

Agilent Intuvo 9000 GC と ガスサンプリングバルブによる 軽質炭化水素の分析

ガスサンプリングバルブと GC 検出器スプリッタによる 分析結果の再現性について

著者

Abbey Fausett
Agilent Technologies, Inc.

概要

Agilent Intuvo 9000 GC を用いた混合標準ガスの分析メソッドを紹介します。このシステムは、ガスサンプリングバルブ、ポストカラム D1/D2 検出器スプリッタチップ、水素炎イオン化検出器 (FID)、熱伝導度検出器 (TCD) を搭載しています。分析結果から、流路中のこの 2 つの検出器において、リテンションタイムとピークレスポンスが同等であることが分かりました。

はじめに

GC へのサンプル導入には、ガスサンプリング バルブを含むさまざまな手法を使用できます。 Intuvo 9000 GC は、ガスサンプルのサンプリ ングに適しており、6 ポートガスサンプリング バルブを1個搭載できます。これにより、プロ セスガスや圧縮ガス、ガス中の不純物を分析 するラボにおいて装置の専有スペースを縮小 できます。サンプルを2つ目の検出器へスプ リットすることによって、キャリブレーション範 囲を拡張したり、選択性を向上したりできる ため、分析効率が向上します。ガスサンプリン グバルブと D1/D2 検出器スプリッタチップを 搭載した Intuvo 9000 GCを、Agilent J&W HP-PLOT カラムと組み合わせることで、高い 信頼性でのガスサンプルの分離と定量が、よ り小型のシステムで実現し、生産性が向上し ます。

このアプリケーションノートでは、Intuvo 9000 GCでガスサンプリングバルブを使用し、 圧縮標準ガスを分析した結果の再現性を示します。

サンプル前処理

この再現性の検証実験では、サンプル前処理は不要です。サンプルにはアジレントのリファイナリガステストサンプル (p/n 5080-8755)を使用しました。自動のストリームセレクタを通して、サンプルを GC に接続しました。表 1にサンプル中の化合物とおおよその濃度を示します。

実験方法

装置構成

Intuvo 構成					
ガスサンプリングバルブ	6-ポート、0.1 mL ループ				
注入口	スプリット/スプリットレス				
注入ロライナ	ウルトライナート、ガラスウール付き (p/n 5190-2295)				
Intuvo 流路	ガードチップ (p/n G4587-60565) 注入口フローチップ (p/n G4581-60031) D1/D2 GC 検出器スプリッタ (p/n G4588-60402)				
分析カラム	Agilent J&W HP-PLOT AL203 M $\scriptstyle \smallsetminus$ 50 m $\scriptstyle imes$ 0.32 mm $\scriptstyle imes$ 8.0 $\scriptstyle \mu m$				
検出器 1	水素炎イオン化検出器 (FID)				
検出器 2	熱伝導検出器 (TCD)				

Intuvo 分析条件					
ガスサンプリングバルブ (Thermal Aux #1)	150 °C				
ループロード時間 ループ注入時間	0.5分 0.5分				
注入口	150 ℃、スプリット比 200:1、セプタムパージ 3 mL/min				
ガードチップ	トラックオーブンモード				
バス	225 °C				
分析カラム	ヘリウム、37.3 psig (5 mL/min)				
カラムオーブン	75°C、ホールド時間なし 15°C/min で 175°C まで昇温、1 分間ホールド 総分析時間 = 7.67分				
FID 設定値	250 °C 水素 = 30 mL/min 空気 = 400 mL/min メークアップ (N₂) = 25 mL/min				
TCD 設定値	200 °C リファレンスガス = 10 mL/min メークアップガス = 5 mL/min				

表 1. アジレントのリファイナリガステスト用サンプルの組成

化合物	濃度 (%)			
メタン	5			
エタン	10			
エチレン	1			
プロパン	5			
プロピレン	1			
イソブタン	10			
n-ブタン	5			
trans-2-ブテン	5			
1-ブテン	10			
cis-2-ブテン	5			
イソペンタン	2			
n-ペンタン	1			
水素	15			
窒素	15			
二酸化炭素	5			
一酸化炭素	5			

結果と考察

この評価では、ガスサンプリングバルブと自動のストリームセレクタを使用して、30回の繰り返し分析を実行しました。J&W HP-PLOT AL203 M カラムではサンプル中の永久ガスは分離されず、FIDではこれらのガスを検出しません。そのため、水素、窒素、二酸化炭素、一酸化炭素は統計から除外します。図1にFIDおよびTCDのクロマトグラムを示し、表2に再現性の結果を記載しています。TCDでは永久ガスがメタンガスと共溶出し、このピークのレスポンスにばらつきが見られます。

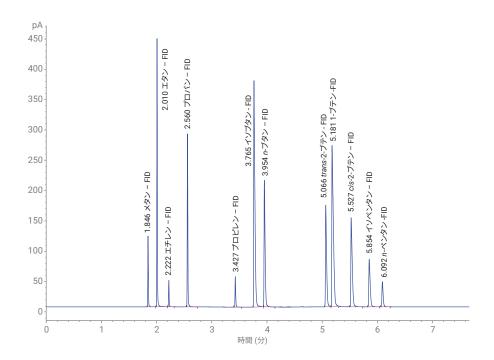


図 1A. FID クロマトグラム、リテンションタイムと化合物名のラベル付き

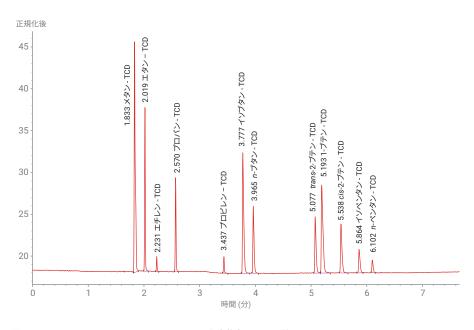


図 1B. TCD クロマトグラム、リテンションタイムと化合物名のラベル付き

結論

Agilent Intuvo 9000 GC に 1 個のガスサンプリングバルブおよび Agilent J&W HP-PLOT カラムと組み合わせることにより、ガス分析で一貫性のある結果を得ることができました。ポストカラム D1/D2 検出器スプリッタによる同時検出では、流路中の 2 つの検出器のリテンションタイムとピークレスポンスに関して同等の結果が得られました。Intuvo 9000 GC とスマートキーテクノロジーにより、流路構成、複雑な計算、複数のカラムの取り付けが不要になり、ワークフローの効率が一段と向上します。

表 2. TCD および FID 検出器における各炭化水素化合物の分析結果の再現性 (相対標準偏差)

化合物	TCD - RT	TCD - 面積	TCD - 高さ	FID - RT	FID - 面積	FID - 高さ
メタン	0.00 %	2.89 %	3.99 %	0.01 %	1.05 %	1.01 %
エタン	0.01 %	0.93 %	0.92 %	0.02 %	1.08 %	1.02 %
エチレン	0.02 %	3.07 %	1.25 %	0.02 %	1.27 %	1.03 %
プロパン	0.02 %	1.20 %	1.02 %	0.02 %	1.06 %	1.02 %
プロピレン	0.04 %	3.34 %	1.29 %	0.04 %	1.06 %	1.07 %
イソブタン	0.03 %	1.26 %	1.07 %	0.03 %	1.10 %	0.88 %
n- ブタン	0.03 %	1.38 %	1.05 %	0.03 %	1.24 %	1.03 %
trans-2- ブテン	0.05 %	1.48 %	1.12 %	0.05 %	1.20 %	1.09 %
1- ブテン	0.05 %	1.32 %	1.06 %	0.05 %	1.11 %	1.14 %
cis-2- ブテン	0.05 %	1.78 %	1.27 %	0.05 %	1.21 %	1.26 %
イソペンタン	0.04 %	2.20 %	1.38 %	0.04 %	1.26 %	1.21 %
n- ペンタン	NA	NA	NA	0.04 %	1.54 %	1.49 %

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2019 Printed in Japan, August 19, 2019 5994-1185JAJP

