

AdvanceBio HIC カラムによる 抗体薬物複合体 (ADC) の薬物抗体比 (DAR) 分析

Agilent 1260 Infinity II バイオイナート LC

著者

Andrew Coffey and Sandeep Kondaveeti Agilent Technologies, Inc.

概要

このアプリケーションノートでは、AdvanceBio HIC カラムの特性と抗体薬物複合体 (ADC) 分析につい て説明します。疎水性相互作用クロマトグラフィー (HIC) は、疎水性が高い生体分子を分離するメソッド です。ADC 分子は非修飾抗体と比べて疎水性が高い場合が多いため、HIC は ADC の分析に最適な手 法です。この手法により、異なる薬物抗体比 (DAR) を持つ ADC など、疎水性がわずかに違う種を高分 離能で分析できます。HIC は緩やかな条件下で溶出できることが利点であり、生体分子が未変性状態で 分析でき、システイン結合 ADC の分析に最適です。

はじめに

HIC は、生体分子の溶解性を低下させる塩を 含む移動相を用います。これにより HIC 固定 相への吸着が促されます。グラジエント溶出 で塩濃度を減少させることにより、疎水性が 低い順に分子の溶出ができます。分離方法は 逆相クロマトグラフィーと類似していますが、 タンパク質を変性させることが多いイオンペ ア試薬や高濃度の有機溶媒は必要ありませ ん。これはシステイン結合した ADC の分析に おいて重要です。ペイロードとして用いた低分 子化合物が、部分的に還元したモノクローナ ル抗体 (mAb) の遊離チオール基と結合しま すが、多分散分布となります (図 1)。DAR と も呼ばれるこの分布を算出することが、得ら れた ADC の効能を知るために不可欠です。

実験方法

試薬

試薬はすべて、HPLC グレード以上のもの を使用し、Sigma-Aldrich (現 Merck) また は VWR Scientific から入手しました。水は、 Milli-Q A10 純水製造装置 (Millipore) で精製 しました。

装置構成

Agilent 1260 Infinity II バイオイナート LC は 次のモジュールで構成しました。

- Agilent 1260 Infinity II バイオイナート ポンプ (G5654A)
- Agilent 1260 Infinity II バイオイナート マルチサンプラ (G5668A)、サンプル 冷却システム (オプション #100) 付
- Agilent 1260 Infinity II マルチカラム サーモスタット (G7116A)、バイオイナート 熱交換器 (オプション #019) 付
- Agilent 1260 Infinity II ダイオードアレイ 検出器 WR (G7115A)、バイオイナート フローセル (オプション #028) 付

図1.ペイロード化合物の量と位置が異なるシステイン結合ADC の多分散分布

ソフトウェア

Agilent OpenLab 2.2 CDS

メソッド条件

	HPLC			
カラム	AdvanceBio HIC 4.6 × 100 mm (部品番号 685975-908) AdvanceBio HIC 4.6 × 30 mm (部品番号 681975-908)			
移動相	溶離液 A) 50 mM リン酸ナトリウム、pH 7.0 溶離液 B) 50 mM リン酸ナトリウム、pH 7.0 中に 2 M の硫酸アンモニウム 溶離液 C) プロパン-2-オール 溶離液 D) HPLC グレード水			
流量	0.5 mL/min			
カラム温度	25°C			
注入量	5 μL			
合計分析時間	31 分			

典型的なグラジエントプロファイル (図2参照)

時間	% A	%B	%C
0	50	45	5
15	75	0	25
20	75	0	25
21	50	45	5
31	50	45	5

結果と考察

HIC で使用する高濃度の塩には、完全なバイ オイナート LC が適しています。特に、塩の沈 殿を避けるために、シール洗浄やニードル洗 浄などの追加の機能を使用する場合です。し かし、短時間でも LC システムやカラムが高濃 度の塩溶液に触れるのを避けることが重要で す。そのため、クォータナリ LC システムを用 いると、他のチャネルを有機溶媒や水または その他の洗浄溶媒に使用できます。mAb と 複合体を形成した低分子の疎水性医薬品によ り、mAb 分子全体の疎水性が大幅に変化し ます。そのため、移動相に少量の有機溶媒を 添加する必要があります (メソッド条件および グラジエントプロファイルを参照)。

HIC を用いると、システイン結合 ADC をイン タクトな状態で分析できます (図 2)。逆相クロ マトグラフィーで分析すると、システイン結合 していない重鎖および軽鎖が分離します。逆 相クロマトグラフィーでシステイン結合 ADC の分析は可能ですが、分子が完全に還元され た場合に限られます¹。 異なる DAR 変異体のピーク面積を積分す ることにより、全体の DAR を計算できます (式 1)。

式 1

表 1 にサンプルの計算値を示します。DAR 4.04 は予測値と一致しており、以前得られた 値²とも一致しています。

図 2. HIC によるブレンツキシマブ ベドチン (アドセトリス) の分析

サンプルを完全に溶解させ、DAR 変異体が 識別できないよう、サンプル前処理では注意 する必要があります。DAR 0 は、DAR 8 より 親水性が高く、移動相に選択的に溶解される からです。そのため、すべてのサンプルが完全 に溶解されない場合には、誤った結果が得ら れます。 また、移動相条件にプロパン-2-オールグラジ エントが含まれていることが重要です。含まれ ていないと、DAR 6 および DAR 8 変異体が カラムに吸着したままになる可能性がありま す。図 3A、3B、3C に示すように、プロパン -2-オール濃度が不十分な場合、疎水性の高 い DAR 6 および DAR 8 変異体はカラムに保 持されたままです。

図 3. ADC の DAR 変異体分離におけるプロパン-2-オールのグラジエント効果

グラジエント中の有機溶媒の必要量や、流量 とカラム長を適切にすることで、10 cm の長 いカラムを用いた緩やかなグラジエント (図 5)と比べて、3 cm の短いカラム (図 4) で分 離時間を大幅に短縮できます。表 2 および 3 の結果は、これらのクロマトグラムから求め た DAR 値がほぼ同じであることを示してい ます。

図 4. AdvanceBio HIC 4.6 × 30 mm カラムによる ADC の高速 (8 分間) 分離

グラジエントプロファイル

図 5. AdvanceBio HIC 4.6 × 100 mm カラムによる ADC の低速 (24 分間) 分離

表 2. 高速分離 (8 分間) の DAR 値 (図 4)

No.	RT (分)	面積	% 面積	DAR	
1	2.66	61.5	3.2	0	0.0
2	3.14	321.4	16.9	2	0.3
3	4.10	894.1	46.9	4	1.9
4	4.80	471.1	24.7	6	1.5
5	5.52	158.0	8.3	8	0.7
				DAR	4.4

表3. 低速分離 (24 分間)の DAR 値 (図 5)

No.	RT (分)	面積	% 面積	DAR	
1	10.61	304.3	3.0	0	0.0
2	12.46	1,768.9	17.2	2	0.3
3	16.22	4,905.3	47.7	4	1.9
4	19.04	2,420.5	23.5	6	1.4
5	21.76	879.1	8.6	8	0.7
				DAR	4.4

結論

このアプリケーションノートでは、適切な流量 やカラムを選択し、移動相組成をコントロール することにより、AdvanceBio HIC カラムを用 いて ADC の DAR 値を迅速かつ高精度で分 析できることを実証しました。

参考文献

- S. Zuo, Measuring Drug-to-Antibody Ratio (DAR) for Antibody Drug Conjugates (ADCs) with UHPLC/Q-TOF, Agilent Technologies Application Note, publication number 5991-6559EN, **2016**.
- S. Schneider, Analysis of Cysteine-Linked Antibody Drug Conjugates, Agilent Technologies Application Note, publication number 5991-8493EN, **2017**.

ホームページ www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2018 Printed in Japan, July 26, 2018 5994-0149JAJP

