アプリケーションノート エネルギーと化学

Agilent ICP-MS を使用した リチウムイオン電池アノードの 元素不純物分析

グラファイトアノード材料中の微量汚染物質の 正確な多元素測定

はじめに

1991 年に初めて市販されて以来、充電式リチウムイオン(Li-ion)電池(LIB)は、現代の生活の重要 な一部となっており、欠かせないものとなっています。LIB は、スマートフォンや時計から埋め込み型医 療機器、電気自動車(EV)、さらに NASA の宇宙飛行士の宇宙服の生命維持システムまで、あらゆる ものに電力を供給しています。大規模な LIB は、風力や太陽光などの断続的な再生可能エネルギー源 によって生成された電力のグリッドスケール蓄電池にも利用されています。LIB は、高エネルギー密度、 高速充電機能、均一な(フラットな)放電電圧プロファイルを備え、メモリ効果はほとんどありません。 また、低い自己放電率、優れた耐久性、比較的低コストという特長を併せ持つため、広く普及しました。

著者

Dr. Vinay Jain, Dr Abid Zainul, and Ed McCurdy Agilent Technologies, Inc. 最新のリチウムイオン電池は簡単に言えば、アノード、カソード、電解質、 セパレータの4つのコンポーネントで構成されています。いくつかの異な るLi 遷移金属合金(例えば、コバルト酸リチウム)とLi塩(6フッ化リ ン酸リチウムなど)が、それぞれカソード材料と電解質に使用されます。 しかしアノード材料には1994年以来、すべてのLIBでグラファイトがほ ぼ独占的に使用されています(1)。グラファイトは天然品(99.99%ま で精製したもの)または合成品のいずれも、コスト・入手方法・優れた 充電/放電特性により、好ましい材料です。他のアノード材料も研究され てきましたが、現在、グラファイトの総合的な能力に匹敵するものはあり ません。

LIB の充電中、Li イオンがカソードから放出されて電解質を通って移動 し、リチウム化したグラファイト化合物 LiC₆ としてグラファイトアノードに 貯蔵されます。放電中は逆のプロセスが発生し、Li イオンがアノードから カソードに移動します。LIB の性能は、充電/放電サイクル中に Li イオン を貯蔵および放出するアノードグラファイト結晶格子の容量によって大幅 に制限されます。アノード容量は、グラファイトの形態と組成に依存し、そ の電気化学的特性は、アノードのドーパントとコーティング元素、および 汚染物質の影響を強く受けます (2)。LIB メーカーは、より容量が大きく 充電サイクルの高速な電池開発に取り組んでおり、グラファイトアノード の性能は重要な研究分野の一つです。その結果、グラファイトアノード原 料の純度は慎重に検討されています。

ほとんどの LIB アノードグラファイトが中国で製造・精製されていますが、 グラファイト中の汚染物質元素の測定に通常使用される手法は、誘導結 合プラズマ発光分光法 (ICP-OES) です (3)。リチウムイオン電池のグラ ファイト負極材料の中国標準 (GB/T 24533-2019)(4)では、Na、Al、 Fe、Co、Cr、Cu、Ni、Zn、Mo、Sの最大濃度が指定されています。これ らの元素のうち、Fe、Cr、Ni、Zn、Coがグループ化され、それらの濃度 の合計が GB 標準の「磁性物質」として報告されます。さらに GB 標準 には、有害な重金属である Cd、Hg、Pb、Cr(VI)の上限が定められており、 推奨される分析技法として ICP-MS が指定されています。 先進的な電池メーカーは、ICP-OES の検出限界を下回るレベルの、よ り広範囲の汚染物質の測定に関心を持っています。そのため、グラファ イトおよびグラファイトベースのアノード材料の特性解析を行う代替分析 技法として、ICP-OES よりも検出限界が数桁低い ICP 質量分析法(ICP-MS)が検討されています。ICP-MS は、ほぼすべての元素に対して低い 検出限界を提供するため、現在の標準メソッドで指定されている元素だ けでなく、はるかに広範囲の汚染物質の特性解析に使用できます。本検 討では、グラファイト材料中の合計 45 種類の元素を ICP-MS によって測 定しました。

実験方法

装置構成

グラファイトアノード材料サンプルの分析には、超高マトリックス導入 (UHMI) エアロゾル希釈システムとオクタポールリアクションシステム (ORS)⁴ コリジョン/リアクションセルを備えた Agilent 7850 ICP-MS を使用しました。7850 は、MicroMist ネブライザ、ペルチェ冷却石英製 ダブルパススプレーチャンバ、2.5 mm インジェクタ石英製トーチで構成 される標準サンプル導入系で構成されています。また、標準のニッケル インタフェースコーンを使用しました。速度とメソッドの簡素化のために、 低 ng/L (ppt) から高 mg/L (ppm) までの濃度範囲をカバーするすべ ての元素の測定には、単一の ORS⁴ He/KED コリジョンモードを使用し ました。目標の検出レベルがさらに低い場合、P、S、Se などの測定元素 の一部では、高エネルギー He モード、あるいは水素または酸素リアク ションガスモードを使用する代替セル条件を用いれば、効果があると考 えられます。これらのモードは、プラズマベースの強い多原子イオン干渉 を除去または回避するように最適化されています。主な機器の使用条件 を表1に示します。サンプル導入には Agilent SPS 4 オートサンプラを 使用し、7850の最適化と自動分析シーケンスの実行制御には Agilent MassHunter ワークステーションソフトウェアを使用しました。

表 1. Agilent 7850 ICP-MS の使用条件

パラメータ	設定値
RF パワー (W)	1550
サンプリング位置(mm)	8.0
ネブライザガス流量(L/min)	1.01
UHMI 希釈ガス(L/min)	0.10
スプレーチャンバ温度 (℃)	2.0
レンズチューン	オートチューン
He ガス流量(mL/min)	4.3
エネルギーディスクリミネーション (V)	3

サンプル前処理法

リチウムイオン電池製造業界から供給される2種類のグラファイトベースのアノード材料サンプルを購入しました。これらのサンプルを、サンプルAおよびサンプルBとして定義しました。

各サンプル 1.00 ± 0.01 g を正確に秤量し、ポリテトラフルオロエチレン (PTFE) マイクロ波分解ベッセルに入れました。各サンプルを、超高純 度の酸、HNO₃ (2 mL) および HCl (6 mL) から調製した 8 mL の王水 で分解しました。分解には Milestone Ethos マイクロ波分解システムを 使用しました。分解する前に、サンプル分解物を室温で 20 分間保持しま した。マイクロ波分解プログラムを表 2 に示します。

表2. 高周波分解プログラム

ステップ	温度(°C)	保持時間(分)
0	室温	20 分間予備分解
I	150	10
11	160	10
	180	25
IV	室温	室温まで冷却

室温まで冷却したら、分解した溶液を 50 mL 遠心管に移し、脱イオン 水で最終容量を 40 mL にしました。分解試料を冷却し、23 ℃、10,000 rpm で 10 分間遠心分離し、上澄み溶液を分析用に使用しました。すべ てのサンプル、メソッドブランク、スパイクサンプルを、同じ手順で前処理 しました (図 1)。各グラファイトサンプル、サンプル A およびサンプル B について、6 個、調製しました。

標準溶液

グラファイトサンプルで検討した 45 元素の標準液は、Agilent 標準液か ら調製しました:多元素標準液 -2A (部品番号 8500-6940)、多元素 標準液 -3 (部品番号 8500-6948)、多元素標準液 -4 (部品番号 8500-6942)、および単元素標準リン(部品番号 ICP-115) および硫黄(部 品番号 5190-8529)。標準溶液は、Ag、Sn、Hg、PGE などの一部の 化学的に不安定な元素を安定させるため、容量ベース (v/v) で 5 % の HNO₃ と HCI の混合液で調整しました。すべての元素のキャリーオーバー を適切に管理するために、洗浄液には混酸を使用しました。

ほぼすべての対象成分 (Be、V、Cr、Ga、Ge、As、Se、Rb、Sr、Zr、 Nb、Mo、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Te、Cs、Ba、Hf、Re、Ir、 Pt、Au、Tl、Pb、U) は、0.01 ~ 20.0 ppb の標準を使用して検量線を 作成しました。B と Zn は、1.0 ~ 20.0 ppb の範囲で検量線を作成し ました。Hg は、低いバックグラウンドと化学的安定性を確保するため に 0.005 ~ 1.0 ppb の範囲で個別に作成しました。一方で主要元素の Na、Mg、Al、P、S、K、Ca、Mn、Fe、Co、Ni、Cu は、0.01 ~ 10 ppm の範囲で検量線を作成しました。

内部標準(ISTD)溶液は2%HNO₃(v/v)で、Agilent単元素標準スカ ンジウム(Sc)(部品番号 5190-8517)、テルビウム(Tb)(部品番号 5190-8535)、ルテチウム(Lu)(部品番号 5190-8479)、ビスマス(Bi) (部品番号 5190-8362)を混合して調製しました。内部標準溶液(1 mg/L)は、標準の内部標準Tコネクタを使用してオンラインでサンプル と混合しました。各サンプルに内部標準溶液を添加するのと比較して、オ ンライン添加はオペレーターの時間を節約し、サンプルハンドリングの手 作業の1つをなくすことでエラーの可能性を減らします。

図 1. リチウムイオン電池のアノードに使用されるグラファイト材料の調製と ICP-MS 分析に使用した分析ワークフロー。

添加回収試験用サンプルの調製

定量メソッドの精度を確認するために、両方のアノード材料サンプル分解 試料に既知濃度の元素を添加することにより、添加回収試験を実施しま した。初期検討から、グラファイトサンプル A と B には目的の元素が異 なるレベルで含まれていることが観察されました。この違いを考慮して、 2 つのアノード分解試料に異なる濃度の標準を添加しました。添加回収 試験用サンプルか、各アノード材料について3回に分けて調整しました。

結果と考察

検出限界

測定された 45 元素の機器検出下限(IDL)は、検量線ブランクで測定さ れた濃度の標準偏差(SD)の3倍として計算しました(n=10)。希釈倍 率 40(1.00±0.01gのサンプルを分解し、40mLで希釈)を適用して、 元の固体グラファイトサンプルに対する検出限界(DL)を求めた後、希 釈補正検出限界を計算しました。測定DLおよび希釈補正されたDLを、 検量線プロットの線形回帰(R)値と共に表3に示します。DLが低い値 となるのは、7850 ICP-MSが微量元素の測定に適していることを示して おり、R値が1に近いことは、広い濃度範囲で7850の応答が直線的で あることを示しています。

表3.45元素の直線性(R)、IDL、希釈補正済みDL

元素	R値	溶液中の IDL	固体中の希釈補正後 DL、		
		(太字以外の元素では ng/L、µg/L)	μg/kg		
9 Be	1.0000	0.76	0.03		
11 B	1.0000	130	5.2		
23 Na	0.9999	0.1483	5.93		
24 Mg	0.9999	60	2.4		
27 Al	1.0000	70	2.8		
31 P	1.0000	4.36	174.4		
34 S	0.9997	33.05	1322		
39 K	1.0000	449.9	18		
44 Ca	0.9999	3.723	148.92		
51 V	0.9999	10.94	0.44		
52 Cr	0.9999	1.676	0.07		
55 Mn	1.0000	13.22	0.53		
56 Fe	1.0000	41.56	1.66		
59 Co	0.9999	19	0.76		
60 Ni	0.9999	11.06	0.44		
63 Cu	0.9999	44.33	1.77		
66 Zn	0.9999	76.9	3.08		
71 Ga	0.9999	0.6434	0.03		
72 Ge	0.9999	3.99	0.16		
75 As	0.9999	1.761	0.07		
78 Se	0.9999	50.55	2.02		
85 Rb	0.9999	1.278	0.05		
88.Sr	1 0000	6.853	0.27		
90.7r	1.0000	0.4358	0.02		
93 Nh	1.0000	0.475	0.02		
95 Mo	1.0000	0.9422	0.04		
101 Ru	1 0000	0.1645	0.01		
103 Rh	1 0000	1 999	0.08		
105 Pd	1 0000	2 099	0.08		
107 Ag	0.9995	0.39	0.02		
111 Cd	1 0000	0.3225	0.01		
118 Sn	1.0000	7.046	0.28		
121 Sh	1.0000	1.502	0.06		
125 To	0.0000	4.522	0.18		
123 Co	0.9999	1 781	0.10		
137 Ba	1 0000	2.611	0.07		
170 LIF	0.0000	2.011	0.1		
105 Do	0.9999	0.1567	0.1		
100 Ke	1 0000	0.104	0.01		
105 D+	1.0000	2.134	0.09		
193 PL	0.0000	7 //5	0.04		
202 Ha	0.9990	5 773	0.3		
202 119	1 0000	0.2042	0.23		
 	1.0000	5 021	0.01		
22011	1.0000	0.7700	0.02		
238 U	1.0000	υ.//δδ	0.03		

機器の堅牢性と内部標準の安定性

分解されたサンプル (2 つのグラファイトサンプルのそれぞれについて 6 つの分解試料)、メソッドブランク、品質管理 (QC) チェック、添加回収用 溶液からなる分析シーケンスを、10 時間にわたって繰り返し行いました。 シーケンス全体には合計で 200 回を超えるサンプル分析が含まれ、サン プル分解物には高い酸レベルと公称 2.5 % の総溶解固形分 (TDS) が含 まれていました。Tb、Lu、Bi を、グラファイトアノードサンプル中の汚染物 質元素を分析するための内部標準として使用しました。図 2 に示すよう に、内部標準の回収率は、赤い点線で示される ±20 % の範囲内にあり、 分析全体を通して安定していました。一貫して安定した内部標準回収率 は、UHMI エアロゾル希釈を使用した 7850 ICP-MS のロバストプラズマ が、長期にわたって優れた安定性を維持できることを示しています。また ドリフトがないことから、シーケンス中にインタフェースにマトリックスの堆 積があまり発生しなかったことが確認できます。この結果は、7850 ICP-MS がグラファイトアノード材料の簡単なルーチン元素分析に対応できる 堅牢性と高いマトリックス耐性を備えていることを示しています。

品質管理チェック

装置の安定性と検量線の長期的な有効性のチェックとして、 $0.10 \mu g/L$ の Hg、 $1.0 \mu g/L$ の Be、B、V、Cr、Ga、Ge、Zn、As、Se、Rb、Sr、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Te、Cs、Ba、Hf、Re、Ir、Pt、Au、Tl、Pb、U、および 1.0 mg/L の Na、Mg、Al、P、S、K、Ca、Mn、Fe、Co、Ni、Cu を含む QC 標準を、バッチ分析の前後で分析しました。表 4 に示すように、測定間のドリフト(%差)は、すべての元素で 5.0%未満、ほぼすべての元素で 1%以下でした。この一貫性によっても、グラファイトベースの材料のルーチン分析における 7850 ICP-MS の安定性と堅牢性が実証されました。

図 2. Agilent 7850 ICP-MS を使用し 10 時間 (200 回超の分析) にわたって測定された内部標準の回収率。スペースが限られているため、サンプル名は一部のみ表示

元素	単位	QC 分析での濃度	濃度	ドリフト(%)	
			バッチ分析前	バッチ分析後	
9 Be	μg/L	1.00	0.96	0.96	0.14
11 B	μg/L	1.00	1.04	1.00	-4.02
23 Na	mg/L	1.00	0.94	0.95	1.14
24 Mg	mg/L	1.00	0.95	0.97	2.03
27 AI	mg/L	1.00	0.93	0.95	2.33
31 P	mg/L	1.00	0.95	0.97	1.77
34 S	mg/L	1.00	0.98	0.98	0.31
39 K	mg/L	1.00	0.99	1.00	0.69
44 Ca	mg/L	1.00	0.98	0.97	-1.53
51 V	μg/L	1.00	0.93	0.93	0.06
52 Cr	μg/L	1.00	0.99	0.99	0.09
55 Mn	mg/L	1.00	0.94	0.96	1.62
56 Fe	mg/L	1.00	0.94	0.96	1.69
59 Co	mg/L	1.00	0.99	1.00	0.85
60 Ni	mg/L	1.00	1.00	1.01	1.06
63 Cu	mg/L	1.00	1.01	1.02	1.16
66 Zn	μg/L	1.00	0.95	0.93	-2.11
71 Ga	μg/L	1.00	1.01	1.02	0.51
72 Ge	μg/L	1.00	1.05	1.04	-0.99
75 As	μg/L	1.00	1.02	1.02	0.06
78 Se	μg/L	1.00	0.94	0.95	1.67
85 Rb	μg/L	1.00	1.02	1.01	-1.04
88 Sr	μg/L	1.00	1.00	1.00	0.01
90 Zr	μg/L	1.00	1.00	1.01	1.09
93 Nb	μg/L	1.00	1.02	1.02	0.57
95 Mo	μg/L	1.00	1.05	1.04	-0.39
101 Ru	μg/L	1.00	1.05	1.05	0.34
103 Rh	μg/L	1.00	1.03	1.04	0.17
105 Pd	μg/L	1.00	0.99	0.99	0.52
107 Ag	μg/L	1.00	1.03	1.03	0.52
111 Cd	μg/L	1.00	1.06	1.04	-1.64
118 Sn	μg/L	1.00	1.04	1.06	1.57
121 Sb	μg/L	1.00	1.06	1.05	-0.81
125 Te	μg/L	1.00	1.02	1.02	0.02
133 Cs	μg/L	1.00	0.99	1.00	0.95
137 Ba	μg/L	1.00	1.04	1.06	1.50
178 Hf	μg/L	1.00	1.02	1.02	0.63
185 Re	μg/L	1.00	1.05	1.04	-1.38
193 lr	μg/L	1.00	1.05	1.06	0.55
195 Pt	μg/L	1.00	1.11	1.10	-0.81
197 Au	μg/L	1.00	0.96	1.00	4.50
202 Hg	μg/L	0.10	0.094	0.094	0.47
205 TI	μg/L	1.00	1.04	1.05	0.41
Pb*	μg/L	1.00	1.07	1.07	0.68
238 U	μg/L	1.00	1.04	1.04	0.22

表 4. Agilent 7850 ICP-MS を使用した 10 時間のサンプル分析実行の前後に測定された QC チェック溶液間の測定濃度とドリフト

定量バッチ結果

7850 ICP-MS を使用して、2 つのグラファイトアノードサンプル(サンプ ル A とサンプル B)それぞれの 6 つの分解試料を分析し、45 種類の汚 染物質元素の濃度を定量しました。サンプル A および B の測定結果をそ れぞれ表 5 および 6 に示します。結果は希釈倍率で補正され、元の固体 グラファイト材料の mg/kg で報告されています。6 個の分解試料の定量 結果のばらつきは極めて小さく、%RSD は 5 % 未満でした。

元素 サンプル A 分解試料の繰り返し分析 Ш ш VI 平均(n=6) % RSD L IV ۷ 9 Be <DL <DL <DL <DL <DL <DL <DL 11 B 0.25 0.23 0.24 0.23 0.25 0.25 0.25 4.8 23 Na 40 40 39 39 39 0.9 39 39 10 10 0.7 24 Mg 10 10 10 10 10 27 Al 144 143 143 144 144 145 144 0.6 31 P 84 1.3 86 83 84 85 86 85 34 S <DI <DI <DI <DL <DI <DL <DI 39 K <DL <DL <DL <DL <DL <DL <DL 44 Ca 22 22 23 21 21 23 22 4.8 51 V 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.9 52 Cr 2.6 2.6 2.6 2.7 2.6 2.6 0.4 2.6 55 Mn 15508 15413 15431 15493 15427 15244 15419 0.6 56 Fe 297 296 295 294 295 295 295 0.3 59 Co 1655 1642 1639 1646 1643 1625 1642 0.6 60 Ni 441 443 439 439 438 438 440 0.5 63 Cu 405 407 405 404 402 405 405 0.4 66 Zn 0.70 0.69 0.69 0.70 0.69 0.69 0.69 0.9 71 Ga 1.1 1.1 1.5 1.1 1.1 1.1 1.1 1.1 0.17 0.17 0.17 72 Ge 0.17 0.18 0.17 0.17 1.9 75 As 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0.7 78 Se 0.24 0.23 0.23 0.23 0.23 0.23 0.23 1.0 85 Rb 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.6 88 Sr 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.5 90 Zr 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 93 Nb 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.8 95 Mo 0.07 0.07 0.07 0.07 0.07 0.07 0.07 1.3 101 Ru <DL <DL <DL <DL <DL <DL <DL 103 Rh <DL <DL <DL <DL <DL <DL <DL 105 Pd <DI <DI <DI <DI <DI <DI <DI

表 5.6 個のグラファイトサンプル A の分解試料中 45 元素の濃度。結果は元の固体サンプルにおける mg/kg

表5次のページに続く

表 5 の続き

元素	サンプルA分解試料の繰り返し分析							
	I	II	III	IV	v	VI	平均(n=6)	% RSD
107 Ag	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
111 Cd	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
118 Sn	4.7	4.7	4.7	4.8	4.7	4.7	4.7	0.5
121 Sb	0.15	0.14	0.14	0.14	0.14	0.14	0.14	0.7
125 Te	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
133 Cs	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
137 Ba	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.5
178 Hf	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
185 Re	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
193 lr	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
195 Pt	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
197 Au	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
202 Hg	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
205 TI	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-
Pb*	4.3	4.3	4.3	4.4	4.3	4.3	4.3	0.4
238 U	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-

* Pb は、最も豊富な 3 つの同位体、206、207、208 で測定された強度の合計に基づいて定量化されました。

表 6.6 個のグラファイトサンプル B の分解試料中 45 元素の濃度。結果は元の固体サンプルにおける mg/kg

-=	サンプル B 分解試料の繰り返し分析											
元系	I	П	ш	IV	v	VI	平均(n=6)	%RSD				
9 Be	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-				
11 B	1.5	1.6	1.5	1.6	1.6	1.6	1.6	2.9				
23 Na	15	15	15	15	15	15	15	1.3				
24 Mg	14	14	14	14	14	14	14	1.4				
27 Al	303	318	313	313	315	313	313	1.7				
31 P	98	102	102	101	101	101	101	1.5				
34 S	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-				
39 K	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-				
44 Ca	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-				
51 V	0.06	0.07	0.07	0.06	0.06	0.07	0.07	2.0				
52 Cr	0.31	0.32	0.31	0.31	0.31	0.31	0.31	1.4				
55 Mn	222	230	226	227	225	226	226	1.2				
56 Fe	104	108	106	106	105	106	106	1.2				
59 Co	15877	15807	15797	15888	15847	15964	15863	0.4				
60 Ni	210	219	214	214	213	214	214	1.3				
63 Cu	255	264	259	259	257	259	259	1.2				
66 Zn	2.6	2.7	2.6	2.6	2.6	2.6	2.6	1.4				
71 Ga	0.08	0.09	0.09	0.08	0.08	0.08	0.08	3.0				
72 Ge	0.06	0.07	0.07	0.07	0.07	0.07	0.07	4.4				

表 6 次のページに続く

表6の続き

- +	サンプル B 分解試料の繰り返し分析										
兀系	I	П	ш	IV	v	VI	平均(n=6)	%RSD			
75 As	13.9	15.2	14.5	14.6	14.5	14.5	14.5	2.7			
78 Se	0.12	0.13	0.13	0.13	0.13	0.13	0.13	2.0			
85 Rb	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
88 Sr	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2			
90 Zr	0.16	0.17	0.16	0.16	0.16	0.16	0.16	0.8			
93 Nb	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
95 Mo	0.04	0.04	0.04	0.04	0.04	0.04	0.04	1.0			
101 Ru	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
103 Rh	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
105 Pd	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
107 Ag	0.07	0.07	0.07	0.07	0.07	0.07	0.07	1.3			
111 Cd	0.01	0.01	0.01	0.01	0.01	0.01	0.01	2.8			
118 Sn	1.3	1.4	1.3	1.3	1.3	1.3	1.3	1.2			
121 Sb	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
125 Te	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
133 Cs	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
137 Ba	0.29	0.30	0.29	0.29	0.29	0.29	0.29	1.2			
178 Hf	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
185 Re	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
193 lr	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
195 Pt	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
197 Au	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
202 Hg	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
205 TI	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			
Pb*	0.71	0.73	0.71	0.71	0.71	0.72	0.72	1.1			
238 U	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td></dl<>	-			

* Pb は、最も豊富な 3 つの同位体、206、207、208 で測定された強度の合計に基づいて定量化されました。

添加回収率とマトリックス効果の評価

定量分析結果の精度を確認するために、2 つのグラファイトサンプル分解 試料のそれぞれについて添加回収試験を実施しました。サンプル A およ び B の測定結果をそれぞれ表 7 および 8 に示します。すべての分析成 分について、添加回収率(n=3)は100±10%以内で、%RSDは5% 未満でした。優れた回収率は、すべての元素がグラファイトサンプルマト リックスから生じるマトリックス効果の影響を受けなかったことを示してい ます。

元素	サンプル A							
	サンプル濃度	添加濃度	添加サンプルの			回収率(%)		
			濃度測定値(n=3)	添加サンプル	添加サンプル	添加サンプル	平均 (n=3)	% RSD
				繰り返し分析I	繰り返し分析 II	繰り返し分析 III		
9 Be	<dl< td=""><td>12.5</td><td>12.25</td><td>97.5</td><td>94.7</td><td>97.7</td><td>96.6</td><td>1.7</td></dl<>	12.5	12.25	97.5	94.7	97.7	96.6	1.7
11 B	6.25	12.5	18.75	97.1	103.9	104.1	101.7	3.9
23 Na	0.975	1.25	2.225	96.4	99.2	100.4	98.7	2.1
24 Mg	0.25	1.25	1.45	94.9	98.1	98.9	97.3	2.2
27 AI	3.6	1.25	4.8	93.2	97.0	97.6	95.9	2.5
31 P	2.125	1.25	3.275	95.7	89.9	90.9	92.2	3.4
34 S	<dl< th=""><th>1.25</th><th>1.2</th><th>94.7</th><th>95.8</th><th>96.8</th><th>95.7</th><th>1.1</th></dl<>	1.25	1.2	94.7	95.8	96.8	95.7	1.1
39 K	<dl< th=""><th>1.25</th><th>1.2</th><th>94.7</th><th>95.8</th><th>96.8</th><th>95.7</th><th>1.1</th></dl<>	1.25	1.2	94.7	95.8	96.8	95.7	1.1
44 Ca	0.55	1.25	1.725	91.7	94.7	95.3	93.9	2.0
51 V	2.75	12.5	16	106.8	105.0	104.5	105.4	1.1
52 Cr	65	12.5	77.5	95.1	95.8	103.2	98.0	4.6
55 Mn	385.475	125	511.85	95.3	104.0	103.8	101.1	4.9
56 Fe	7.375	1.25	8.64	98.6	102.5	103.5	101.5	2.5
59 Co	41.05	125	173.18	103.3	106.1	107.8	105.7	2.2
60 Ni	11	1.25	12.32	102.6	106.4	107.5	105.5	2.4
63 Cu	10.125	1.25	11.46	103.6	107.5	108.4	106.5	2.4
66 Zn	17.25	12.5	30	96.3	92.1	97.0	95.2	2.8
71 Ga	27.5	12.5	40	93.5	97.5	91.1	94.0	3.4
72 Ge	4.25	12.5	16.25	95.7	94.3	94.9	94.9	0.7
75 As	35	12.5	47.5	97.9	95.7	94.0	95.9	2.0
78 Se	5.75	12.5	17.25	91.4	92.7	93.7	92.6	1.3
85 Rb	1	12.5	12.25	91.7	91.7	90.9	91.4	0.5
88 Sr	4.25	12.5	15.75	91.7	90.4	91.8	91.3	0.8
90 Zr	8.75	12.5	20.25	92.5	90.7	91.7	91.6	1.0
93 Nb	27.5	12.5	40	102.9	98.4	100.0	100.4	2.3
95 Mo	1.75	12.5	13.5	94.7	93.4	92.8	93.6	1.1
101 Ru	<dl< td=""><td>12.5</td><td>11.5</td><td>91.7</td><td>91.2</td><td>91.0</td><td>91.3</td><td>0.4</td></dl<>	12.5	11.5	91.7	91.2	91.0	91.3	0.4
103 Rh	<dl< td=""><td>12.5</td><td>12.25</td><td>97.7</td><td>96.8</td><td>96.8</td><td>97.1</td><td>0.5</td></dl<>	12.5	12.25	97.7	96.8	96.8	97.1	0.5
105 Pd	<dl< td=""><td>12.5</td><td>11.75</td><td>95.0</td><td>93.0</td><td>93.4</td><td>93.8</td><td>1.1</td></dl<>	12.5	11.75	95.0	93.0	93.4	93.8	1.1
107 Ag	<dl< td=""><td>12.5</td><td>12.25</td><td>97.5</td><td>96.9</td><td>96.8</td><td>97.1</td><td>0.4</td></dl<>	12.5	12.25	97.5	96.9	96.8	97.1	0.4
111 Cd	<dl< td=""><td>12.5</td><td>13</td><td>103.6</td><td>102.3</td><td>103.2</td><td>103.0</td><td>0.7</td></dl<>	12.5	13	103.6	102.3	103.2	103.0	0.7
118 Sn	117.5	12.5	130	103.8	92.8	90.0	95.6	/./
121 Sb	3.5	12.5	15.25	94.9	93.8	93.7	94.1	0.7
125 Te	<dl< td=""><td>12.5</td><td>11.75</td><td>95.5</td><td>91.6</td><td>94.8</td><td>94.0</td><td>2.2</td></dl<>	12.5	11.75	95.5	91.6	94.8	94.0	2.2
133 US	<dl< td=""><td>12.5</td><td>12.25</td><td>90.9</td><td>90.4</td><td>90.8</td><td>90.7</td><td>0.3</td></dl<>	12.5	12.25	90.9	90.4	90.8	90.7	0.3
137 Ba	15	12.5	27.5	96.6	93.8	94.9	95.1	1.5
1/8 HI	<dl< td=""><td>12.5</td><td>11.5</td><td>94.1</td><td>92.8</td><td>94.2</td><td>93.7</td><td>0.8</td></dl<>	12.5	11.5	94.1	92.8	94.2	93.7	0.8
100 Ke		12.5	11.5	92.8	92.1	92.6	92.5	0.2
193 lr		12.5	12.5	99.4	98.8	99.0	99.1	0.3
193 PT		12.0	10.5	95.0	94.8	95.2	95.2	0.5
197 AU		12.5	17.5	96.9	100.9	102.2	100.0	2.8
202 Hg		1.8	1./0	92.4	90.1	90.7	95.1	2.5
Db*	107.5	12.0	12.0	100.1	99.2	100.0	100.0	1.5
22011	107.0 ZDI	10.5	11 5	01 5	90.0	02.0	01.7	0.0
238 U	SUL SUL	12.5	11.5	91.5	91.5	92.0	91./	0.3

表7. グラファイトサンプルAを3回に分けて調製した添加回収率の精度と正確度。太字の元素 (mg/L) を除くすべての濃度は µg/L 単位

元素	サンプル B							
	サンプル濃度	添加濃度	添加サンプルの			回収率(%)		
			濃度測定値(n=3)	添加サンプル	添加サンプル	添加サンプル	平均 (n=3)	% RSD
				繰り返し分析I	繰り返し分析 II	繰り返し分析 III		
9 Be	<dl< td=""><td>12.5</td><td>12</td><td>92.5</td><td>94.9</td><td>96.1</td><td>94.5</td><td>1.9</td></dl<>	12.5	12	92.5	94.9	96.1	94.5	1.9
11 B	40	12.5	51	96.5	93	90.8	93.4	3
23 Na	0.375	1.25	1.525	90.9	93.6	91.4	91.9	1.5
24 Mg	0.35	1.25	1.5	91.5	93.6	91.4	92.2	1.4
27 AI	7.825	1.25	9.15	104.8	105.4	104.5	104.9	0.5
31 P	2.525	1.25	3.7	95	94	94	94.3	0.6
34 S	<dl< th=""><th>1.25</th><th>1.25</th><th>98.9</th><th>101.8</th><th>99.1</th><th>99.9</th><th>1.6</th></dl<>	1.25	1.25	98.9	101.8	99.1	99.9	1.6
39 K	<dl< th=""><th>1.25</th><th>1.175</th><th>94.8</th><th>94.2</th><th>94</th><th>94.3</th><th>0.4</th></dl<>	1.25	1.175	94.8	94.2	94	94.3	0.4
44 Ca	<dl< td=""><td>1.25</td><td>1.225</td><td>98.8</td><td>97.8</td><td>97.3</td><td>98</td><td>0.7</td></dl<>	1.25	1.225	98.8	97.8	97.3	98	0.7
51 V	1.75	12.5	14.5	103.4	104	103.7	103.7	0.3
52 Cr	7.75	12.5	21.25	106.1	106.5	107	106.5	0.4
55 Mn	5.65	1.25	6.925	101.9	101.8	101.8	101.9	0
56 Fe	2.65	1.25	3.9	99.6	99.4	99.4	99.5	0.1
59 Co	396.575	125	514.075	93.3	97.8	90.9	94	3.7
60 Ni	5.35	1.25	6.525	95.5	90	93.2	92.9	3
63 Cu	6.475	1.25	7.675	95.3	100.3	93.2	96.3	3.8
66 Zn	65	12.5	//.5	91.7	92.3	95.6	93.2	2.3
71 Ga	2	12.5	14.5	98.5	98.1	98.8	98.5	0.3
72 Ge	1.75	12.5	14.5	102	103.6	104.5	103.4	1.2
75 AS	302.5	125	480	92.5	94.2	92.3	93	1.1
78 Se	3.25	12.5	10.25	103.5	09.5	104.8	104.3	0.7
00 Cr	<dl 07.5<="" td=""><td>12.5</td><td>12.5</td><td>90.1</td><td>96.5</td><td>90.3</td><td>90.3</td><td>1.7</td></dl>	12.5	12.5	90.1	96.5	90.3	90.3	1.7
00.74	27.5	12.5	40	97.8	96.I	94.0	96.2	1.7
90 ZI	4	12.5	12.25	103.7	103.3	103.3	104.0	0.9
93 ND	<dl 1<="" td=""><td>12.5</td><td>14.25</td><td>101.7</td><td>105.5</td><td>102</td><td>102.3</td><td>0.0</td></dl>	12.5	14.25	101.7	105.5	102	102.3	0.0
90 IVIO	- DI	12.5	10.75	104.0	102.1	103.7	101.0	0.7
101 RU		12.5	12.75	07.4	07.0	102.2	07.9	0.5
105 RH	<dl <di< td=""><td>12.5</td><td>12.23</td><td>97.4</td><td>97.9</td><td>95.6</td><td>97.0</td><td>0.4</td></di<></dl 	12.5	12.23	97.4	97.9	95.6	97.0	0.4
107 Ag	1 75	12.5	12	95	93.7	93.0	07.3	0.4
107 Ag	0.01	12.5	13	102.5	102.7	103.1	102.8	0.3
118 Sn	32.5	12.5	45	93.2	95.9	91.6	93.6	2.3
121 Sh	<di< td=""><td>12.5</td><td>13.5</td><td>104.8</td><td>105.2</td><td>104.9</td><td>105</td><td>0.2</td></di<>	12.5	13.5	104.8	105.2	104.9	105	0.2
125 Te	<di< td=""><td>12.5</td><td>12 75</td><td>103.6</td><td>100.3</td><td>101.2</td><td>101 7</td><td>1.7</td></di<>	12.5	12 75	103.6	100.3	101.2	101 7	1.7
133 Cs	<dl< td=""><td>12.5</td><td>12.25</td><td>98.2</td><td>98.9</td><td>98</td><td>98.3</td><td>0.5</td></dl<>	12.5	12.25	98.2	98.9	98	98.3	0.5
137 Ba	7.25	12.5	20.25	102.2	104	103.8	103.4	1
178 Hf	<dl< td=""><td>12.5</td><td>12.5</td><td>100.5</td><td>99</td><td>97.4</td><td>98.9</td><td>1.6</td></dl<>	12.5	12.5	100.5	99	97.4	98.9	1.6
185 Re	<dl< td=""><td>12.5</td><td>12.5</td><td>100.9</td><td>99.7</td><td>97.4</td><td>99.4</td><td>1.8</td></dl<>	12.5	12.5	100.9	99.7	97.4	99.4	1.8
193 lr	<dl< td=""><td>12.5</td><td>12.5</td><td>97.5</td><td>102.4</td><td>102.2</td><td>100.7</td><td>2.8</td></dl<>	12.5	12.5	97.5	102.4	102.2	100.7	2.8
195 Pt	<dl< td=""><td>12.5</td><td>12.25</td><td>99.1</td><td>98.5</td><td>97.4</td><td>98.4</td><td>0.9</td></dl<>	12.5	12.25	99.1	98.5	97.4	98.4	0.9
197 Au	<dl< td=""><td>12.5</td><td>13.25</td><td>99.8</td><td>102.3</td><td>100.9</td><td>101</td><td>1.2</td></dl<>	12.5	13.25	99.8	102.3	100.9	101	1.2
202 Hg	<dl< td=""><td>1.8</td><td>1.75</td><td>90.9</td><td>93.3</td><td>92.1</td><td>92.1</td><td>1.3</td></dl<>	1.8	1.75	90.9	93.3	92.1	92.1	1.3
205 TI	<dl< td=""><td>12.5</td><td>12.5</td><td>100.5</td><td>101.1</td><td>101.1</td><td>100.9</td><td>0.3</td></dl<>	12.5	12.5	100.5	101.1	101.1	100.9	0.3
Pb*	18	12.5	30	100.2	102.3	99.5	100.7	1.5
238 U	<dl< td=""><td>12.5</td><td>12</td><td>95.2</td><td>95.8</td><td>95.8</td><td>95.6</td><td>0.3</td></dl<>	12.5	12	95.2	95.8	95.8	95.6	0.3

表8. グラファイトサンプルBを3回に分けて調製した添加回収率の精度と正確度。太字の元素 (mg/L) を除くすべての濃度は µg/L 単位

結論

Agilent 7850 ICP-MS を使用して、リチウムイオン電池で使用されるグラファイトベースのアノード材料の王水分解試料中の 45 元素不純物(中国標準 GB/T 24533-2019 の分析成分を含む)を測定しました。酸ブランクでは低い検出限界が達成され、濃度範囲の広い複数の元素に対して優れた検量線の直線性が得られました。分解されたグラファイトサンプル、添加サンプル、QC 標準の拡張分析シーケンスを 10 時間にわたって測定し、ほぼすべての元素で <1 %、すべての元素で <5 % の最小ドリフトを得ました。

両方のグラファイトサンプルで、大半の汚染物質元素が低レベルで検出さ れました。一部の遷移金属、特に Mn、Fe、Co、Ni、Cu が、電池アノー ドとして使用する前および使用中にグラファイトを処理した結果、高レベ ルで存在していました。例えば、サンプル A では Mn が高濃度(固体グ ラファイト中 1.54%)で存在し、サンプル B では Co が高濃度(1.59%) で存在していました。測定された元素は、多くのメーカーにとって重要な ものであり、グラファイト材料の電気的および磁気的特性に影響を与える ため、低濃度で管理する必要があります。中国標準 GB/T 24533-2019 にリストされているすべての元素(汚染物質と有害な重金属の両方)が、 優れた精度(DL よりも高い場合)と正確な添加回収率で測定されまし た。2 つのサンプルそれぞれ 6 個の分解試料においても分析の精度は極 めて優れたもので、6 個の分解試料の繰り返し分析の RSD は約 1% 以 下でした。添加回収率の精度と正確度も優れており、3 つの別々の添加 サンプルの平均回収率は、多くの場合、真のスパイク量の ±5% 以内で あり、ほぼすべての元素で約 1%(n=3)の精度でした。 7850 ICP-MS を使用して得られた性能評価結果は、グラファイトベース の LIB アノード材料のルーチン分析をこの装置で行えることを示していま す。7850 は、優れた精度と正確度、既存の標準 ICP-OES 手法よりもは るかに低い検出限界を実現します。したがって7850 ICP-MS を用いれ ば、ICP-OES を使用した場合よりも低いレベルで汚染物質を管理するこ とが可能となり、より高性能なグラファイトアノード材料を開発しようとし ている LIB メーカーにとって実行可能な代替手段となります。

参考文献

- J. Asenbauer *et al.*, The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, *Sustainable Energy Fuels*, **2020**, 4, 5387–5416
- H. Zhang, Y. Yang, D. Ren *et al.*, Graphite as anode materials: Fundamental mechanism, recent progress and advances, *Energy Storage Materials*, 36, **2021**, 147–170
- 3. Ni Yingping, Feng Wenkun, Agilent 5110 ICP-OES を用いた グラファイトベース陽極中の元素不純物の測定<u>5991-9508JAJP</u>
- 4. GB/T 24533-2019 Graphite negative electrode materials for lithium ion battery

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE03248471

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2022 Printed in Japan, November 7, 2022 5994-5475JAJP

