

Agilent 8890 GC システムによる USP メソッド <467> 残留溶媒の分析

著者

Lukas Wieder, Jie Pan, and Rebecca Veeneman

Agilent Technologies, Inc. 2850 Centerville Road Wilmington DE 19808

概要

このアプリケーションノートでは、Agilent 8890 GC と Agilent J&W DB-Select 624 UI <467> カラム、 Agilent J&W HP-INNOWax カラムを用いた USP メソッド <467> の残留溶媒の検出と確認について 紹介します。このシステムは、USP メソッド <467> で求められるすべての仕様に適合し、複数回の注入 にわたって優れた再現性を示しました。

はじめに

クラス1およびクラス2残留溶媒はモニタリングと管理が必要であり、これらの溶媒の分析メソッドには次の3つの手順が含まれます。

- 手順A: G43 フェーズカラム (今回は Agilent J&W DB-Select 624 UI <467>) を用いた初期同定と基準値試験
- 手順 B: 手順 A で基準値を超えた場合は、G16 フェーズカラム (今回は Agilent J&W HP-INNOWax)を使用してピーク同定の確認と2回目の基準値 試験を実行
- **手順 C:** 手順 A と B で基準値を超えた 場合は、共溶出がより少ない方のカラム を使用して定量分析を実行

このアプリケーションノートでは、USP × ソッド <467> に記載されている残留溶媒を Agilent 8890 GC で分析しました。J&W DB-Select 624 UI <467> カラムとJ&W HP-INNOWax カラムを分析に使用し、デュアル 水素炎イオン化検出器 (FID) で構成しました。 このため、手順 A と B を 1 回の注入で同時 に実行できました。

実験方法

装置

8890 GC をスプリット/スプリットレス 注入口 (SSL) とデュアル FID で構成し、 Agilent 7697A ヘッドスペースサンプラを用い てサンプリングを行いました。不活性ティを使 用してフローを 2 つのカラムに均等にスプリッ トし、両方のカラムを FID に直接接続しまし た。図1に全体の構成を示します。

材料および試薬

ジメチルスルホキシド (99.9 %) と水 (HPLC グ レード) は Sigma-Aldrich から購入しました。

図 1. デュアルカラム、デュアル FID 構成による USP <467> 残留溶媒分析のシステム構成

消耗品

表1.消耗品と部品番号

消耗品	説明
バイアル	10 mL 透明クリンプヘッドスペースバイアル (p/n 5190-2285)
セプタム	アドバンスドグリーン、ノンスティック注入口セプタム (p/n 5183-4759-100)
スプリッタ	不活性ティ、キャピラリ・フロー・テクノロジー用 (p/n G3184-60065)
フェラル	ショート、グラファイト、0.1 ~ 0.32 mm カラム用、10 個 (p/n 5080-8853) UltiMetal Plus フレキシブルメタル、0.32 mm フューズドシリカチューブ用、10 個 (p/n G3188-27502)
注入ロライナ	2 mm、スプリットレス、ストレート、不活性化 (p/n 5181-8818)
ヘッドスペーストランスファー ライン/プレ CFT カラム	不活性フューズドシリカ、30 m × 内径 0.25 mm × 外径 0.35 mm (p/n 160-2255-30)
カラム 1	J&W DB-Select 624 UI <467>, 30 m \times 0.32 mm, 1.8 μm (p/n 123-0334UI)
カラム 2	J&W HP-INNOWax, 30 m \times 0.32 mm, 0.25 μm (p/n 19091N-113I)

サンプル前処理

残留溶媒サンプルの前処理は、USP <467> プロトコルに従って実行しました。

残留溶媒の DMSO 溶液については、次の 3 つの原液を使用しました。

- 残留溶媒の改訂メソッド <467> クラス1 (p/n 5190-0490)
- 残留溶媒の改訂メソッド <467> クラス 2A (p/n 5190-0492)
- 残留溶媒の改訂メソッド <467> クラス 2B (p/n 5190-0491)

3 つのクラスのそれぞれのサンプル前処理手 順を以下に示します。

クラス 1 溶媒

- 原液1mLに9mLのDMSOを加えて、 水で100mLに希釈する
- 手順1から1mL取り出して、水で 100mLに希釈する
- 手順2から10mL取り出して、水で 100mLに希釈する
- 4. 手順3から1mL取り出して5mLの水 を加えて、ヘッドスペースバイアルに移す

クラス 2A 溶媒

- 1. 原液 1 mL を水で 100 mL に希釈する
- 手順1から1mL取り出して5mLの水 を加えて、ヘッドスペースバイアルに移す

クラス 2B 溶媒

- 1. 原液1mLを水で100mLに希釈する
- 手順1から1mL取り出して5mLの水 を加えて、ヘッドスペースバイアルに移す

実験パラメータ

表2.残留溶媒の分析のシステムパラメータ

GC システムパラメータ	8890 GC
キャリアガス	ヘリウム、定流量モード、2 mL/min (カラム 1)
注入口タイプ	スプリット/スプリットレス
注入口温度	140 ° C
モード	スプリットモード、スプリット比 5:1
オーブン	40 °C (5 分間保持) ~ 18 °C/min で 180 °C (3 分間保持)
カラム 1 流量	2 mL/min の定流量モード、カラム 2 流量はカラム 1 流量によって制御
FID (両方のチャネル)	250 ° C
空気	400 mL/min
H ₂	30 mL/min
メークアップ (N ₂)	25 mL/min
ヘッドスペースパラメータ	7697A ヘッドスペースサンプラ
サンプルループ	1 mL
オーブン温度	85 ° C
ループ温度	85 ° C
トランスファーライン温度	100 ° C
バイアル平衡化時間	40 分
注入時間	0.5分
バイアルのサイズ	10 mL
バイアル撹拌	オン、レベル 2 (25 回/min)
バイアル充填モード	デフォルト: フロートゥプレッシャー
バイアル充填圧力	15 psi
ループ昇圧速度	20 psi/min
最終ループ圧力	0 psi
ループ平衡化時間	0.05 分
ソフトウェア	Agilent OpenLAB CDS バージョン 2.2

結果と考察

分析では、各クラスの溶媒について両方のカ ラムで明確なクロマトグラムが示され、複数回 の分析で一貫性のある結果が得られる必要が あるほか、USP <467> に記載されている要件 を満たさなければなりません。 図 2 ~ 7 は、J&W DB-Select 624 UI <467> カラムと J&W HP-INNOWax GC カラムでの クラス 1、2A、2B 残留溶媒混合物の分析結 果を示しています。J&W DB-Select 624 UI <467> カラムと J&W HP-INNOWax カラム の両方で、クラス 1 溶媒の分析は S/N 比と分 解能の要件に適合しています。 面積およびリテンションタイムの再現性 (RSD %) は、10 個のヘッドスペースバイアルで構成されるセットで評価しました。表3~5 は、J&W DB-Select 624 UI <467>カラムと J&W HP-INNOWax カラムで得られた、クラ ス1、2A および2B 残留溶媒混合物の RSD % を示しています。RSD % は 5.0 % 未満で、カ ラム、7697A ヘッドスペースサンプラ、8890 GC/FID システムの高い再現性と安定性を示しています。

クラス 1 溶媒

図 2. USP 残留溶媒クラス 1 標準溶液を J&W DB-Select 624 UI <467> GC カラムで分離したクロマトグラム

化合物	面積 RSD (%)、J&W DB-Select 624 UI <467>	RT RSD (%)、J&W DB-Select 624 UI <467>	面積 RSD (%)、J&W HP-INNOWax	RT RSD (%)、J&W HP-INNOWax
1,1-ジクロロエタン	2.8	0.31	4.2	0.092
1,1,1-トリクロロエタン	3.7	1.4	3.61	0.057
四塩化炭素	2.9	0.060	1,1,1-トリクロロエタンとの 共溶出	1,1,1-トリクロロエタンとの 共溶出
ベンゼン	3.6	0.0050	4.9	0.021
1,2-ジクロロエタン	3.2	0.059	3.2	0.018

表 3. J&W DB-Select 624 UI <467> カラムおよび J&W HP-INNOWax カラムによる、クラス1残留溶媒の再現性 (n = 10)

クラス 2A 溶媒

図 4. USP 残留溶媒クラス 2A 標準溶液を J&W DB-Select 624 UI <467> GC カラムで分離したクロマトグラム

図 5. USP 残留溶媒クラス 2A 標準溶液を J&W HP-INNOWax カラムで分離したクロマトグラム

化合物	面積 RSD (%)、J&W DB-Select 624 UI <467>	RT RSD (%)、J&W DB-Select 624 UI <467>	面積 RSD (%)、 J&W HP-INNOWax	RT RSD (%)、 J&W HP-INNOWax
メタノール	1.9	0.36	2.0	0.41
アセトニトリル	1.6	0.078	2.4	0.034
塩化メチレン	3.8	0.029	4.1	0.034
trans-1,2-ジクロロエテン	4.9	0.031	4.5	0.039
cis-1,2-ジクロロエテン	4.3	0.0092	4.3	0.039
テトラヒドロフラン	2.3	0.029	塩化メチレンとの共溶出	塩化メチレンとの共溶出
シクロヘキサン	4.1	0.0091	4.2	0.045
メチルシクロヘキサン	4.5	0.0059	4.5	0.046
1,4-ジオキサン	1.7	0.012	2.4	0.039
トルエン	4.4	0.0053	4.3	0.034
クロロベンゼン	4.1	0.0055	4.1	0.32
エチルベンゼン	4.4	0.0057	4.5	0.04
m-キシレン	4.4	0.0056	4.7	0.026
p- キシレン	m-キシレンとの共溶出	m-キシレンとの共溶出	4.4	0.016
0-キシレン	4.1	0.0054	4.1	0.31

表 4. J&W DB-Select 624 UI <467> カラムおよび J&W HP-INNOWax カラムによる、クラス 2A 残留溶媒の再現性 (n = 10)

クラス 2B 溶媒

結論

8890 GC システムを 7697A ヘッドスペース サンプラおよび不活性ティと組み合わせること で、USP <467> で規定されるすべての残留溶 媒の分離、同定、定量に対応する優れたメソッ ドを確立できます。予想された共溶出以外で は、3 つのすべてのクラスでピークが互いに良 好に分離され、十分な S/N 比となり、繰り返 し定量できました。

参考文献

 USP 32-NF 27, General Chapter USP <467> Organic volatile impurities, United States Pharmacopeia. Pharmacopoeia Convention Inc., Rockville, MD, USA.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、医薬品医療機器等法に基づく登録を 行っておりません。本文書に記載の情報、説明、製品仕様等は予告なしに変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2018 Printed in Japan, December 19, 2018 5994-0442JAJP **表 5.** J&W DB-Select 624 UI <467> カラムおよび J&W HP-INNOWax カラムによる、クラス 2B 残留溶媒の 再現性 (n = 10)

化合物	面積 RSD (%)、 J&W DB-Select 624 UI <467>	RT RSD (%)、 J&W DB-Select 624 UI <467>	面積 RSD (%)、 J&W HP-INNOWax	RT RSD (%)、 J&W HP-INNOWax
n-ヘキサン	1.5	0.052	2.9	0.17
ニトロメタン	1.8	0.031	1.8	0.014
クロロホルム	4.4	0.0081	4.4	0.014
1,2-ジメトキシエタン	1.9	0.031	2.1	0.086
トリクロロエチレン	4.7	0.0061	4.9	0.0019
ピリジン	3.3	0.015	3.2	0.085
2-ヘキサノン	2.8	0.0077	2.8	0.015
テトラリン	3.7	0.0052	3.8	0.085

