

Enhanced Matrix Removal (EMR) を 使用したサケの PAH 分析

アプリケーションノート

食品試験・農業・環境

要約

多環芳香族炭化水素 (PAH) は、分解されにくい、縮合したベンゼン環で構成されています。 これは、環境への蓄積や、煙により、水生生物に移行します。複雑な高脂質食品マトリック スでの PAH 分析は、共抽出したマトリックスが、分析流路内で干渉、マトリックス効果、お よび蓄積という形で正確な定量を妨げるため、困難を伴う場合があります。Agilent Bond Elut QuEChERS Enhanced Matrix Removal—Lipid (EMR—Lipid) は、次世代のサンプル前処理製品で、利便性 の高い分散固相抽出 (dSPE) で使用することにより、分析対象物の回収率に影響を与えずに、 選択性の高いマトリックス除去を実現できます。この実験では、サケの PAH 分析における、 このサンプル前処理法の効率性について説明します。このメソッドは、15 の PAH 化合物すべ てのあらゆるレベルにおいて、優れた真度 (84~115 %) と精度 (RSD = 0.5~4.4 %) を実現してい るため、高脂質サンプルにおいて、高速、堅牢、かつ効率的な分析が実施できます。

はじめに

多環芳香族炭化水素 (PAH) は、環境内のいたるところに存在する混入異物であり、石油由来 の場合と燃焼由来の場合があります。これは、2 つ以上の縮合ベンゼン環に配置された水素 と炭素から構成されており、置換基を1 つ以上の環に付加できます [1]。PAH が問題となるの は、環境内に持続的に存在して、毒性、変異原性、および発がん性があることが知られてい ますが、その一部が哺乳類に影響を与えるためです [2]。魚介類の汚染は、水源内に蓄積した 石油成分、および PAH を煙内に燃焼生成物として生成する加熱プロセスから発生することが あります [3、4]。これらの理由により、分析者が、問題とするレベルで混入異物の PAH を検 出するには、堅牢で効率的なメソッドを使用することが重要になります。

著者

Derick Lucas and Limian Zhao Agilent Technologies, Inc. 低レベルの PAH を検出するには、堅牢性の高い効率的なサンプル前 処理法と GC/MS を組み合わせて使用します。一般的な前処理プロト コルには、ソックスレー抽出 [5]、超音波抽出 [6]、および加圧溶媒 抽出 [7] があります。前処理法は、固相抽出 [8]、ゲル浸透クロマト グラフィー [9] などのクリーンアップ手順と組み合わせることができ ます。これらの時間と手間がかかる手法に伴う課題を解決するため に、QuEChERS 法 (Quick, Easy, Effective, Rugged, and Safe) [10、11] をベースに したプロトコルも同時に実施することにより、適切な結果が得られ ます [12、13、14]。複雑な食品サンプル、特に高脂質のサンプルに とっては、サンプル前処理法がますます重要になってきています。 これは、共抽出したマトリックスが、分析流路内で干渉、マトリッ クス効果、および蓄積という形で、分析に有害な影響を与えるため です。

Agilent Bond Elut QuEChERS Enhanced Matrix Removal— Lipid (EMR—Lipid) は、新 しい充填剤であり、対象とする分析物を誤って除去することなく、 サンプル抽出物から主要な脂質類を選択的に除去します。脂質種の 除去は、特に QuEChERS などの手法で重要になります。この手法は、 ターゲット化合物から大量のマトリックスを共抽出します。従来で は、分散固相抽出 (dSPE) 手順の間に、C18 および PSA の官能基の付い た充填剤を使用して、高脂質のサンプルを処理していました。ただ し、これらの充填剤は、サンプルの適切なクリーンアップに失敗す ることがあり、対象化合物との間に非選択的な相互作用が発生する 場合があります。この実験では、単純で効率的なワークフローを使 用して、サケ内の 15 の PAH に関するサンプル前処理法と分析結果に ついて調査します。このワークフローは、EMR-Lipid により適切なク リーンアップを行うと同時に、GC/MS において優れた真度と再現性 を実現しています。

実験方法

分析は、Agilent 7890 GC と Agilent 5977 MSD (マルチモード注入口 (MMI) を装備)、Agilent 7693 オートサンプラ、およびカラムバックフラッ シュでのキャピラリ・フロー・テクノロジーという構成で実施しま した。表 1 は装置パラメータを示しており、表 2 はこの実験で使用 した消耗品とその他の機器を示しています。

表 1. PAH 分析で使用した Agilent GC/MS システムの装置条件

GC:	Agilent 7890B
オートサンプラ:	Agilent 7693 オートサンプラ、10.0 μL シリンジ (G4513-80220)
注入量:	0.5 µL
キャリアガス:	ヘリウム、定流量
ガスフィルタ:	ガスクリーンフィルタ GC/MS 1/8 インチ (部品番号 CP17974)
注入口:	MMI、ホットスプリットレス注入モード (320 ℃)
スプリットベントへの	
パージ流量:	0.75 分で 50 mL/min
流量:	2.0 mL/min
昇温プログラム:	70 °C (1 分保持)、25 °C/min で 70 ~ 195 °C (5 分保持)、7 °C/min で 195 ~ 315 °C
カラム:	Agilent J&W DB-5ms UI、 20 m × 0.18 mm、 0.18 µm (部品番号 121-5522UI)
リストリクタ:	不活性化シリカチューブ、 0.65 m × 0.15 mm (部品番号 160-7625-5)
試験後のバックフラッシュ:	315 ℃ で 5 分、バックフラッシュ時 70 psi
補助圧力:	測定時 2 psi、バックフラッシュ時 70 psi
MSD:	Agilent 5977 MSD
モード:	SIM
トランスファライン温度:	340 °C
イオン源温度:	325 °C
四重極温度:	150 °C
溶媒待ち時間:	3.5 min

表 2. その他の消耗品と機器

バイアル:	茶色スクリュートップ、ガラス (部品番号 5190-7041)
バイアルキャップ:	PTFE、9 mm、スクリューキャップ (部品番号 5182-0717)
バイアルインサート:	ガラス、150 μL、樹脂足付 (部品番号 5183-2088)
セプタム:	長寿命、ノンスティック、11 mm、50 個 (部品番号 5183-4761)
フェラル:	ベスペル/グラファイト、85:15、内径 0.4 mm (部品番号 5181-3323)、UltiMetal Plus フレキシブル メタルフェラル (部品番号 G3188-27501)
注入ロライナ:	シングルテーパ、スプリットレス、 ウルトライナート (部品番号 5190-7041)
キャピラリ・フロー・ テクノロジー (CFT):	UltiMetal Plus Ultimate ユニオン (部品番号 G3186- 60580)、CFT キャピラリフィッティング (部品番号 G2855-20530)
Bond Elut EMR—Lipid 分散 キット (dSPE):	15 mL チューブで1g (部品番号 5982-1010)
Bond Elut for Enhanced Matrix Removal-Lipid 脱水キット:	15 mL チューブで 2 g (部品番号 5982-0101)
ジェノグラインダー (メアチ	- エン、ニュージャージー州、米国)
Centra CL3R 遠心管 (Thermo IEC	、マサチューセッツ州、米国)
エッペンドルフ微小遠心管 (Brinkmann Instruments、ウェス	トベリー、ニューヨーク州、米国)
Vortexer およびマルチチュー (WWB、ラドナー、ペンシル・	ブ Vortexer ベニア州、米国)

ボトルトップ型ディスペンサ (WR、サウスプレインフィールド、ニュージャージー州、米国) エッペンドルフピペット

サンプル前処理

均質化した重量 (5 g) のサケを 50 mL 遠心管に注入し、必要に応じ て、標準物質および同位体標識された内部標準をスパイクしまし た。サンプルにアセトニトリル (ACN) (10 mL)を加え、振とう機で2分 間混合しました。次に、遠心管を 5,000 rpm で 5 分間遠心分離しまし た。上澄み液 (8 mL)を、1 g の EMR—Lipid 充填剤の入った 15 mL 遠心管 に移しました。ただちにボルテックスミキサーで分散させ、さらに 60 秒間ボルテックスミキサーで追加撹拌しました。その後、5,000 rpm で 3 分間遠心分離しました。上澄み液はすべて、2.0 g の塩 (1:4 NaCI:MgSO4)の入った 2番目の 15 mL 脱水キットに静かに移し、分散さ せるために即座にボルテックスミキサーで撹拌した後、5,000 rpm で 3 分間遠心分離しました。上澄みの ACN 層を、GC/MS 分析用にサン プルバイアルに移しました (図 1)。

図 1. GC/MS による分析前の、Agilent Bond Elut Enhanced Matrix Removal—Lipid を使用した、サケの PAH に対するサンプル前処理のワークフロー

試薬および薬品

試薬および溶媒はすべて、HPLC グレード以上のものを使用しました。ACN は、Honeywell (マスキーゴン、ミシガン州、米国) から購入し、水は、EMD Millipore Milli-Q Integral System (ダルムシュタット、ドイツ)を使用して精製しました。PAH 標準および内部標準は、Ultra-Scientific (ノースキングスタウン、ロードアイランド州、米国) から溶液として購入しました。原液は、アセトン (100 µg/mL) で調製し、作業標準用に茶色バイアルで希釈しました。

検量線と定量

マトリックス適合検量線は、キャリブレーションの全範囲で、1、 10、25、50、100、250、500、および 1,000 ng/g に対応して生成しまし た。サケのブランク測定は、サンプル前処理手順と 950 µL ブランク抽 出物、25 µL 標準溶液、および 25 µL 原液内部標準で実施しました。内 部標準は、サケにスパイクし、マトリックス適合キャリブレーショ ン標準 100 ng/g でポストスパイクしました。全検量線は、すべての化 合物に対して R² > 0.999 の優れた直線性を示しました。サケのサンプ ルは、6 回の繰り返し測定で抽出する前に、25、100、および 500 ng/g の各レベルでプレスパイクしました。ターゲット化合物の定量に は、Agilent MassHunter ソフトウェアを使用しました。真度値は、内部 標準を基準にしてスパイクされたサンプル応答を計算し、決定しま した。絶対回収率値は、内部標準補正を行わずに、プレスパイクし た対象化合物の検量線に対する応答を測定して、決定しました。

結果と考察

7890 GC と 5977 GC/MSD は、15 の PAH と 5 つの内部標準に対して、優れたパフォーマンスを実現し、高感度でも一貫した結果を示しました。図 2 は、Agilent DB-5ms UI カラムにより、サケ内で 25 ng/g のプレスパイクを実施した場合に、15 の PAH で実現した分離状態を示しています。クロマトグラムは、15 の PAH すべてにおいてベースライン分離を示しており、これは、PAH 異性体フェナントレン、アントラセン、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、およびベンゾ[k]フルオランテンのピークを正確に計算するために重要になります。クロマトグラム内の一部に見られる少量の干渉は、対象ピークから簡単に分離できます。

25、100、および 500 ng/g の各スパイクレベルで、EMR-Lipid とともに 最適化された手順を使用することにより、優れた真度と精度が実現 されます。図 3 は、同位体標識された内部標準補正を使用すること により、すべての対象化合物のあらゆるレベルにおいて、真度が 84 ~ 115 % の範囲内にあることを示しており、この場合 RSD は 0.5 ~ 4.4 % の範囲内にあります (図 4)。真度データは、図 5 の回収率の範 囲にグループ化されます。これは、大部分の化合物は、90 ~ 120 % の範囲内に収まっていますが、2 つの化合物については 90 % を少し 下回っていることを示しています (インデノ[1,2,3-cd]ピレンとベンゾ [g,h,i]ピレン)。

図 2. サケでの 25 ng/g プレスパイクから得られた 15 の PAH の GC/MS SIM クロマトグラム

図 3. サケでの 25 ng/g、100 ng/g、および 500 ng/g の各レベルにおける 15 の PAH の真度の結果

図 4. サケでの 25 ng/g、100 ng/g、および 500 ng/g の各レベルにおける 15 の PAH の精度の結果

図 5. サケでの 25 ng/g、100 ng/g、および 500 ng/g の各レベルにおける PAH のグループ化された真度の結果

絶対回収率は、内部標準を使用せずに、62~98 % の範囲内でした (表 3)。2 つの化合物、インデノ[1,2,3-cd]ピレンとベンゾ[g,h,i]ピレン については、回収率が 70 % を少し下回っています。PAH 絶対回収率 は、ACN 内の可溶性の低下が原因で、分子量が増加したときに減少 します。ただし、大部分の回収率は高い値で、内部標準を使用して 簡単に補正できます。表 4 に示すように、内部標準の絶対回収率も 高い値です。ACN の可溶性には限界があるにもかかわらず、このメ ソッドでは、高脂質のサケのサンプルにおいて、優れた回収率と高 い再現性を示す結果が得られました。

EMR-Lipid 分散固相抽出 (dSPE)

サケを代表サンプルとして選択したのは、他の魚介類と比較して脂 質の含有量が高いことがその理由です。最適化された手順は、いく つかの方法において一般的な QuEChERS プロトコルからは逸脱してい ます。これらの方法では、ワークフローを簡素化し、EMR—Lipid dSPE クリーンアップ手順を利用しています。最初に、ACN により、サケを 直接抽出しますが、余分な水や QuEChERS 抽出塩は使用しません。遠 心分離後、上澄み液は ACN とサンプルからの少量の水で構成されて います。この上澄み液を、dSPE マトリックス除去用に、EMR—Lipid 分 散キットに移します。最後に、分散キットの上澄み液を、2.0 g NaCl/MgSO4 (1:4) を含む脱水キットに移し、相分離を誘導します。次 に、上澄みの ACN 層をバイアルに移し、分析を行います。

表 4. サケでの内部標準に対する絶対回収率と精度 (RSD (%)) (n = 6)

	100 ng/g スパイ			
化合物	絶対 回収率	%RSD		
ナフタレン-d8	87.8	1.0		
アセナフチレン-d10	93.3	0.8		
フェナントレン-d10	94.9	0.8		
クリセン-d12	87.1	1.0		
ペリレン-d12	86.4	3.1		
平均	89.9	1.3		

表 3. この実験で使用した、サケでの PAH とその真度、絶対回収率、 および相対標準偏差 (RSD) (n = 6)

	25 ng/g スパイク			100 ng/g スパイク			500 ng/g スパイク		
化合物	真度	絶対 回収率	%RSD	真度	絶対 回収率	%RSD	真度	絶対 回収率	%RSD
ナフタレン	112.2	86.7	2.2	104.8	89.7	1.7	99.7	85.8	1.5
アセナフチレン	107.1	90.1	1.8	97.6	89.9	1.8	97.3	90.6	0.9
フルオレン	105.3	94.6	1.2	105.0	94.2	1.2	104.6	96.2	0.9
フェナントレン	112.3	95.3	1.2	101.0	94.1	1.4	99.4	94.5	1.1
アントラセン	103.1	91.6	0.8	98.9	90.7	1.3	98.3	92.6	1.0
ピレン	105.8	97.6	2.9	97.1	88.9	1.8	95.4	89.7	1.0
ベンゾ[a]アントラセン	115.8	91.2	1.2	100.1	84.7	1.7	95.8	85.7	0.8
クリセン	107.2	83.6	1.0	98.2	83.2	1.9	95.4	85.4	0.9
ベンゾ[b]フルオランテン	104.8	78.3	1.1	104.3	76.1	2.0	102.2	79.2	0.7
ベンゾ[k]フルオランテン	104.1	78.8	1.8	106.6	77.5	1.8	104.0	80.3	0.9
ベンゾ[a]ピレン	101.0	74.2	1.7	97.4	71.8	1.8	96.4	74.8	1.0
ペリレン	99.1	74.4	4.4	114.7	76.4	3.0	103.6	80.3	1.2
インデノ[1,2,3-cd]ピレン	86.7	66.1	3.0	90.0	66.2	1.9	89.1	69.1	0.6
ジベンズ[a,h]アントラセン	94.7	73.9	1.3	99.7	72.2	2.2	99.0	76.2	0.5
ベンゾ[g,h,i]ピレン	86.4	64.7	1.8	84.7	62.3	2.0	85.6	66.3	0.7
平均	103.0	82.7	1.8	100.0	81.2	1.8	97.7	83.1	0.9

EMR プロトコルでは一般的なことですが、このアプローチでは、サン プルサイズを大きくして、クリーンアップを改良しました。その結果 として、メソッドの全体的な感度が向上します。従来の EMR—Lipid プ ロトコルの場合、分散キットの充填剤を活性化させるために、水を添 加します。一方、この最適化されたプロトコルの場合、水を添加する ことにより、PAH の可溶性が低下し、絶対回収率に悪影響を与えるこ とがわかりました。したがって、抽出から生じた上澄み液を、水を添 加せずに直接、EMR-Lipid チューブに移します。これにより、GC/MS SIM 分析での適切なクリーンアップが行われます。EMR-Lipid 分散キットお よび EMR-Lipid 脱水キットに上澄み液を添加した後、即座に混合を行う ことにより固体が懸濁され、充填剤との間に最大の相互作用が発生 し、凝集が回避されます。最適なマトリックス除去の場合、分散キッ トに水分を添加して、回収率を内部標準を使用して補正することによ り、優れた真度と精度が実現されます。

結論

この実験では、高脂質のサケのサンプルで、低濃度から高濃度にわたる PAH を効率的に定量するための、高速で簡単なメソッドについて説明しています。ワークフローは、QuEChERS の場合と同様に簡単ですが、新しい EMR—Lipid dSPE 充填剤を使用して、脂質の共抽出物を最小限にし、回収率を最大限にすることにより、高レベルの精度を実現します。

サケなどのマトリックス内の脂質含有量は、大幅に異なる場合もあ りますが、Agilent Bond Elut Enhanced Matrix Removal—Lipid は、すべての脂 質に使用できる充填剤であり、対象化合物とは相互作用が発生しま せん。脂質除去は、分散キットの手順の間に、EMR—Lipid で水を添 加することにより、最大化されます。ただし、このケースでは、水 を添加することにより、PAH の可溶性が低下するため、PAH サンプ ル前処理には適していません。今後の実験では、処理が困難なタイ プのサンプルやアプリケーションに対して、引き続き EMR—Lipid を 最適化し、現在および次世代のクロマトグラフと検出システムで対 応可能な脂質含有量の範囲を拡大していく予定です。

表 5. GC/MS SIM メソッドにおける、ターゲット化合物、 リテンションタイム、ターゲットイオン、および内部標準の名称

	GC/ MS (SIM)							
化合物	RT	ターゲット イオン	ドウェル (ミリ秒)	内部標準				
ナフタレン	3.89	128.0	20	ナフタレン-d8				
アセナフチレン	5.37	152.0	20	アセナフチレン-d10				
フルオレン	6.05	166.0	20	アセナフチレン-d10				
フェナントレン	7.25	178.0	20	フェナントレン-d10				
アントラセン	7.34	178.0	20	フェナントレン-d10				
ピレン	10.31	202.0	20	フェナントレン-d10				
ベンゾ[a]アントラセン	13.83	228.0	20	クリセン-d12				
クリセン	13.93	228.0	20	クリセン-d12				
ベンゾ[b]フルオランテン	16.99	252.0	20	ペリレン-d12				
ベンゾ[k]フルオランテン	17.08	252.0	20	ペリレン-d12				
ベンゾ[a]ピレン	17.85	252.0	20	ペリレン-d12				
ペリレン	18.09	252.0	20	ペリレン-d12				
インデノ[1,2,3-cd]ピレン	20.72	276.0	20	ペリレン-d12				
ジベンズ[a,h]アントラセン	20.87	278.0	20	ペリレン-d12				
ベンゾ[g,h,i]ピレン	21.29	276.0	20	ペリレン-d12				
内部標準								
ナフタレン-d8	3.87	136.0	20	-				
アセナフチレン-d10	5.52	162.0	20	-				
フェナントレン-d10	7.22	188.0	20	-				
クリセン-d12	13.86	240.0	20	-				
ペリレン-d12	18.03	264.0	20	-				

参考文献

- Anon. Compendium Method T0-13A. Environmental Protection Agency (EPA) of the United States of America, Cincinnati, OH, USA, 1999.
- 2. Guo, Y.; Wu, K.; Xu, X. J. Environ. Health 2011, 73, 22-25.
- Beyer, J.; Jonsson, G.; Porte, C.; Krahn, M. M.; Ariese, F. *Environ. Tox. and Pharma.* **2010**, *30*, 224-244.
- Essumang, D. K.; Dodoo, D. K.; Adjei, J. K. J. Food Composition and Analysis 2012, 27, 128-138.
- 5. Takigami, H.; Suzuki, G.; Hirai, Y.; Sakai, S. Chemosphere 2009, 76, 270–277.
- Ali, N.; Dirtu, A. C.; Eede, N. V. D.; Goosey, E.; Harrad, S.; Neels, H.; 't Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. *Chemosphere* **2012**, *88*, 1276–1282.
- Stapleton, H. M.; Keller, J. M.; Schantz, M. M.; Kucklick, J. R.; Leigh, S. D.; Wise, S. A. Anal. Bioanal. Chem. 2007, 387, 2365–2379.

- Sverko, E.; Tomy, G. T.; Marvin, C. H.; Zaruk, D.; Reiner, E.; Helm, P. A.; Hill, B.; Mccarry, B. E. *Environ. Sci. Technol.* 2008, 42, 361–366.
- Saito, K.; Sjödin, A.; Sandau, C. D.; Davis, M. D.; Nakazawa, H.; Matsuki, Y.; Patterson, Jr., D. G. *Chemosphere* **2004**, *57*, 373–381.
- Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. S. *J. AOAC Int.* 2003, *86*, 412-431.
- 11. Lehotay, S. J.; Mastovská, K.; Lightfield, A. R. J. AOAC Int. 2005, 88, 615-629.
- Forsberg, N. D.; Wilson, G. R.; Anderson, K. A. J. Agric. Food Chem. 2011, 59, 8108-8116.
- Smith, D.; Lynam, K. Polycyclic Aromatic Hydrocarbon (PAH) Analysis in Fish by GC/MS Using Agilent Bond Elut QuEChERS Sample Preparation and a High Efficiency DB-5ms Ultra Inert GC Column; Application Note, Agilent Technologies, Inc. Publication number 5990-6668EN, 2012.
- 14. Sapozhnikova, Y.; Lehotay, S. J. Analytica Chimica Acta 2013, 758, 80–92.

詳細情報

本書に記載されたデータは典型的な結果です。アジレントの製品と サービスの詳細については、アジレントのウェブサイト (www.agilent. com/chem/jp) をご覧ください。

www.agilent.com/chem/jp

アジレントは、本文書に誤りが発見された場合、また、本文書の使用により 付随的または間接的に生じる損害について一切免責とさせていただきます。

本資料に記載の情報、説明、製品仕様等は予告なしに変更されることが あります。

アジレント・テクノロジー株式会社 ©Agilent Technologies, Inc. 2015 Printed in Japan July 30, 2015 5991-6088JAJP

