % w/w に修飾されますが、抗体の主な特性の大部分は変更されずに維持されます。抗体の一本鎖 Fv (V_H お よび V_L) のような抗体フラグメントは、IgG (約 30 kDa) の約 5 分の 1 のサイズであり、DAR をさらに 高くする (約 10) ように修飾できます。こうして形成された抗体フラグメント薬物複合体 (FDC) では、 約 65 % w/w のタンパク質修飾を示します。このような極端な修飾により複合体の特性が大幅に変化 する場合があり、分析に新たな課題が生じてしまいます。

著者

Benjamin Stenton Antikor Andrew Coffey and Veronica Qin Agilent Technologies, Inc.

はじめに

このアプリケーションノートで分析した FDC は等電点が非常に低く(リジン複合化が原 因)、複合体の凝集が迅速であるため、逆相 (RP) クロマトグラフィーの移動相ではギ酸 を使用できません。エレクトロスプレーイオン 化では、ギ酸に存在するデュアル機能のプロ トン化成分により荷電種を生成し、ナトリウム 付加物を最低限に抑えます。 DAR が高いと FDC が凝集する傾向があるため、複合体の精 製、製剤、分析間でのステップ数を最小にする には、インライン脱塩メソッドが適しています。 このアプリケーションノートでは、pl が非常に 低く分析困難な FDC の特性を解析するため に、質量分析に対応する未変性モードのサイ ズ排除 (SEC/MS) メソッドを開発しました。 このメソッドは、適切なポアサイズにより対象 分子を良好に分離し、ナトリウム付加物がほ ぼ存在しない優れた脱塩が実現できるため、 FDC DAR 分析および反応混合物中の複合体 のモニタリングに最適です。

実験方法

試薬および調製

試薬はすべて、HPLC グレード以上のものを 使用しました。

サンプル前処理

scFv および FDC サンプルは Antikor が作製 しました。

装置構成

HPLC 分析では、Agilent 1290 Infinity LC を次の構成で使用しました。

- Agilent 1290 Infinity バイナリポンプ (G4220A)
- Agilent 1290 Infinity オートサンプラ (G4226A)
- Agilent 1290 Infinity サーモスタット付 カラムコンパートメント(G1316C)
- Agilent 1260 Infinity II ダイオードアレイ 検出器 WR (DAD) (G7115A)
- Agilent 6545XT AdvanceBio LC/Q-TOF

メソッド条件

データ処理

LC/MS データは、Agilent MassHunter Qualitative Analysis 10.0 および BioConfirm B.07 ソフトウェアで処理 しました。

Agilent 1290 Infinity LC			
HPLC 条件	逆相メソッド	未変性 SEC メソッド	
カラム	Agilent PLRP-S、2.1 × 50 mm (p/n PL1912-1502)	AdvanceBio SEC 1.9 µm 120 Å、 2.1 × 150 mm PEEK ライナ付き (p/n PL1980-3250PK)	
移動相	A = 20 mM NH₄OAc∖ pH 7.0 B = MeCN	75 mM NH₄OAc、pH 7.0	
グラジエント	0分 10% B 8.4分 10% B 14.4分 90% B 20.4分 90% B 21.6分 10% B 25.8分 10% B		
流量	0.6 mL/min	0.05 mL/min	
カラム温度	70 °C	30 °C	
注入量	2.2 µL	5 µL	

Agilent 6545XT AdvanceBio LC/Q-TOF			
パラメータ	逆相メソッド	未変性 SEC メソッド	
イオン源	デュアル Agilent Jet Stream	デュアル Agilent Jet Stream	
ガス温度	325 ℃	300 °C	
ドライガス流量	11 L/min	8 L/min	
ネブライザガス	40 psi	40 psi	
シースガス温度	400 °C	300 °C	
シースガス流量	12 L/min	8 L/min	
キャピラリー電圧	4,500 V	3,000 V	
ノズル電圧	300 V	2,000 V	
フラグメンタ	275 V	200 V	
スキマ電圧	65 V	65 V	
Oct 1 RF Vpp	750 V	750 V	
質量範囲	m/z 300 ~ 3,200	m/z 900 ~ 10,000	
MS スキャンレート(スペクトル/ 秒)	1	1	
取り込みモード	ポジティブ、拡張ダイナミック レンジモード(2 GHz)	ポジティブ、拡張ダイナミック レンジモード(2 GHz)	

中性緩衝液で RP クロマトグラフィーを使用 して scFv をインラインで脱塩した結果、約 12.7 分で scFv ピークが溶出しました(図 1)。図 2 に、scFv ピークの質量スペクトルを 示します。デコンボリュート時に多数のナトリ ウム付加物が観察されており(図 3)、分析は かなり複雑になります。

RP 分析では高いイオン源温度によりリンカー が分解される場合があるため、代替のアプ ローチを探しました。

図3. 複数のナトリウム付加物を示すデコンボリュートしたスペクトル

揮発性移動相緩衝液を使用した SEC を実行 できますが、二次的反応を低減した固定相を 使用する必要があります。一部の分子では、 ステンレスではなく、バイオイナート(PEEK ライナ付き)SEC カラムを使用して、ピーク形 状をさらに改善することもできます。

また、内径 2.1 mm のカラムを使用して、流 量を 0.05 mL/min まで下げることにより、低 い脱溶媒ガス流量と低い温度が使用できま す。流量を低くすることで、タンパク質がナト リウムイオンからクロマトグラフィー分離され ると、平衡化するまでの時間が長くなり、ナト リウム付加物が減少します(図4および5)。 図 4 から、scFv と薬物複合化された FDC の 両方が薬剤リンカー(約2kDa)と塩から適 切に分離されていることもわかります。このた め、今回のメソッドは、反応時の FDC と薬剤 リンカーのモニタリングにも簡単に適用できま す。 個々の DAR 種の分布は、 デコンボリュー トしたスペクトルから決定できます (図 6)。 また図 6 では、主要な DAR ピーク間にいくつ かの小さいピークも存在しますが、これは C 末端にアミノ酸が存在しない溶液内でのペプ チドのフラグメンテーションの結果です。

図 6. (A) DAR 種を示す scFv と FDC のデコンボリュートした質量スペクトル。(B) 拡大表示

結論

この研究では、未変性 SEC/MS により、逆相 アプローチと比較してナトリウム付加物が少 ない優れた脱塩が実現されており、分析時に は中性の pH により FDC が安定した状態を 維持します。PEEK ライナ付き SEC カラムお よびポアサイズ 120 Å の親水性固定相によ り、比較的低濃度の揮発性移動相を使用した このタイプのサンプル分離で、二次的反応が 最小限に抑えられます。この新しいメソッドは、 FDC DAR 分析および反応混合物中の複合体 のモニタリングに使用できます。

参考文献

 Richards, D. A. Exploring Alternative Antibody Scaffolds: Antibody Fragments and Antibody Mimics for Targeted Drug Delivery.*Drug Discov. Today Technol.*2018, 30, 35–46.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2021 Printed in Japan, February 9, 2021 5994-3045JAJP DE44222.4859027778

