

Agilent InfinityLab Poroshell HPH-C8 カラムによるオメプラゾールの不純物の分析

著者

Rongjie Fu Agilent Technologies (Shanghai) Co., Ltd.

はじめに

中国薬局方 (ChP) のオメプラゾール中の不純物の分析に従って、2.7 µm の Agilent InfinityLab Poroshell HPH-C8 表面多孔質カラムでオメプラゾールの不純物の分析メソッドを実行しました。 InfinityLab Poroshell HPH 結合相は、最高 pH 11.0 の塩基性移動相においても安定するように設計されています。 InfinityLab Poroshell HPH-C8 と InfinityLab Poroshell HPH-C18 は、中~高 pH のアプリケーション用のカラムとして広く利用されるようになりました。

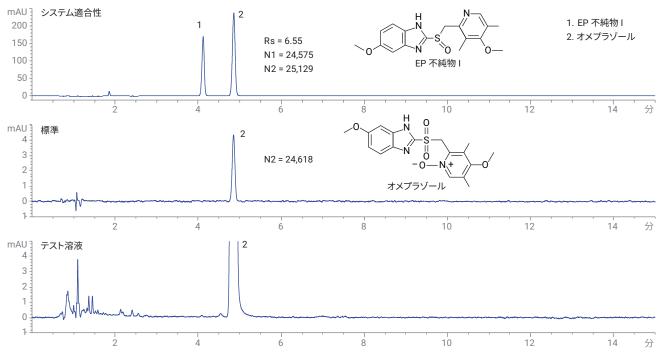


図 1. Agilent InfinityLab Poroshell HPH-C8 カラムによるオメプラゾール中の不純物の分析

表 1. HPLC メソッドで使用した条件

パラメータ	設定値
機器	Agilent 1290 Infinity II ハイスピードポンプ (G7120A)
	Agilent 1290 Infinity II マルチサンプラ (G7167B)
	Agilent 1290 Infinity II マルチカラムサーモスタット (G7116B)
	Agilent 1290 Infinity II DAD (G7117B)
	Agilent OpenLab CDS、バージョン C.01.08
カラム	Agilent InfinityLab Poroshell HPH-C8、4.6 × 100 mm、2.7 μm (p/n 695975-706)
移動相	75 % 0.01 M Na ₂ HPO ₄ (pH 7.6、リン酸で調製) /25 % アセトニトリル
流量	1 mL/分
UV 検出器	280 nm、40 Hz
カラムコンパートメントの温度	35°C
注入量	8 μL
サンプル	システム適合性:移動相中 0.1 mg/mL の不純物 I と 0.1 mg/mL のオメプラゾール
	標準溶液: 移動相中 2 μg/mL
	テスト溶液: 移動相中 0.2 mg/mL

結論

主な不純物 (I) がオメプラゾールから適切に分離され、すべてのシステム要件をこのメソッドで満たせました。

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに変更されることがあります。

