

サケと牛肉に含まれる 19 種類の 多環芳香族炭化水素化合物の測定

Captiva EMR-Lipid クリーンアップと GC/MS/MS

著者

Limian Zhao and Diana Wong Agilent Technologies, Inc.

概要

このアプリケーションノートでは、サケと牛肉に含まれる多環芳香族炭化水素(PAH)残留物の多成 分残留分析メソッドの開発と検証について説明します。このメソッドでは、固液抽出の後に Agilent Captiva EMR-Lipid クリーンアップと GC/MS/MS による分析を使用します。サケや牛肉のサンプルは、 固液抽出 (SoLE)で抽出した後、Captiva EMR-Lipid クリーンアップを実行しました。次に、クリーン アップしたサンプル溶出液をイソオクタンで逆抽出し、GC/MS/MS 分析の前に脱水しました。酢酸エチ ルとアセトニトリルの混合物による 2 段階の SoLE によって、脂肪の多い食品マトリックスからの PAH の抽出効率を高めました。Agilent Captiva EMR-Lipid カートリッジによって、サケと牛肉のサンプルマ トリックスを効率的かつ選択的にクリーンアップし、開発したメソッドを検証しました。その結果、サケ と牛肉に含まれるすべての試験対象 PAH 化合物で、欧州委員会の規制で許容される回収率(50 ~ 120%)を RSD < 20% で達成しました。また、1 ~ 500 ng/g での検量線は R² > 0.99 でした。自然 落下によるマトリックス共溶出残留物の除去効率は、サケで 60%、牛肉で 92% でした。

はじめに

PAH は、熱力学的に安定した縮合芳香族環 構造を持つ、遍在毒性化合物の大分類です。 これらの化合物は原油や石炭にも天然に含ま れますが、食品加工の過程でも形成されます。 PAH 化合物は、縮合芳香族環の数によって、 小さい PAH (2~3個) と大きい PAH (4~ 6 個) に分類されます。 大きい PAH は小さい PAH より安定性と毒性が高くなります。米国 食品医薬品局 (FDA) では、魚介類に含まれ る低 ppb レベルの PAH の分析を求めていま す¹。欧州委員会(EC)では、4 種類の大きい PAH 化合物(ベンゾ[a] ピレン、ベンゾ[a] アン トラセン、ベンゾ[b]フルオランテン、クリセン) の分析メソッド条件として、各 PAH の定量下 限(LOQ)を 0.9 µg/kg、検出下限(LOD) を 0.3 μ g/kg と定めています²。

PAH は脂溶性が高く、魚、肉、油、牛乳などの 脂肪の多い食品に生体蓄積しやすい化合物で す。脂肪の多い食品マトリックス中の PAH の 分析においては、食品マトリックス中の大量の 脂質化合物から分析対象成分を分離すること が特に困難です。例えば、脂質の多いマトリッ クスから PAH を効率的に抽出してから、この マトリックスの不要な共溶出物を選択的に除 去する作業などが必要です。一般的なサンプ ル前処理技術としては、ソックスレー抽出³、超 音波抽出による固液抽出⁴、加圧溶媒抽出⁵、 QuEChERS 抽出⁶などがあります。これらの技 術は、固相抽出⁷ (SPE) やゲル浸透クロマトグ ラフィー⁸ などのクリーンアップ手順と組み合 わせることができます。 Agilent Enhanced Matrix Removal-Lipid (EMR-Lipid) dSPE クリーンアップは、2015 年に発表されて以来大きな注目を集めてい ます。EMR-Lipid dSPE 充填剤は、脂質の枝 分かれのない炭化水素鎖に選択的に作用す るため、その後の分析用の大量のターゲット 化合物が溶媒内に残ります。このため、脂肪 の多い食品マトリックス中の複数種類の多成 分残留分析に最適です。Captiva EMR-Lipid カートリッジでは、溶媒の活性化に必要な 水が 20% で、従来の Bond Elut EMR-Lipid (50%) より少なくて済みます。このためワー クフローが簡素化され、クリーンアップ時の疎 水性化合物の回収率が向上します⁹。 今回の実験では、Captiva EMR-Lipid カート リッジのパススルークリーンアップでサンプル を前処理し、GC/MS/MS でサケと牛肉に含 まれる 19 種類の PAH 化合物を分析して調 査しています。このメソッドは、以前の Bond Elut EMR-Lipid dSPE クリーンアップによる 食品中の PAH 測定メソッドの限界を改善する ために開発されました¹⁰。表 1 に試験対象の PAH の分類、Log P 値、リテンションタイム、 MS/MS トランジションを示します。

表1.分析用のPAH、Log P 値、リテンションタイム(RT)、および MS/MS 条件

			定量用の MS/MS		確認用の MS/MS		
PAH 化合物(省略記号)	Log P	RT (分)	(m/z)	CE (V)	(<i>m</i> / <i>z</i>)	CE (V)	
ナフタレン(Na)	3.3	6.12	128.1 -> 102.1	20	128.1 -> 78	20	
アセナフチレン(Ac)	3.9	8.28	152.1 -> 126	30	152.1 -> 150.1	50	
フルオレン(F)	4.2	9.21	166.1 -> 165	50	165.1 -> 164.1	20	
フェナントレン (Pa)	4.5	11.50	178.1 -> 152.1	25	178.1 -> 176.1	50	
アントラセン (A)	4.5	11.65	178.1 -> 176.1	50	178.1 -> 152.1	25	
ピレン (P)	4.9	15.61	202.0 -> 202.0	50	202.0 -> 200.0	50	
ベンゾ[c]フルオレン(BcF)	5.4	16.62	215.8 -> 214.8	50	215.8 -> 212.8	50	
ベンゾ[a]アントラセン(BaA)	5.9	19.29	228.1 -> 226.1	30	226.1 -> 224.1	35	
クリセン(Ch)	5.9	19.45	228.1 -> 226.1	30	226.1 -> 224.1	40	
5-メチルクリセン(5MeCh)	6.4	20.73	241.8 -> 240.8	50	241.8 -> 238.8	50	
ベンゾ[b]フルオランテン(BbF)	6.4	22.52	252.1 -> 226.1	30	252.1 -> 252.1	50	
ベンゾ[k]フルオランテン(BkF)	6.4	22.59	252.1 -> 252.1	50	252.1 -> 250.1	50	
ベンゾ[j]フルオランテン(BjF)	5.7	22.69	251.7 -> 251.7	50	251.7 -> 249.7	50	
ベンゾ[e]ピレン(BeP)	6.4	23.66	251.8 -> 251.8	50	251.8 -> 249.8	50	
ベンゾ[a]ピレン(BaP)	6.4	23.81	252.1 -> 250.1	50	125.1 -> 124.1	10	
ペリレン	6.4	24.21	252.1 -> 252.1	50	252.1 -> 250.1	50	
ジベンゾ[a,h]アントラセン(DBahA)	7.1	27.68	277.8 -> 277.8	50	277.8 -> 275.8	50	
インデノ[1,2,3-cd]ピレン(IP)	7.0	27.78	277.0 -> 277.0	50	276.0 -> 274.0	50	
ベンゾ[g,h,l]ペリレン(BghIP)	6.6	29.39	275.8 -> 275.8	50	275.8 -> 273.8	50	

実験方法

材料および試薬

PAH と IS の標準 試料 は Ultra-Scientific (ノースキングスタウン、ロードアイランド州、 米国)またはアジレントの製品を使用しまし た。HPLC グレードのアセトニトリル (ACN)、 アセトン、および酢酸エチル (EtOAc) は、 Honeywell (マスキーゴン、ミシガン州、米国) から購入しました。試薬グレードのイソオクタ ンは Sigma-Aldrich (セントルイス、ミズーリ 州、米国) から購入しました。

溶液および標準品試料

2 種類の PAH 原液をアセトンで調製しました (2,000 µg/mL または 500 µg/mL)。作業用 溶液は、原液からアセトンで 4 µg/mL に調整 しました。次に通常のサンプルスパイク用とし て、スパイク溶液をアセトンで 1 µg/mL に新 たに調製しました。5 種類の IS 化合物が含ま れる IS 作業用溶液を、アセトン (20 µg/mL) で調製しました。両方の作業用溶液を茶色の ガラス製バイアルに入れ、4 ℃ の冷蔵庫で 1 か月保管しました。

20:80 の EtOAc/ACN 抽出溶媒と 16:64:20 の ACN/EtOAc/水溶出溶液を調製し、室温で 保管しました。

実験装置と材料

実験にはAgilent 7890B GC とAgilent 7000Dトリプル四重極GC/MSを組み合 わせて使用しました。GCシステムには、エ レクトロニックニューマティクスコントロー ル(EPC)、空気冷却式マルチモード注入口 (MMI)、Agilent 7693Aシリーズオートサ ンプラ(ALS)、およびAUX EPCモジュール で制御されるパージ付きUltimateユニオン に基づくバックフラッシュシステムを搭載しま した。データの取り込みと解析には、Agilent MassHunterワークステーションソフトウェア を使用しました。 サンプル前処理の使用機器は次のとおりです。

- Centra CL3R 遠心管(Thermo IEC、 マサチューセッツ州、米国)
- Multi Reax 試験管シェーカー (Heidolph、シュヴァーバッハ、ドイツ)
- 2010 ジェノグラインダー (メアチェン、ニュージャージー州、米国)
- ピペットとリピーター
 (エッペンドルフ、ニューヨーク州、米国)
- Agilent 加圧式マニホールド SPE カートリッジ 48 本用(PPM-48) (p/n 5191-4101)
- Captiva EMR-Lipid カートリッジ、 3 mL、300 mg (p/n 5190-1003)
- セラミックホモジナイザ (p/n 5992-9312)

表 2.7890B と 7000D GC/MS/MS の条件

分析条件

GC/MS/MS 機器の条件は公開されている メソッドに基づいて設定しました¹¹。表 2 に GC/MS/MS 操作の条件を示します。

パラメータ	設定値				
カラム 1	J&W DB-EUPAHI、30 m × 0.25 mm、0.25 μm (p/n 122-9632) 、 フロント MM 注入口から Aux EPC 4				
カラム 2	J&W Silcotek の不活性チューブ、1.36 m × 0.15 mm、0 µm (p/n 160-7625-5) 、 Aux EPC 4 から MSD				
キャリアガス	ヘリウム				
モード	定流量				
カラム1 流量	1.1063 mL/min				
カラム 2 流量	1.942 mL/min				
注入量	2 μL パルスドスプリットレス				
注入ロライナ	内径 4 mm ウルトライナートライナシングルテーパ、ウール入り (p/n 5190-2293)				
オーブン温度プログラム	 品度プログラム 80 °C で 1 分間維持、 25 °C /min で 200 °C まで昇温、 その後 8 °C /min で 335 °C まで昇温、 9.325 分間維持 				
最高オーブン温度	340 °C				
分析時間	32分				
バックフラッシュ条件	2 分間のポストラン 335 ℃ のオーブン温度 50 psi の Aux EPC 圧力、および 2 psi の注入口圧力				
トランスファーライン温度	320 °C				
イオン源温度	El イオン源、320 ℃				
四重極温度	150 °C				
データモニタリング	ダイナミック MRM モード				
溶媒ディレイ	3分				

図 1 に、所定の GC/MS/MS 条件による、1 ng/g レベルで添加したサケサンプルに含まれ る各 PAH 化合物の典型的な MRM クロマト グラムを示します。

サンプル前処理

深海で捕獲したサケと有機牛肉を地域の食料 品店で購入し、小さく切って −20 °C で保管し ました。この冷凍サンプルを、グラインダーを 使ってドライアイスでホモジナイズしました。 次に、ホモジナイズしたサンプルを計量(2.5g) して 50 mL の遠心分離チューブに入れ、必要 に応じて標準溶液と IS 溶液でスパイクしまし た。その後、サケと牛肉のサンプルを図2の手 順で調製しました。主な手順は次の3つです。

- 2 段階の固液抽出 (SoLE) によるサン プル抽出 (背景が水色の部分)
- Captiva EMR-Lipid カートリッジによる サンプル抽出物のクリーンアップ(背景 が薄い灰色の部分)
- イソオクタン逆抽出(BE)による後処理 での脱水(背景が黄緑色の部分)

ワークフロー全体で、元のサンプルを 4 倍に 希釈しました。

図 2. 固液抽出とその後の Captiva EMR-Lipid クリーンアップによる、サケまたは牛肉の前処理手順

マトリックス共溶出の除去評価

サンプルの共溶出残留物の重量測定によって、 マトリックス除去を調査しました。共溶出残留 物の量を重量測定によって測定し⁹、サンプル 抽出およびクリーンアップ手順後のマトリック ス除去を調べました。共溶出残留物の重量は 1 mLの最終サンプル抽出物 (n = 2) に基づ き、必要に応じて希釈係数で補正して収集し ました。また、平均重量によってマトリックス 除去率を測定しました。

Captiva EMR のクリーンアップ効率は、1 mL のサンプルを乾燥させた後の残留物の量に基 づいて、視覚的に把握することもできます。

メソッドバリデーション

サケと牛肉に含まれる分析対象物の回収率、 定量の精度と正確性、定量下限(LOQ)、検量 線の直線性について、最適化されたサンプル前 処理メソッドを検証しました。サケと牛肉に含 まれる標準物質の量は1、2、5、10、20、50、 100、250、400、および500 ng/gです。サケ と牛肉の3種類の濃度(低濃度 = 1 ng/g、中 濃度 = 10 ng/g、高濃度 = 100 ng/g)のQC サンプルを、検量線に対して n = 6 で定量しま した。成分の同定と定量は、リテンションタイ ムと MRM トランジションから測定しました。

結果と考察

EMR-Lipid の充填剤と製品

EMR-Lipid 充填剤にはサイズ排除と疎水性 相互作用を組み合わせた画期的なケミストリ を使用しているため、脂質除去の選択性と効 率が向上します。枝分かれのない炭化水素 鎖を含む脂質様分子のみが EMR-Lipid 充填 剤のポアに入り、疎水性相互作用によって保 持されます。脂質様構造でないターゲット化 合物は充填剤の細孔に入れず溶媒内に残る ため、後で分析に使用できます。この結果、 EMR-Lipid 充填剤によって脂質を他のター ゲット化合物から分離し、高い分析対象物回 収率と脂質除去効率を実現できます。

サンプル前処理の最適化

サンプル前処理メソッドは、次の3段階で最 適化しました。

- 1. SoLE
- 2. Captiva EMR-Lipid クリーンアップ
- 3. 後処理による脱水

脂肪の多いマトリックス中の疎水性 PAH 化 合物で高い回収率を達成するには、抽出手 順が重要です。サンプル抽出が困難になる のは、PAH 成分と脂肪の多いマトリックス のどちらも疎水性が高いためです。20:80 EtOAc/ACN 抽出溶媒による SoLE は、以前 に油マトリックス中の疎水性農薬のアプリケー ションで問題なく使用できたため⁹、これを予 備プロトコルとして直接使用しました。分析 対象物の回収率を上げるため、抽出時間と複 数回の SoLE を最適化しました。図 3A にそ の結果を示します。抽出時間が長いと、PAH 抽出物の回収率が向上しました。また2段階 の SoLE では 1 段階の SoLE と比べ抽出効 率も向上しました。このため、各手順で10分 間撹拌した 5 mL の抽出溶液による 2 段階の SoLE を、最適な抽出メソッドとして使用しま 1.tその後、EMR-Lipid カートリッジのクリーン アップ手順の分析対象物の回収率を調べま した。PAH (特に大きい PAH) 化合物は非 常に脂溶性が高いため、高い溶出回収率を 得るには2番目の溶出の使用が非常に重要 です。図3Bの結果から、2番目の溶出の溶 出回収率が平均で約20~25%向上するこ とがわかります。また強い溶媒(16:64:20 EtOAc/ACN/水)を使用することで、大きい PAH を適切に溶出させることができました。

サンプル抽出と EMR-Lipid クリーンアップの 最適化の後に、後処理手順による脱水を調 査しました。GC/MS/MS 分析の前に EMR-Lipid 後処理によって残留物を脱水するには、 主に次の3つのメソッドを使用します。

- 無水 MgSO₄ による塩分配
- 乾燥と再溶解
- 疎水性溶媒の逆抽出(BE)

表3に、3つの各後処理手順の一般的な手法、利点と欠点、適合性を示します。PAH は疎水性が高い化合物クラスであるため、この アプリケーションには疎水性溶媒の逆抽出の 使用が適しています。逆抽出は溶媒の切り替 えや部分濃縮が可能で、大小両方の PAH 化 合物で使用できます。よって、Captiva EMR-Lipid クリーンアップの後に、イソオクタンによ る溶媒の BE によって脱水しました。図 3C に、 イソオクタン BE 手順の回収率を示します。

この最適化されたメソッドを使用して、メソッ ド全体の分析対象物の回収率を、サケと牛肉 で3つのスパイクレベル(1、10、100 ng/g) で収集しました(n = 6)。マトリックスによって ばらつきはあったものの、2種類のマトリック スの異なるスパイクレベルで、すべての PAH 成分が許容範囲内の回収率(50~120%) を達成しました。

図3. 固液抽出手順(A)、EMR-Lipid クリーンアップ手順(B)、およびイソオクタン逆抽出(C)の PAH 回収率に基づく、サンプル前処理メソッドの最適化

脱水メソッド	一般的な手法	利点	欠点	適合性
無水 MgSO₄ による 塩分配	 - 1 mL の EMR-Lipid 溶出液あたり 700 mg の無水 MgSO₄ を添加する - ボルテックスミキサーで十分に撹拌 して遠心分離する 	- 通常は成分の大きな損失なし	 操作に手間がかかる 時間がかかる GC で分析可能な溶媒に交換 できない 	- 多成分残留分析
乾燥と再溶解	 サンプル蒸発装置によって EMR 溶出液を乾燥させる (TurboVap、 CentriVap) GC で分析可能な溶媒に再溶解する 十分に混ぜる 	- 操作が比較的簡単 - サンプル濃縮と溶媒交換が可能	 時間がかかる 揮発性成分の損失 不安定な化合物の劣化の可能性 	 非揮発性成分と安定成分 サンプルが比較的少量で済む 低 LOQ に達するまでに濃縮が必要
疎水性溶媒の逆抽出	 有機/水が約1:2 になるまで EMR 溶出液に水を添加する (有機物の量と同等または若干 少ない) イソオクタンを添加する ボルテックスミキサーで10分間 撹拌してから遠心分離する 	 操作が比較的簡単 溶媒の交換と部分的なサンプル 濃縮が可能 溶解した極性マトリックス共溶出物を さらに除去できる 	 極性の損失により中極性化合物が 生まれる サンプル混合中にリークが発生する 可能性あり 	- Log P ≥3 の疎水性化合物

表 3	Cantiva	EMR-Linid	クリーンアップ後の.	サンプル後処理による脱水
1K J	• Oaptiva	LIVIN LIPIU	// ///xw/	ファンル反応生にのつ加小

メソッドバリデーション

定量メソッドの検証には、3 つのスパイクレベ ルでの検出下限(LOD)、検量線の直線性、 成分真度、および精度が含まれます。成分 の定量には、5 種類の内部標準(IS)化合物 (ナフタレン- D_8 、アセナフチレン- D_{10} 、フェナ ントレン- D_{10} 、クリセン- d_{12} 、ペリレン- D_{12})を 使用しました。表4に、サケと牛肉のメソッド 検証結果の概要を示します。 4 種類の大きい PAH (ベンゾ[a]ピレン、ベン ゾ[a]アントラセン、ベンゾ[b]フルオランテン、 クリセン) は、非常に低い LOQ (0.9 ng/g) と LOD (0.3 ng/g) に規制されている重要 な化合物です²。図 5 に、これら 4 種類の化 合物の、各マトリックスで規定されている LOQ (1 ng/g) でのクロマトグラムを示します。両 方のマトリックスで検証された 1 ng/g の LOQ (表 4) と 4 種類の成分の LOQ での S/N 比 (図 5) から、0.9 ng/g 以下の LOQ でこのメ ソッドを検証できることがわかります。これら の成分については、さらに低い LOQ と LOD での調査を予定しています。

図4. 最適なサンプル前処理メソッドによるサケ(A)および牛肉(B)中の PAH の回収率

		<u> </u>						牛肉					
			検量線		平均料	青度 % (RSD%)	。)、n = 6 検量線				平均精度 % (RSD%)、n = 6		
成分の略称記 ー	21	LOQ	HLOQ (ng/g)	D ²	低 QC	中 QC (10 pg/g)	高 QC	LOQ	HLOQ (ng/g)	D ²	低 QC	中 QC (10 pg/g)	高 QC
	13	(iig/g/	(19/9)	N 0.0000	(1119/9/		(100 lig/g/	(119/9/	(iig/g/	R NI	(Ting/g/	(TO TIG/G/	(TOU Hg/g/
Na*	ナフタレン-D ₈	1	500	0.9960	103 (5.7)	93 (4.5)	103 (2.1)	NA	NA	NA	NA	NA	NA
Ac		1	500	0.9958	86 (13.9)	91 (3.4)	96 (3.7)	1	500	0.9953	97 (5.5)	99 (3.3)	102 (3.9)
F	アセナフチレン-D ₁₀	1	500	0.9940	90 (11.1)	86 (6.8)	93 (5.9)	1	500	0.9935	100 (6.0)	100 (6.1)	103 (4.9)
Pa		1	500	0.9962	94 (11.6)	93 (2.2)	98 (2.7	1	500	0.9982	90 (8.9)	96 (2.3)	93 (6.0)
A**		2	500	0.9968	75 (7.2)	86 (3.3)	93 (1.5)	1	500	0.9963	80 (10.2)	92 (3.2)	99 (3.1)
P**	7-+	1	500	0.9970	66 (10.9)	87 (3.7)	96 (2.5)	2	500	0.9951	90 (6.0)	104 (6.3)	105 (6.8)
BcF	ノエノ ントレン-D ₁₀	1	500	0.9976	98 (8.9)	89 (2.0)	96 (3.3)	1	500	0.9970	89 (7.6)	105 (5.7)	104 (9.1)
BaA		1	500	0.9963	83 (4.0)	89 (1.0)	96 (1.5)	1	500	0.9990	87 (6.4)	91 (1.7)	99 (2.6)
Ch		1	500	0.9986	91 (6.2)	88 (3.2)	98 (1.5)	1	500	0.9994	93 (10.0)	93 (1.3)	100 (2.2)
5MeCh	クリセン-D ₁₂	1	500	0.9977	80 (3.8)	86 (1.4)	93 (2.0)	1	500	0.9960	95 (7.0)	104 (8.7)	107 (2.9)
BbF		1	500	0.9949	80 (3.6)	83 (4.6)	89 (3.2)	1	500	0.9937	100 (3.8)	95 (8.5)	99 (2.9)
BkF		1	500	0.9984	75 (6.7)	80 (1.5)	85 (3.0)	1	500	0.9984	88 (9.0)	89 (10.3)	96 (4.2)
BjF		1	500	0.9977	84 (6.7)	87 (3.0)	90 (4.5)	1	500	0.9958	83 (6.8)	102 (8.2)	101 (3.8)
BeP	-	1	500	0.9964	93 (4.8)	91 (2.9)	99 (1.5)	1	500	0.9968	102 (7.8)	95 (4.0)	99 (2.2)
BaP		1	500	0.9970	68 (6.4)	82 (1.2)	91 (1.1)	1	500	0.9982	90 (9.7)	84 (3.2)	86 (2.9)
ペリレン		1	500	0.9978	89 (3.0)	87 (2.2)	95 (1.1)	1	500	0.9986	84 (7.9)	91 (5.8)	96 (2.3)
DBahA	······································	1	500	0.9974	81 (7.3)	80 (2.1)	91 (5.9)	1	500	0.9957	87 (7.7)	78 (8.5)	91 (11.1)
IP		1	500	0.9957	57 (7.2)	69 (3.5)	79 (6.3)	1	500	0.9972	72 (7.1)	65 (7.4)	73 (10.2)
BghlP		1	500	0.9979	69 (7.5)	73 (1.5)	82 (5.9)	1	500	0.9967	71 (5.2)	64 (8.2)	70 (4.0)

表 4. 最適なメソッドによる、サケおよび牛肉中の PAH の分析の定量検証結果

* 牛肉中のナフタレンは、発生レベルが高いため定量不可です。

** LOQ の上昇は、少ない発生レベルで検出されるサンプルブランクによるものです。

IS = 内部標準、LOQ = 定量限界(下限)、HLOQ = 定量上限、QC = 品質管理。PAH の省略記号については表1を参照してください。

マトリックスクリーンアップの評価

サケと牛肉について、最終抽出物中のサンプ ルマトリックス残留物と、クリーンアップによる 残留物除去を調査しました。図6に、乾燥し たサンプル残留物の外観とその実際の重量を 示します。EMR-Lipid クリーンアップを実行し た場合としない場合では、サンプルの乾燥残 留物の重量が異なります。EMR-Lipid クリー ンアップによって、サケで 60%、牛肉で 92% のマトリックス除去を達成できました。

結論

固液抽出とその後の Captiva EMR-Lipid カー トリッジによるクリーンアップを用いたシンプ ルかつ堅牢で信頼性が高いメソッドを、サケ と牛肉に含まれる PAH の多成分残留分析用 に開発して検証しました。このメソッドを最適 化して抽出効率を上げ、Captiva EMR-Lipid カートリッジで溶出を完了した後、イソオクタ ン逆抽出によって脱水と溶媒のスワンプを実 行しました。定量分析の結果、すべての試験 対象 PAH で、許容範囲内の平均回収率(50 ~ 120 %)と高い再現性を達成しました。ま た平均 RSD も、EC の許容基準を満たす 20 % 未満という数値でした。このメソッドは、 4 種類の重要な PAH について、EU 委員会の 規制より低い LOQ を達成できる可能性があ ることも示されました。これらの結果から、サ ケと牛肉に含まれるPAH の多成分残留分析 では、最適化されたメソッドによって優れたマ トリックスクリーンアップ、分析対象物の回収 率、精度を得られることがわかりました。

	サケ	牛肉							
クリーンアップなし(mg/mL 未処理抽出液、n = 2)									
5.64 2.75									
Captiva EMR-Lipid クリーンアップ									
残留物(mg/mL 最終抽出液、n = 2)	2.24	0.21							
マトリックス残留物の除去(%)	60	92							

図 6. 残留物の重量と外観によるマトリックス残留物除去の評価

参考文献

- U.S. Food and Drug Administration, 2010.Protocol for Interpretation and Use of Sensory Testing and Analytical Chemistry Results for Re-Opening Oil-Impacted Areas Closed to Seafood Harvesting Due to the Deepwater Horizon Oil Spill, http://www.fda.gov/food/ ucm217601.htm.
- European Commission Regulation (EC) 836/2011, Official Journal of the European Union **2011**, 215, 9.
- Takigami, H.; *et al*.Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan.Chemosphere **2009**, 76, 270-277.
- Viegas, O.; et al. A comparison of the extraction procedures and quantification methods for the chromatographic determination of polycyclic aromatic hydrocarbons in charcoal grilled meat and fish *Talanta* 2012, 88, 677–683.

- Stapleton, H. M.; *et al.* Determination of polybrominated diphenyl ethers in environmental standard reference materials. *Analytical and bioanalytical chemistry* 2007, 387, 2365–2379.
- Forsberg, N. D.; Wilson, G. R.; Anderson, K. A. Determination of parent and substituted polycyclic aromatic hydrocarbons in high-fat salmon using a modified QuEChERS extraction, dispersive SPE and GC-MS. Journal of agricultural and food chemistry 2011, 59, 8108–8116.
- Sverko, E.; et al. Dechlorane plus levels in sediment of the lower Great Lakes. Environmental science & technology 2008, 42, 361–366.
- Saito, K.; *et al.* Development of an accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis.*Chemosphere* 2004, 57, 373–381.

- Zhao, L. Determination of Multiclass, Multiresidue Pesticides in Olive Oil by Captiva EMR—Lipid Cleanup and GC/MS/MS.Agilent Technologies Application Note, publication number 5994-0405EN.
- Lucas, D.; Zhao, L. PAH Analysis in Salmon with Enhanced Matrix Removal.*Agilent Technologies Application Note*, publication number 5991-6088EN, **2015**.
- 11. Szelewski, M.; Quimby, B. D. Optimized PAH Analysis Using the Agilent Self-Cleaning Ion Source and the Enhanced PAH Analyzer. *Agilent Technologies Application Note*, publication number 5991-3003EN.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE.2675115741

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2019, 2020, 2023 Printed in Japan, August 11, 2023 5994-0553JAJP

