

N-グリカンの遊離およびラベリングのための 高速 APTS サンプル前処理ワークフローの 開発

著者

Andres Guerrero, John Yan, Ace G. Galermo, Tom Rice, Jim Torrence, Justin Hyche, Ted Haxo, Sergey Vlasenko, and Aled Jones Agilent Technologies, Inc., Hayward, CA

Aarti Jashnani Bristol-Myers Squibb Redwood City, CA

概要

生物製剤の N-グリカン部位は、免疫原性、薬物動態、薬力学に影響を与える場合があるため、N-グリ カンの特性解析が開発プロセスの重要な部分になっています。一般的なアプローチは、蛍光色素により 酵素的に遊離された N-グリカンを誘導体化することにより、グリカン混合物を分離して検出し、グリカ ン種の相対分布を評価することです。キャピラリ電気泳動(CE)による分離の場合、中性グリカン種の 泳動を可能にするために、負電荷の色素 8-アミノピレン-1,3,6-トリスルホン酸三ナトリウム塩(APTS) が頻繁に使用されます。従来のメソッドを使用した APTS ラベル化 N-グリカンの前処理は多くの場合、 完了までに何時間も、あるいは何日もかかります。

ここでは Agilent AdvanceBio Gly-X N-グリカン前処理プラットフォーム(旧 ProZyme)に追加する APTS ワークフローについて説明します。APTS ラベル化 N-グリカンの CE または UHPLC 分析用の前 処理は、約 2.5 時間で完了します。2 つの CE プラットフォームと UHPLC-HILIC における、リツキサン およびエンブレルの APTS ラベル化グリカンの分離について示します。

はじめに

モノクローナル抗体 (mAb)、Fc 融合タンパ ク質、凝固因子、およびエリスロポエチンの ようなサイトカインなど、60%を超える生物 製剤がグリコシル化されています。¹N-結合型 グリカンの構造は、治療用タンパク質の薬理 学で重要な役割を果たし、免疫原性や薬物 動態、薬力学に影響を与える可能性がありま す。^{2、3}このことから、N-グリカンの特性解析 は生物製剤の開発プロセスの重要な部分に なっています。N-グリカンには、オンライン検 出に適した発色団も蛍光色素分子も含まれて いないため、CE による分離の場合、一般的に は PNGase F による酵素的な遊離後の還元 的アミノ化反応により、APTS のような蛍光タ グで誘導体化します。 従来の APTS ラベリン グメソッドでは、ラベリング前の遊離グリカン の乾燥およびその後の余分な APTS ラベルの

クリーンアップを含む複数の手順が必要にな るため、完了までに何日とまではいかなくても 何時間を要する場合があります。GlykoPrep 高速 N-グリカン前処理と APTS により、サン プル前処理プロセスを 4 ~ 5 時間に効率化し ました。⁴Agilent AdvanceBio Gly-X N-グリ カン前処理と APTS Express(旧 ProZyme) はシンプルなワークフローであり、通常分析 までのサンプルの準備が 2.5 時間で完了しま す (図 1)。96 ウェル PCR プレートフォーマッ トでの PNGase F による 5 分の溶液内脱グリ コシル化により N-グリカンが遊離され、変性 試薬により N-グリコシル化部位の曝露が増進 され、高温での酵素による迅速な切断が実現 します。

グリコシルアミン (-NH₂) から遊離還元末端 型 (-OH) への高速変換に従って、96 ウェル 吸引ろ過プレートフォーマットのクリーンアッ プマトリックスに N-グリカンをロードします。 クリーンアップマトリックスで還元的アミノ化 による N-グリカンの APTS Express ラベリ ング(1時間)を実行することにより、従来の APTS ワークフローで実施していた、ラベリン グ前のグリカンサンプルの乾燥が不要になり ます。ラベリング後、マトリックスに結合してい る APTS ラベル化グリカンから遊離 APTS ラ ベルとその他の反応成分を洗浄し、APTS ラ ベル化 N-グリカンサンプルを水中に溶出させ ます。APTS ワークフローは、幅広い APTS ラベル化泳動標準、個別の N-グリカンおよび N-グリカンライブラリ⁵、エキソグリコシダーゼ によってサポートされています。

図1. N-グリカンのサンプル前処理ワークフロー:Agilent GlykoPrep と APTS、および次世代 Agilent AdvanceBio Gly-X と APTS Express

方法および材料

サンプル前処理

マブセラ(ロット番号 H0102B03、リツキシマ ブ)およびエンブレル(ロット番号 R170724、 エタネルセプト)の N-グリカンサンプルを、 Agilent AdvanceBio Gly-X N-グリカン前処 理と APTS Express キット(GX96-APTS) および Agilent GlykoPrep 高速 N-グリカン前 処理キットと APTS(GP96NG-APTS)により 前処理しました。この際、標準の推奨プロトコ ルに従い、Gly-X 前処理では 40 µg のタンパ ク質、および Agilent GlykoPrep では 50 µg のタンパク質を使用しました。

CE 分離

APTS ラベル化 N-グリカンを次のシステムで 分離しました。

- Agilent Gly-Q グリカン分析システム (旧 ProZyme) と LED 誘起蛍光検出 (LEDIF)、Ex/Em (nm) 310/> 385 (製 品コード GQ2100)、電気的注入および 2 分の分離使用。
- Sciex PA800-plus CE システムとレー ザー誘起蛍光 (LIF) による検出、Ex/Em (nm) 488/520。N-CHO キャピラリー、 窓までの長さ:50 cm、全長:60 cm、 電解液:炭水化物分離バッファ。サンプ ル注入圧力:0.5 psi、10 秒間。分離電 圧と時間:30 kV、27 分間、カートリッ ジ温度:20 ℃。

UHPLC-HILIC

アミドカラム (2.1 x 150 mm、1.7 μ m) で、 蛍光検出 (FLD) による APTS ラベル化グリ カンの親水性相互作用液体クロマトグラフィー (HILIC) 分離を実施しました。この際、カラ ム温度 60 °C、グラジエント 30 ~ 60 % 50 mM ギ酸アンモニウム pH 4.4、2 ~ 50 分の 間は流量 0.4 mL/min という条件を使用しま した。 ラベル化グリカンを FLD、Ex/Em (nm) 473/520 でモニタリングしました。グリカン を、既存のアジレントのデータおよび文献内の データ⁶と比較して割り当てました。

APTS Express グリカンの シアリダーゼ A による処理

PCR プレートで、1 µL のシアリダーゼ A (GK80040)を75 µL の Gly-X APTS ラベ ル化グリカンに加え、50 ℃ で10 分間イン キュベーションしました。サンプルを冷却して Gly-Q CE システムに注入しました。

結果と考察

APTS Express の性能

APTS Express の推奨サンプル注入量は 10 ~40 μ g です。マブセラでは 1 ~ 200 μ g の 範囲、エンブレルでは 10 ~ 200 μ g の範囲 において類似したグリカンプロファイルが観察 されました(データは示していません)。

APTS Express クリーンアップにより遊離色 素の > 99 % を除去し(データは示していませ ん)、個別のグリカンのバイアスを最小限に抑 えています (図 2)。また、図 3 に示すように、 クリーンアップではシアル酸付加されたグリカ ン種も保持されています。

図 2. N-グリカンのサンプル前処理ワークフロー:Agilent GlykoPrep と APTS、 および次世代 Agilent AdvanceBio Gly-X と APTS Express

図 3. シアル酸付加種の保持。エンブレル APTS N-グリカンを UPLC で測定し、 シアル酸付加種の合計相対 % 面積をクリーンアップありとなしで比較しました。

マブセラの6 個の複製物を前処理して Agilent Gly-Q システムで分離し、再現性を評 価しました(図4)。主要なグリカンのピーク に対して、%CV は3%未満でした。

CE 分離

Agilent AdvanceBio Gly-X と APTS Express は、さまざまな CE システムで分離を実行でき るオープンフォーマットのキットです。

リツキサンおよびエンブレルの N-グリカンを、 Agilent Gly-Q CE システム (図 5A と 6A) と Sciex PA800 plus (図 5B と 6B) で分離しま した。 AdvanceBio Gly-X APTS クリーンアップモ ジュールにより > 99 % の遊離色素が除去さ れるため、分析の初期段階でクリーンな分離 を実行できます。

図 4. Agilent Gly-X APTS Express の再現性。マブセラの 6 個の複製物を前処理し、Agilent Gly-Q CE システムで分離した結果を(A)に示します。 主要なグリカンピークの相対 % 面積と %CV を(B)に示します。

図 5. Agilent Gly-X APTS Express で前処理したマブセラの N-グリカン。次のシステムで分離しました。A) Agilent Gly-Q システムの CE、B) PA800 plus の CE、C) UHPLC-HILIC

図 6. Agilent Gly-X APTS Express で前処理したリツキサンの N-グリカン。次のシステムで分離しました。A) Agilent Gly-Q システムの CE、B) PA800 plus の CE、C) UHPLC-HILIC

UHPLC-HILIC 分離

AdvanceBio APTS Express でラベル化し、 HILIC により分離されたマブセラとエンブレル の N-グリカンの例を、それぞれ 図 5C と 6C に示します。

APTS ラベル化グリカンは、UHPLC または HPLC 機器の HILIC により分離できます。た だし、APTS グリカンのピークは、HILIC で 通常使用されているその他の N-グリカン色 素 (InstantPC、2-AB など)を使用した場合 よりも幅が広くなります。APTS グリカンは、 2-AB やその他のグリカンよりも HILIC 時に高 極性で多数が保持されるため、HILIC グラジ エントを低有機パーセントで開始することが必 要になる場合があります。

APTS Express グリカンの シアリダーゼ A による処理

シアリダーゼ A(GK80040)により、APTS ラベル化グリカンのα(2,3)-、α(2,6)-、α(2,8)-、 およびα(2,9)-結合型シアル酸を遊離すること により、ピークの割り当てを支援できます。

エンブレルの N-グリカンに対して 10 分のシ アリダーゼ A による処理を実行すると、Gly-Q エレクトロフェログラムでピークがシアル酸付 加されて、中性の位置に移動します(図 8)。 例えば、A2F が G2F に移動し、A1F が G1F に移動します。

図 7. Agilent AdvanceBio Gly-X APTS Express および Agilent GlykoPrep APTS ラベル化 N-グリカンの比較。 マブセラのラベル化 N- グリカンを、PA800 plus で前処理して分離しました。

図8.10 分のシアリダーゼ A による分解前後のエンブレルの APTS ラベル化 N-グリカンの Agilent Gly-Q 分離

結論

遊 離 N-グ リ カ ン の Agilent AdvanceBio Gly-X APTS Express ラベリングにより、例 えば、Agilent GlykoPrep と APTS の過去の データと直接比較できる、再現性と信頼性の 高い結果が得られます。確立された APTS ラ ベルを用いることで、進行中の複数のプロジェ クトでデータの継続性を確保できます。

AdvanceBio Gly-X と APTS Express によ り、非常に長い乾燥手順が不要になり、従来 の APTS ラベリングによる高速なワークフロー (約 2.5 時間)が実現するため、結果が得ら れるまでの時間が短縮されます。AdvanceBio Gly-X N-グリカン前処理と APTS Express に よるデータは、Agilent GlykoPrep 高速 N-グ リカン前処理キットと APTS によるデータと 同等です。オープンフォーマットの CE キット により、他の CE 機器で次世代 AdvanceBio Gly-X APTS Express ラベリングソリューショ ンを実行し、UHPLC-HILIC で分離することが 可能になります。

参考文献

- Planinc, A.; et al. Glycan Characterization of Biopharmaceuticals: Up-Dates and Perspectives. Anal.Chim. Acta. 2016, May 19, 921,13–27.
- Liu, L. Antibody Glycosylation and its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fcfusion Proteins. *J. Pharm. Sci.* 2015, 104(6), 1866–1884.
- Jones, A. N-Glycan Analysis of Biotherapeutic Proteins. *BioPharm International* 2017, 30(6), 20–25.
- Szekrényes, A.; et al. Multi-Site N-glycan Mapping Study 1: Capillary Electrophoresis – Laser Induced Fluorescence. MAbs 2016, 8(1), 56–64.
- 5. www.prozyme.com/pages/n-glycanstandards
- Reusch, D.; et al. High-throughput Glycosylation Analysis of Therapeutic Immunoglobulin G by Capillary Gel Electrophoresis Using a DNA Analyzer. MAbs 2014, 6(1), 185–196.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ 0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2019, 2020 Printed in Japan, May 18, 2020 5994-0944JAJP TN 4011 Rev. B DE.5904166667

