

7000 シリーズトリプル四重極 GC/MS による MRM モードでの EPA 8270D/E 用 高速メソッド

著者

Melissa Churley, Bruce Quimby, and Anastasia Andrianova Agilent Technologies, Inc.

はじめに

Agilent 7000 シリーズトリプル四重極 GC/MS システムによるマルチプルリアクションモニタリング (MRM) モードでの EPA 8270D/E 用高速メソッドを開発しました。感度が向上したうえに MRM が提供する選択性が高まったため、SIM または抽出イオンをスキャンモードで使用する際に、存在する可能性のあるマトリックス干渉を除去することで、高速なバッチ確認を実現しています。このメソッドは、1 回10 分の分析で検量範囲が 0.02 ~ 160 ppm のキャリブレーションの性能要件を満たしています。初回のキャリブレーションにおける化合物の %RSD が小さいため、長期にわたり持続的なキャリブレーションでの使用が可能と予想され、運用コストを削減できます。GC/MS による半揮発性有機化合物の分析に関してここで説明する手法は、米国 EPA メソッド 8270D/E と世界の他の地域でも適用可能です。

実験方法

高速の昇温プログラムを実行するために、 7000C または Dトリプル四重極質量分析装 置を Agilent 8890 または 7890B GC と組 み合わせました。GC には SSL 注入口を取 り付け、システムは Etune アルゴリズムによ りオートチューニングしました。分析メソッド には、Agilent ウルトライナートライナ (p/n 5190-2295) および Agilent J&W DB-5ms ウルトライナートカラム、 $20 \text{ m} \times 0.18$ 、 0.18 μm (p/n 121-5522UI) を使用しまし た。スプリットモードで 1:20 スプリット比を 用いて 1 µL の注入を実行しました。これは、 Split Ratio (スプリット比) および Detector Gain Optimization (検出器ゲイン最適化) で指定したとおりに最適化しました。イオン 源には、9 mm 径のドローアウトレンズ (p/n G3870-20449) を取り付けました。77 種類 の混合化合物と 6 種類の内部標準 (ISTD) (AccuStandard) を用いて、ジクロロメタン 中で 0.02 ~ 160 ppm の範囲で合計 12 ま たは 13 のキャリブレーションレベルを用意し ました。ISTD の濃度は中間点 (4 ppm) とし、 メソッドはアセナフテン-d10 にリテンションタイ ムロックを行いました。データの取り込みと処 理には、Agilent MassHunter Workstation Quantitative Analysis ソフトウェアを使用し ました。MRM データは、機器の分析時間を 効率的に活用するために、ダイナミック MRM (dMRM) モードで収集しました。表 1 と 2 は それぞれ、詳細なメソッドパラメータと MRM トランジションを示しています。

図 1. ウルトライナートライナ、ガラスウール入り (p/n 5190-2295)

表 1. Agilent 8890/7890 GC および Agilent 7000C/D 機器の使用条件

GC 分析条件							
分析カラム Agilent J&W DB-5ms ウルトライナート、20 m × 0.18 mm、0.18 µm (p/n 121-5522							
注入量	1 μL						
注入口温度	280 °C						
注入モード	スプリット比 1:20						
オーブン温度 40 °C (0 分)、 35 °C/min で 40~320 °C (2 分)							
キャリアガス ヘリウム、定流量 1.2 mL/min							
トランスファーライン温度	320 °C						
分析時間 10 分							
	MS 条件						
イオン源温度	300 °C						
四重極温度	150 °C						
イオン化	EI モード						
EMV モード	ゲイン係数						
ゲイン係数 2(システムごとに最適化)							
溶媒ディレイ	1.25分						
スキャンタイプ	dMRM						
サイクル/秒	6.6						

表 2. MRM トランジション (dMRM 取り込みモード)。 最適化したデルタリテンションタイム (RT) とドウェルタイムの値は、明確にするために下位を切り捨てています。

		プリカーサ	プロダクト	左側 RT	右側 RT		
化合物	RT	イオン	イオン	デルタ	デルタ	ドウェル	CE
NDMA	1.38	74	44	0.13	0.20	56.07	6
NDMA	1.38	74	42	0.13	0.20	56.07	14
ピリジン	1.41	79	52	0.10	0.20	56.07	25
ピリジン	1.41	79	51	0.10	0.20	56.07	25
フェノール、2-フルオロ-	1.91	112	64	0.10	0.12	75.06	20
フェノール、2-フルオロ-	1.91	112	63	0.10	0.12	75.06	45
フェノール-d ₆	2.34	99	71	0.10	0.15	14.17	30
フェノール-d ₆	2.34	99	42	0.10	0.15	14.17	40
フェノール	2.35	94	66.1	0.10	0.15	14.17	15
フェノール	2.35	94	65.1	0.10	0.15	14.17	20
アニリン	2.38	93	66	0.10	0.15	10.50	10
アニリン	2.38	92	65	0.10	0.15	10.50	10
ビス(2-クロロエチル)エーテル	2.41	95.1	65	0.10	0.10	9.53	5
ビス(2-クロロエチル)エーテル	2.41	93.1	63	0.10	0.10	9.53	0
クロロフェノール、2-	2.45	128	64	0.10	0.15	9.22	15
クロロフェノール、2-	2.45	128	63	0.10	0.15	9.22	30
1,3-ジクロロベンゼン	2.54	146	111	0.20	0.42	8.33	15
1,3-ジクロロベンゼン	2.54	146	75	0.20	0.42	8.33	30
1,4-ジクロロベンゼン-d ₄	2.57	150	115	0.10	0.10	9.31	15
1,4-ジクロロベンゼン-d ₄	2.57	150	78	0.10	0.10	9.31	30

表 2. MRM トランジション (dMRM 取り込みモード)。最適化したデルタ RT とドウェルタイムの値は、明確にするために下位を切り捨てています (続き)。

化合物	RT	プリカーサ イオン	プロダクト イオン	左側 RT デルタ	右側 RT デルタ	ドウェル	CE
1,4-ジクロロベンゼン	2.58	146	111	0.42	0.42	13.21	15
1,4-ジクロロベンゼン	2.58	146	75	0.42	0.42	13.21	30
ベンジルアルコール	2.64	108	79	0.10	0.20	8.84	15
ベンジルアルコール	2.64	107	79	0.10	0.20	8.84	5
1,2-ジクロロベンゼン	2.67	146	111	0.42	0.20	9.63	15
1,2-ジクロロベンゼン	2.67	146	75	0.42	0.20	9.63	30
メチルフェノール、2- (クレゾール、0-)	2.7	108	107	0.15	0.20	7.96	15
メチルフェノール、2- (クレゾール、0-)	2.7	107	77	0.15	0.20	7.96	15
ビス(2-クロロ-1-メチルエチル)エーテル	2.73	121	77	0.15	0.25	7.68	5
ビス(2-クロロ-1-メチルエチル)エーテル	2.73	121	49	0.15	0.25	7.68	30
メチルフェノール、4- (クレゾール、p-)	2.8	108	107.1	0.20	0.25	8.36	15
メチルフェノール、4- (クレゾール、p-)	2.8	107	77.1	0.20	0.25	8.36	15
ニトロソジ-n-プロピルアミン、N-	2.81	113.1	71	0.10	0.15	7.14	10
ニトロソジ-n-プロピルアミン、N-	2.81	101	70	0.10	0.15	7.14	0
ヘキサクロロエタン	2.88	200.9	165.9	0.10	0.12	7.19	15
ヘキサクロロエタン	2.88	118.9	83.9	0.10	0.12	7.19	35
ニトロベンゼン-D ₅	2.91	128	98	0.10	0.10	7.78	10
ニトロベンゼン-D ₅	2.91	128	82	0.10	0.10	7.78	10
ニトロベンゼン	2.92	123	77	0.10	0.15	8.28	10
ニトロベンゼン	2.92	77	51	0.10	0.15	8.28	15
イソホロン	3.07	138	82	0.20	0.25	10.46	5
イソホロン	3.07	82	54	0.20	0.25	10.46	5
ニトロフェノール、2-	3.12	138.9	81	0.15	0.22	11.00	15
ニトロフェノール、2-	3.12	109	81	0.15	0.22	11.00	10
ジメチルフェノール、2,4- (2,4-キシレノール)	3.14	122.1	107	0.10	0.15	12.24	10
ジメチルフェノール、2,4- (2,4-キシレノール)	3.14	107.1	77.1	0.10	0.15	12.24	15
安息香酸	3.18	105	77	0.20	0.35	11.42	10
安息香酸	3.18	105	51	0.20	0.35	11.42	35
ビス(2-クロロエトキシ)メタン	3.21	95	65	0.10	0.15	10.37	5
ビス(2-クロロエトキシ)メタン	3.21	93	63	0.10	0.15	10.37	5
ジクロロフェノール、2,4-	3.28	163.9	63	0.10	0.15	9.65	30
ジクロロフェノール、2,4-	3.28	162	63	0.10	0.15	9.65	30
トリクロロベンゼン、1,2,4-	3.34	179.9	145	0.10	0.15	10.32	15
トリクロロベンゼン、1,2,4-	3.34	179.9	109	0.10	0.15	10.32	30
ナフタレン-d ₈	3.38	136.1	108.1	0.10	0.10	9.59	20
ナフタレン-d ₈	3.38	136.1	84.1	0.10	0.10	9.59	25
ナフタレン	3.39	128.1	102.1	0.10	0.15	12.38	20
ナフタレン	3.39	128.1	78.1	0.10	0.15	12.38	20
クロロアニリン、4-	3.42	127	92	0.10	0.15	13.18	15
クロロアニリン、4-	3.42	127	65	0.10	0.15	13.18	20
ヘキサクロロブタジエン	3.47	226.9	191.9	0.10	0.15	28.71	15
ヘキサクロロブタジエン	3.47	224.8	189.9	0.10	0.15	28.71	15

表 2. MRM トランジション (dMRM 取り込みモード)。最適化したデルタ RT とドウェルタイムの値は、明確にするために下位を切り捨てています (続き)。

化合物	RT	プリカーサ イオン	プロダクト イオン	左側 RT デルタ	右側 RT デルタ	ドウェル	CE
フェノール、4-クロロ-3-メチル-	3.75	142	107	0.15	0.25	34.24	15
フェノール、4-クロロ-3-メチル-	3.75	107	77	0.15	0.25	34.24	15
メチルナフタレン、2-	3.86	142.1	141.1	0.10	0.15	22.34	15
メチルナフタレン、2-	3.86	141.1	115.1	0.10	0.15	22.34	15
ヘキサクロロシクロペンタジエン	3.97	237	143	0.10	0.15	17.85	20
ヘキサクロロシクロペンタジエン	3.97	237	119	0.10	0.15	17.85	20
トリクロロフェノール、2,4,5-	4.05	197.9	97	0.10	0.20	16.66	25
トリクロロフェノール、2,4,5-	4.05	195.9	97	0.10	0.20	16.66	25
トリクロロフェノール、2,4,6-	4.07	198	97	0.10	0.20	17.45	30
トリクロロフェノール、2,4,6-	4.07	196	97	0.10	0.20	17.45	30
1,1'-ビフェニル、2-フルオロ-	4.11	172	171	0.10	0.10	16.20	35
1,1'-ビフェニル、2-フルオロ-	4.11	172	170	0.10	0.10	16.20	35
クロロナフタレン、2-	4.2	162	127.1	0.10	0.10	21.04	20
クロロナフタレン、2-	4.2	162	77	0.10	0.10	21.04	35
ニトロアニリン、2-	4.27	138	92	0.10	0.10	25.89	15
ニトロアニリン、2-	4.27	138	65	0.10	0.10	25.89	25
フタル酸ジメチル	4.4	163	92	0.10	0.10	23.89	30
フタル酸ジメチル	4.4	163	77	0.10	0.10	23.89	20
ジニトロトルエン、2,6-	4.44	165	90.1	0.10	0.10	20.02	15
ジニトロトルエン、2,6-	4.44	165	63	0.10	0.10	20.02	25
アセナフチレン	4.49	152.1	102.1	0.10	0.15	14.15	30
アセナフチレン	4.49	151.1	77	0.10	0.15	14.15	25
ニトロアニリン、3-	4.55	138	92	0.10	0.15	11.18	15
ニトロアニリン、3-	4.55	138	80	0.10	0.15	11.18	5
アセナフテン-d ₁₀	4.59	164.1	162.1	0.10	0.10	10.43	15
アセナフテン-d ₁₀	4.59	162.1	160.1	0.10	0.10	10.43	20
アセナフテン	4.61	154.1	127	0.10	0.10	10.43	40
アセナフテン	4.61	153.1	77	0.10	0.10	10.43	45
フェノール、2,4-ジニトロ-	4.63	184	107	0.20	0.60	12.76	25
フェノール、2,4-ジニトロ-	4.63	184	79	0.20	0.60	12.76	25
ニトロフェノール、4-	4.67	138.9	109	0.15	0.24	12.71	5
ニトロフェノール、4-	4.67	109	81	0.15	0.24	12.71	10
ジニトロトルエン、2,4-	4.72	165	119	0.10	0.10	12.55	5
ジニトロトルエン、2,4-	4.72	165	63	0.10	0.10	12.55	45
ジベンゾフラン	4.73	168.1	139.1	0.10	0.10	13.47	25
ジベンゾフラン	4.73	139.1	63	0.10	0.10	13.47	35
フタル酸ジエチル	4.89	149	93	0.10	0.10	12.42	15
フタル酸ジエチル	4.89	149	65	0.10	0.10	12.42	20
フルオレン	4.97	166.1	165.1	0.10	0.12	10.14	15
フルオレン	4.97	165.1	163.1	0.10	0.12	10.14	35
ニトロアニリン、4-	4.98	138	108.1	0.10	0.15	10.10	5

表 2. MRM トランジション (dMRM 取り込みモード)。 最適化したデルタ RT とドウェルタイムの値は、明確にするために下位を切り捨てています (続き)。

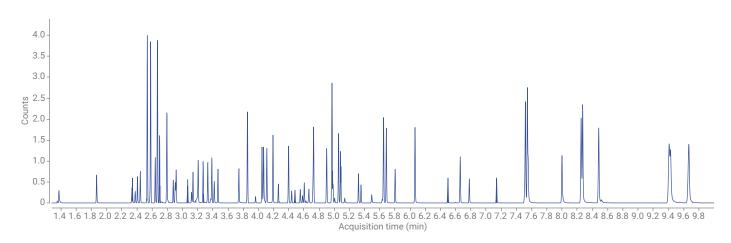
化合物	RT	プリカーサ イオン	プロダクト イオン	左側 RT デルタ	右側 RT デルタ	ドウェル	CE
ニトロアニリン、4-	4.98	108	80	0.10	0.15	10.10	15
クロロフェニルフェニルエーテル、4-	4.98	204	77	0.10	0.15	10.34	30
クロロフェニルフェニルエーテル、4-	4.98	141.1	115.1	0.10	0.15	10.34	20
DNOC (2-メチル-4,6-ジニトロフェノール)	5	198	167.9	0.10	0.25	13.44	5
DNOC (2-メチル-4,6-ジニトロフェノール)	5	198	121	0.10	0.25	13.44	10
ニトロソジフェニルアミン、N-	5.06	169.1	168.1	0.10	0.12	9.76	15
ニトロソジフェニルアミン、N-	5.06	168.1	167.1	0.10	0.12	9.76	15
アゾベンゼン	5.09	105	77.1	0.11	0.12	11.37	5
アゾベンゼン	5.09	77	51	0.11	0.12	11.37	15
トリブロモフェノール、2,4,6-	5.14	329.7	140.8	0.10	0.12	16.41	30
トリブロモフェノール、2,4,6-	5.14	140.9	62	0.10	0.12	16.41	15
4-ブロモフェニルフェニルエーテル	5.32	250	141	0.10	0.10	22.75	20
4-ブロモフェニルフェニルエーテル	5.32	248	141	0.10	0.10	22.75	20
ヘキサクロロベンゼン	5.36	283.8	213.9	0.10	0.10	28.52	30
ヘキサクロロベンゼン	5.36	248.9	214	0.10	0.10	28.52	15
ペンタクロロフェノール	5.5	265.9	167	0.10	0.42	30.92	25
ペンタクロロフェノール	5.5	165	130	0.10	0.42	30.92	25
フェナントレン	5.62	178.1	152.1	0.12	0.16	22.36	25
フェナントレン	5.62	176.1	150.1	0.12	0.16	22.36	25
フェナントレン-d ₁₀	5.64	188.3	160.2	0.10	0.10	18.93	20
フェナントレン-d ₁₀	5.64	188.3	158.2	0.10	0.10	18.93	35
アントラセン	5.69	178.1	152.1	0.12	0.14	18.72	25
アントラセン	5.69	178.1	151.1	0.12	0.14	18.72	30
カルバゾール	5.81	167	139	0.10	0.12	33.75	45
カルバゾール	5.81	167	89	0.10	0.12	33.75	60
フタル酸ジ-n-ブチル	6.06	149	121	0.10	0.10	74.98	15
フタル酸ジ-n-ブチル	6.06	149	65	0.10	0.10	74.98	25
フルオランテン	6.5	202.1	152.1	0.10	0.22	26.52	30
フルオランテン	6.5	201.1	200.1	0.10	0.22	26.52	15
ベンジジン	6.6	184	156	0.10	0.25	25.99	45
ベンジジン	6.6	184	139	0.10	0.25	25.99	55
ピレン	6.66	202.1	151	0.10	0.15	21.27	45
ピレン	6.66	201.1	200	0.10	0.15	21.27	15
p-テルフェニル-d ₁₄	6.76	244	240	0.38	0.38	36.14	45
ρ-テルフェニル-d ₁₄	6.76	244	226	0.38	0.38	36.14	40
フタル酸ブチルベンジル	7.14	149	65	0.10	0.10	55.86	25
フタル酸ブチルベンジル	7.14	91	65	0.10	0.10	55.86	15
3,3-ジクロロベンジジン	7.5	252	181	0.10	0.12	25.65	45
3,3-ジクロロベンジジン	7.5	252	154	0.10	0.12	25.65	55
ベンゾ[a]アントラセン	7.51	228.1	226.1	0.10	0.15	23.12	30
ベンゾ[a]アントラセン	7.51	226.1	224.1	0.10	0.15	23.12	35
クリセン-d ₁₂	7.52	240.2	236.2	0.08	0.12	16.17	35

サンプルのスプリット比と 検出器ゲインの最適化

サンプル導入量および検出器ゲインを最適化 することで、ダイナミックレンジを最大化する ことができます。検出器が飽和するのを防止 するために、非常に高い濃度の標準溶液 (160 ppm) と低いゲイン設定 (1 など) を使用して、 スプリット比を調節してベンゾ[b および k]フル オランテン異性体の分離能の要件を満たし、 頂点が丸いブロードなピークが回避できるよ うにしました。十分な分離能が達成されるの は、2 つの異性体ピーク間の谷の高さが、中 間点濃度での2つのピークの高さの平均の 50 % 未満である場合です (EPA 8270D/E)。 幅が広がる (対称的) また頂点がブロードにな るなど、ピークのパターンが歪む場合は、シ ステムにオーバーロードが発生しています。多 くの場合、最適化したスプリット比は 1:20 で した。検出器ゲインを最適化して直線性を最 大限に広げました。これは分析にとってきわ めて重要です。トリプル四重極機器のゲイン は、最高濃度の標準溶液のベースピーククロ マトグラム (BPC) で最も高いピークが、3~ 5×10^7 の範囲になるように設定しました。 通常、分析のゲイン設定は $1 \sim 2$ の値です。

アジレントの不活性なエクストラクタイオン源は柔軟性に優れており、メソッドのニーズに応える最大限の性能を得ることができます。8270 MRM 高速分析では、9 mm 径のレンズを使用しました。これは、小さい平均RF %RSD と組み合わせると、非常に分析困難な化合物で高感度が得られるためです¹。

キャリブレーションの結果


図2のクロマトグラムは、77種類のターゲット化合物と6種類の内部標準の分離を示しています。

クライテリアへの適合

マルチポイントキャリブレーションを実行し、相対レスポンス係数 (RF) を各キャリブレーションレベルでコンポーネントごとに測定しました。その後、平均レスポンス係数を各化合物の検量線の平均相対 RF 全体に対して算出し、その相対標準偏差 (RSD) を得ました。クライテリアへの適合は、平均 RF %RSD が 20以下であることです (デフォルトの基準として望ましい)。そうでない場合は、直線近似で $\mathbb{R}^2 \geq 0.990$ が必要であり、最終的には二次曲線近似が用いられる可能性もあります。最も低いデータポイントの真度は \pm 30% でなければならず、曲線近似を用いる場合は 6 つのポイントが必要です。

表 2. MRM トランジション (dMRM 取り込みモード)。最適化したデルタ RT とドウェルタイムの値は、明確にするために下位を切り捨てています (続き)。

化合物	RT	プリカーサ イオン	プロダクト イオン	左側 RT デルタ	右側 RT デルタ	ドウェル	CE
クリセン-d ₁₂	7.52	236.1	232.1	0.08	0.12	16.17	40
クリセン	7.54	226.1	224.1	0.10	1.13	23.59	40
クリセン	7.54	113.1	112.1	0.10	1.13	23.59	10
フタル酸ビス(2-エチルヘキシル)	7.55	167	149	0.10	0.12	23.09	5
フタル酸ビス(2-エチルヘキシル)	7.55	149	65	0.10	0.12	23.09	25
フタル酸ジ-n-オクチル	7.98	149	93	0.10	0.20	27.51	20
フタル酸ジ-n-オクチル	7.98	149	65	0.10	0.20	27.51	25
ベンゾ[b]フルオランテン	8.23	252.1	250.1	0.10	0.17	18.69	35
ベンゾ[b]フルオランテン	8.23	126	113.1	0.10	0.17	18.69	10
ベンゾ[k]フルオランテン	8.25	252.1	250.1	0.12	0.16	18.56	30
ベンゾ[k]フルオランテン	8.25	126.1	113.1	0.12	0.16	18.56	10
ベンゾ[a]ピレン	8.46	252.1	250.1	0.10	0.17	21.83	35
ベンゾ[a]ピレン	8.46	125	124.1	0.10	0.17	21.83	10
ペリレン-d ₁₂	8.5	264.2	260.1	0.12	0.12	16.16	35
ペリレン-d ₁₂	8.5	260.1	256.1	0.12	0.12	16.16	40
インデノ[1,2,3-cd]ピレン	9.36	276.1	274.1	0.10	0.40	30.66	40
インデノ[1,2,3-cd]ピレン	9.36	137	136	0.10	0.40	30.66	15
ジベンズ[a,h]アントラセン	9.38	278.1	276.1	0.12	0.30	24.37	35
ジベンズ[a,h]アントラセン	9.38	276.1	274.1	0.12	0.30	24.37	35
ベンゾ[g,h,i]ペリレン	9.6	276.1	274.1	0.35	0.40	45.33	45
ベンゾ[g,h,i]ペリレン	9.6	138	137	0.35	0.40	45.33	15

図 2. 10 分の分析時間を示す 50 ppm 標準溶液の TIC MRM クロマトグラム

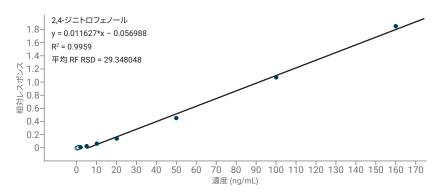
初回キャリブレーション性能

異なる日に複数の機器 (7000C および D モデ ル)で得られたキャリブレーション結果につい て妥当性を評価しました。表 3 に 7000D シ ステムで分析した初回キャリブレーション例の 結果を示し、表 4 にそれをまとめた内容を示 します。メソッドの全検量範囲は 0.02 ~ 160 ppm に決定されましたが、0.02 ppm は一般 的なキャリブレーションに使用する値の 10 分 の 1 未満です。必要に応じて、メソッドクライ テリアを満たすためにキャリブレーション範囲 の下限と上限の各化合物のデータポイントを 削除したため、これらの化合物では検量範囲 が狭くなっています (表 3)。 ベンジジンは、広 い範囲にわたってクライテリアに適合すること がありました (例えば、1 \sim 100 ppm で許容 可能、 $R^2 = 0.9915$ 、直線近似)。ただし、この 例のバッチ内ではクライテリアを満たしていな かったため、表3からは除外しています。6種 類の内部標準 (濃青)、平均 RF %RSD クライ テリアに適合した化合物 (灰)、および曲線近 似に基づいてクライテリアに適合した化合物 (緑) を表でハイライト表示しています。 高濃度 標準と低濃度標準の値は、特に記載がない限 りそれぞれ 0.02 と 160 ppm です。

表 3.77 種類のターゲット化合物の初回キャリブレーションの結果

	平均RF			低濃度標準 (ppm)	高濃度標準 (ppm)
化合物	%RSD	R ²	曲線近似	(デフォルトは 0.	02 ~ 160 ppm)
NDMA	30.60	0.9990	直線	0.2	100
ピリジン	14.87	0.9887			
2-フルオロフェノール	7.59	0.9950			
フェノール-d ₆	4.92	0.9988			
フェノール	7.62	0.9976			
アニリン	12.70	0.9967			100
ビス(2-クロロエチル)エーテル	6.19	0.9985			
2-クロロフェノール	6.71	0.9982			
1,3-ジクロロベンゼン	7.84	0.9950			
1,4-ジクロロベンゼン-d ₄	12.13				
1,4-ジクロロベンゼン	8.30	0.9964			
ベンジルアルコール	7.52	0.9987			
1,2-ジクロロベンゼン	8.02	0.9962			
2-メチルフェノール (o-クレゾール)	8.14	0.9972			
ビス(2-クロロ-1-メチルエチル)エーテル	18.78	0.9982			
4-メチルフェノール (p-クレゾール)	8.35	0.9986			
N-ニトロソジ-n-プロピルアミン	12.27	0.9989			
ヘキサクロロエタン	4.79	0.9992			
ニトロベンゼン-d ₅	6.82	0.9991			
ニトロベンゼン	6.03	0.9963			
イソホロン	6.49	0.9981			
2-ニトロフェノール	14.75	0.9926			
2,4-ジメチルフェノール (2,4-キシレノール)	13.57	0.9985			
安息香酸	45.77	0.9987	二次曲線	2	100
ビス(2-クロロエトキシ)メタン	7.07	0.9968			
2,4-ジクロロフェノール	9.73	0.9984			
1,2,4-トリクロロベンゼン	6.99	0.9964			
ナフタレン-d ₈	13.74				
ナフタレン	8.27	0.9956			
4-クロロアニリン	6.30	0.9971			
ヘキサクロロブタジエン	5.95	0.9974			
4-クロロ-3-メチルフェノール	8.26	0.9982			
2-メチルナフタレン	9.95	0.9934			
ヘキサクロロシクロペンタジエン	10.60	0.9946			
2,4,5-トリクロロフェノール	12.42	0.9951			
2,4,6-トリクロロフェノール	14.82	0.9967			
2-フルオロビフェニル	8.65	0.9935			
クロロナフタレン、2-	7.01	0.9959			
2-ニトロアニリン	12.98	0.9954			
	6.27	0.9979			
2,6-ジニトロトルエン	18.45	0.9945			
アセナフチレン	5.41	0.9983			

いくつかの初回キャリブレーションは複数の 機器で実行したため、表 4 に例のバッチの結 果をまとめて示しています。示した結果は、メ ソッド性能の点で慣例的な手法を取ったもの です。この例では、平均 RF %RSD クライテリ アに合格したのは 77 化合物中 68 で、3 種 の化合物では直線近似を使用し、5種の化合 物では二次曲線近似が必要でした。実行した 初回キャリブレーションでは、二次曲線近似 が必要ない例がありました。あるケースでは、 68 種の化合物が平均 RF %RSD に適合し、9 種が直線近似で適合しました。内部標準の平 均 RF %RSD 値の平均は 5.7 でした。 ベンジ ジンは二次曲線近似が必要な場合もあり、示 されたバッチのケースのように、常にクライテ リアに適合しているわけではありませんでし た。初回キャリブレーションでの分析範囲が狭 い安息香酸やベンジジンなどの化合物は概し て、GC 分析が非常に困難であることが知ら れています。しかし、これら2種類の化合物は 常に、このメソッドを使用して EPA 8270 クラ イテリアに適合していました。


表 3.77 種類のターゲット化合物の初回キャリブレーションの結果

	平均RF	R ²	曲線近似	低濃度標準 (ppm)	高濃度標準 (ppm)
化合物	"%RSD			(デフォルトは 0	0.02~160 ppm)
3-ニトロアニリン	17.22	0.9952			
アセナフテン-d ₁₀	13.33				
アセナフテン	5.81	0.9958			
2,4-ジニトロフェノール	29.35	0.9959	直線	0.5	160
4-ニトロフェノール	24.22	0.9951	直線	5	160
2,4-ジニトロトルエン	19.95	0.9973		2	160
ジベンゾフラン	8.42	0.9921			
フタル酸ジエチル	17.41	0.9983		0.05	160
フルオレン	7.21	0.9903			
4-クロロフェニルフェニルエーテル	13.27	0.9716			
4-ニトロアニリン	19.41	0.9969			
DNOC (2-メチル-4,6-ジニトロフェノール)	36.98	0.9993	二次曲線	0.5	100
N-ニトロソジフェニルアミン	6.23	0.9988			
アゾベンゼン	5.99	0.9953			
2,4,6-トリブロモフェノール	19.86	0.9835		0.05	100
4-ブロモフェニルフェニルエーテル	5.59	0.9989			
ヘキサクロロベンゼン	5.01	0.9983			
ペンタクロロフェノール	33.45	0.9979	二次曲線	0.5	100
フェナントレン-d ₁₀	13.45				
フェナントレン	5.99	0.9958			
アントラセン	5.65	0.9980			
カルバゾール	6.69	0.9971			
フタル酸ジブチル	16.81	0.9962		0.05	160
フルオランテン	8.30	0.9974			
ピレン	8.15	0.9936			
p-テルフェニル-d ₁₄	7.30	0.9909			
フタル酸ベンジルブチル	19.04	0.9815			100
3,3-ジクロロベンジジン	15.63	0.9918			
ベンゾ[a]アントラセン	14.30	0.9969			
クリセン-d ₁₂	13.19				
クリセン	5.79	0.9968			
フタル酸ビス(2-エチルヘキシル)	24.34	0.9978	二次曲線	0.5	100
フタル酸ジ-n-オクチル	28.38	0.9973	二次曲線	0.5	100
ベンゾ[b]フルオランテン	9.72	0.9973			
ベンゾ[k]フルオランテン	9.69	0.9973			
ベンゾ[a]ピレン	11.30	0.9977			
ペリレン-d ₁₂	14.94				
インデノ[1,2,3-cd]ピレン	12.64	0.9982			
ジベンズ[a,h]アントラセン	15.44	0.9967			
ベンゾ[g,h,i]ペリレン	8.76	0.9987			

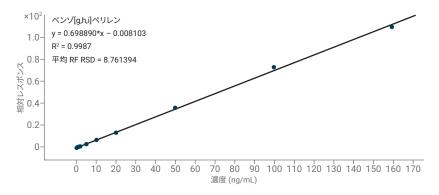

MRM モードで達成された高感度と大幅に拡大されたキャリブレーション範囲 0.02~160 ppm により、濃度 1 ppm 未満の 5 種類の標準溶液がバッチの全範囲に含まれていました。内部標準は、標準溶液のおおよその中央値レベルである 4 ppm で加えました。この場合にメソッドが最適な形で実行されるように決定したためです。

表 4. 初回キャリブレーションの結果のまとめ

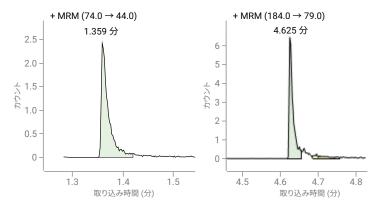

平均 RF %RSD が 20 未満の	ターゲット化合物の平均 RF %RSD	実用的な検量	内部標準の平均 RF %RSD
化合物数	(バッチ間の平均)	範囲 (ppm)	(6 種類の化合物の平均)
68/77	12.3	0.02 ~ 160	

図 3. 分析困難な化合物、2,4-ジニトロフェノールのキャリブレーション結果の例。許容可能な分析範囲は $2\sim160$ ppm です ($R^2=0.9959$ 、直線近似)。選択されていないポイントは < 2 ppm のポイントで、クライテリアに適合するために削除しました。

図 4. ベンゾ[g,h,i]ペリレンのキャリブレーション結果の例。許容可能な分析範囲は $0.05\sim160$ ppm です (平均 RF %RSD = 8.8 (適合)、 $R^2=0.9987$ 、直線近似)。

図 5. NDMA、0.2 ppm (範囲 = 0.2~160 ppm) および 2,4-ジニトロフェノール、 2 ppm (範囲 = 2~160 ppm) の低濃度標準溶液の定量 MRM クロマトグラム

結論

Agilent 7000 シリーズトリプル四重極 GC/MSシステム向けに、MRM モードによる 高速かつ高感度の半揮発性化合物メソッドを 開発しました。1 回 10 分の分析で検量範囲 0.02~160 ppm の初回キャリブレーションでの EPA 8270D/E のメソッドクライテリアを満たしています。これは標準的な分析時間の半分未満です。MRM の選択性によりメソッドの性能が大幅に向上しており、複雑なバッチの確認の必要性が低減しました。1 つの分析メソッドで全範囲をキャリブレーションでき、メソッド %RSD が小さいため、持続的なキャリブレーションが長期に及び、ラボの生産性が向上します。

参考文献

1. 5977 イナートプラス GC/MSD による EPA 8270 の再最適化および キャリブレーション範囲の拡大、 アジレント・テクノロジー、 アプリケーションノート 5994-0350JAJP, **2018**.

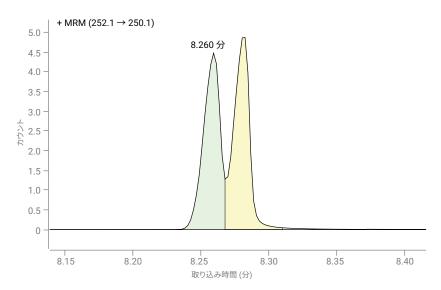


図 6. ベンゾ[b および k]フルオランテンの最適化した条件を用いた 160 ppm での異性体分離能。 スプリット比は 1:20 です (8 ng 注入)。十分な分離能が達成されるのは、2 つの異性体ピーク間の 谷の高さが、中間点濃度での 2 つのピークの高さの平均の 50 % 未満である場合です (8270D/E)。

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2019 Printed in Japan, March 21, 2019 5994-0691JAJP

