水中のペル/ポリ フルオロアルキル <u>化合物</u> (PFAS) の分析

Agilent Ultivo トリプル四重極 LC/MS システム

図 1. Agilent Ultivo トリプル四重極 LC/MS と Agilent 1290 Infinity II LC

概要

ペル/ポリフルオロアルキル化合物 (PFAS) は、多様な特性のために製造業および産業界で普及しています。界面活性剤、難燃剤、焦げ付き防止調理器具コーティングなどの幅広い分野で使用されています。このため、PFAS は環境中でほぼ普遍的に検出されます。

米国環境保護庁 (USEPA) は、飲料水の健康に関する勧告をペルフルオロオクタン酸 (PFOA) とペルフルオロオクタンスルホン酸 (PFOS) の 2 種類の PFAS に対して 70 ng/L で提示しています。米国の複数の州でも、飲料水に含まれる PFAS を $20\sim400$ ng/L として公衆衛生ガイドラインを示しています。

本資料では、USEPA メソッド 537 の対象となる 14 種類すべてを含む飲料水中の 17 種類の PFAS を高い感度で定量するためのメソッドを解説します。分析は Agilent Ultivo トリプル四重極 LC/MS システムを使用しました。

Ultivo の革新的なテクノロジーは、設置スペース全体を削減し、同時により大型の MSシステムに匹敵する性能も発揮します。Ultivo のさまざまな革新的技術は、小型パッケージで定量性能を最大化するだけでなく、機器の信頼性および堅牢性を強化して稼働時間を向上させます。さらに、Ultivo はユーザーによるシステムメンテナンスの負担を低減しており、質量分析を専門としない MS ユーザーもシステムの運用やメンテナンスを管理することができます。

詳細については、以下をご覧ください。 www.agilent.co.jp/chem/ultivo-lcms

実験手法

サンプル前処理

Agilent SampliO 弱アニオン交換 (WAX) カートリッジを使用して水サンプル (250 mL) を抽出しました。抽出条件は、最終抽出液を 96/4 (v/v) メタノール (MeOH)/水で用いる EPA メソッド 537 の条件と類似していました。

LC/トリプル四重極機器の条件

表 1. Agilent 1290 Infinity II LC のパラメータ

パラメータ	值
ディレイカラム	Agilent ZORBAX Eclipse Plus C18、 4.6×50 mm、 $3.5~\mu m$
分析カラム	Agilent ZORBAX Eclipse Plus C18、 3.0×50 mm、 $1.8~\mu m$
注入量	5 µL
カラム温度	50 ° C
流量	0.4 mL/min
移動相	A) 5 mM 酢酸アンモニウム、水中 B) 5 mM 酢酸アンモニウム、95 % MeOH 中
分析時間	19.0 分

表 2.17 種類の PFAS の MRM トランジションと RT

化合物	プリカーサイオン	プロダクトイオン (2 次トランジション)	RT (分)
PFBA	213	168.9	3.88
PFPeA	263	218.9	6.52
PFBS	289.9	98.9 (80)	7.06
PFHxA	313	268.9 (119)	8.52
PFHpA	362.9	319 (169)	9.90
PFHxS	398.9	99 (80)	10.07
PFOA	413	369 (169)	11.05
PFNA	463	419 (169)	11.95
PFOS	498.9	99 (80)	11.95
PFDA	513	469 (218.7)	12.71
PFUdA	563	519 (218.7)	13.37
N-MeFOSAA	570	482.9 (418.9)	13.04
N-EtFOSAA	584	525.9 (418.9)	13.38
PFDS	598.9	99 (80)	13.32
PFDoA	613	569 (268.9)	13.93
PFTrDA	663	619 (169)	14.40
PFTeDA	713	669 (169)	14.82

表 3. LC グラジエント分析条件

時間 (分)	%B
0.0	10
0.5	10
2.0	30
14.0	95
14.5	100

表 4. Agilent Ultivo トリプル四重極 LC/MS 条件

3	
パラメータ	
ガス温度	230 °C
ガス流量	5 L/min
シースガス温度	350 °C
シースガス流量	12 L/min
ネブライザ	45 psi
キャピラリ	2,500 V
ノズル	0 V
イオン化	ネガティブ、ESI

結果と考察

機器性能

Ultivo LC/TQ を使用し、水中のすべての PFAS について優れたピーク形状および高感度 検出を得ることができました。

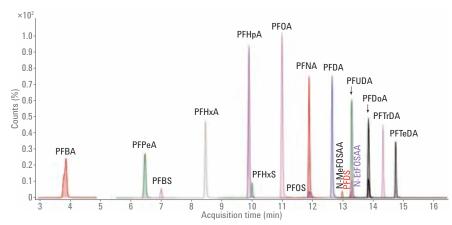


図 2. 1.0 ng/mL で分析した 17 種類の PFAS の LC/トリプル四重極クロマトグラム

直線性と感度

炭素鎖長が $4\sim14$ の 17 種類すべての PFAS の検量線で、 R^2 が 0.99 未満の直線性が得られました。すべての水サンプルについて、0.1、0.5、1.0、2.5、5.0、10、20 ng/mL の 7 ポイント検量線を用いて定量を行いました。

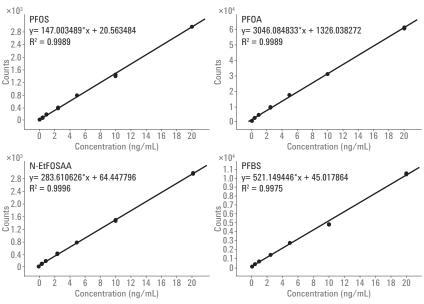
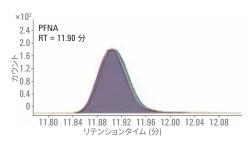
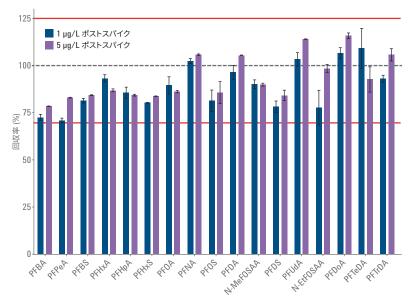



図 3. PFOS、PFOA、N-Et FOSAA、PFBS の検量線

精度

図4.5回の繰り返し注入による1 ng/mL での PFNA のピーク形状とリテンションタイムの安定性


表 5.17 種類の PFAS を % RSD で示した精度 (n = 5)

化合物	% RSD	化合物	% RSD
PFBA	0.28	PFOS	5.30
PFPeA	1.69	PFDA	1.62
PFBS	4.49	N-MeF0SAA	1.77
PFHxA	0.51	PFUdA	2.93
PFHpA	3.99	N-EtF0SAA	4.56
PFHxS	4.72	PFDoA	2.43
PFOA	1.39	PFTeDA	4.89
PFNA	0.98	PFTrDA	5.08

1 ng/mL でのポストスパイクは元の水サンプルで 4 ng/L に相当

回収率と% RSD

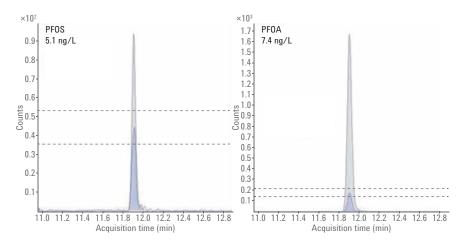

図 5 は、1 μ g/L (飲料水中で 4 μ g/L に相当) および 5 μ g/L (飲料水中で 20 μ g/L に相当) をポストスパイクした飲料水抽出物で求めた 17 種類の PFAS の回収率を示しています。両方のスパイクレベルについて、すべての回収率が 70 μ g/L と 5 μ g/L の両方のスパイクレベルでの相対標準偏差 (RSD) は、0.3 μ 0.8 % でした。

図 5. 水抽出物への 1 および 5 ng/mL のポストスパイクで評価した PFAS の回収率と % RSD

実際の飲料水サンプルの分析

米国北東部の最終飲料水サンプルを、前述の抽出法および分析法を使用して、17 種類の PFAS について分析しました。図 6 は、2 種類のサンプル中の低 ng/L レベルで検出された PFOS と PFOA をクオンティファイアイオンとともに示しています。Ultivo は低濃度 PFAS を検出でき、飲料水サンプルの分析に適した感度および堅牢性を示しています。

図 6. Agilent Ultivo LC/TQ を使用して低 ng/L レベルで検出された最終飲料水サンプル中の PFOS と PFOA のクオンティファイアイオンとクオリファイアイオンの重ね表示

結論

Agilent Ultivoトリプル四重極 LC/MS は、水中の PFAS について高感度で信頼性があり 堅牢な定量性能を提供し、次の特長があります。

- 装置のコンパクト化による設置スペースの削減と、PFAS 分析のための優れた感度
- ・ 革新的技術による適切な回収率と低 RSD 値
- Agilent 1290 Infinity II LC、Ultivoトリプル四重極 LC/MS、Agilent MassHunter ソフトウェアなどから構成される、PFAS 分析のための完全なワークフローと ソリューション

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は 予告なしに変更されることがあります。

> アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2017 Printed in Japan, June 27, 2017 5991-8156JAJP Rev.1.0

