

Agilent 8890/5977 GC/MSD を用いた キャニスターサンプリングによる環境大気中の 65 種類の揮発性有機化合物の分析

HJ 759-2023 標準の要件を完全に満たすスキャンおよび SIM モードの両方を用いたメソッド

著者

Youjuan Zhang and Yu-tian Xu Agilent Technologies (Shanghai) Co. Ltd.

Jun Lu Markes International Shanghai, China

概要

このアプリケーションノートでは、ガスサンプリングのためのキャニスターの使用について紹介します。 Agilent 5977 シングル四重極質量選択検出器 (MSD) および Markes のマルチガス熱脱着 (TD) を 組み合わせた Agilent 8890 ガスクロマトグラフ (GC) にサンプルを導入し、大気中または半導体 クリーンルーム中の揮発性有機化合物 (VOC) を分析しました。直線性、再現性、検出下限の結果は、 中国のメソッド HJ759-2023 の要件を完全に満たしました。このメソッドは、環境ラボおよび半導体 クリーンルームの両方で、リファレンスとして広く使用されています。65 種類すべての化合物の直線性 相関係数は 0.991 を超え、86 % の化合物で 0.999 を上回る値となりました。再現性の結果は、スキャン モードで 0.3 ~ 6.8 %、SIM モードでは 1.1 ~ 6.7 % でした。サンプル量は 300 mL で、検出下限は スキャンモードで 0.013 ~ 0.113 nmol/mol、SIM モードで 0.002 ~ 0.013 nmol/mol となりました。

はじめに

VOC は身近な有機汚染物質であり、非常に煩わしく有害で、環境に大き な影響を及ぼします。大気環境中の VOC の組成は複雑で、大気におけ る光化学スモッグの主な発生要因の 1 つです。VOC は国内外で研究対 象として注目されており、多数の国々が空気品質モニタリングのために一 連の規制を行っています。中国、欧州、米国、その他の地域において環境 中の VOC の測定は、都市、地域、または国の環境モニタリングステーショ ンだけでなく、一部の製造企業にとっても主要課題となっています。これ らの製造企業(ウェハメーカーなど)では、クリーンルーム内の VOC を 厳格に制御する必要があります。現在、半導体技術の急速な発展、チッ プ製造のナノメートルスケールへの進化に伴い、製造環境に対応する要 件が強化され続けています。クリーンルーム内にある分子レベルの大気汚 染物質を制御することがますます喫緊の課題となっています。 VOC は厳格 に管理する必要がある分子レベルの大気汚染物質の1つです。クリーン ルームにおける VOC の主な発生源には、内装の材料、設備の材料、洗浄 剤、屋外の空気などがあります。¹環境大気中の VOC 汚染物質は、半導 体ウェハ表面の汚染、接続ワイヤの腐食、製品品質を危うくするその他の 問題の原因となります。したがって、VOC 汚染物質は、ウェハの産業発 展と歩留まりに影響を及ぼす主要因となっています。

環境大気中の VOC の分析において、熱脱着ガスクロマトグラフィー /質量 分析 (TD-GC/MSD) は、環境モニタリングラボおよび半導体業界のクリー ンルームの両方で、主に検出のために使用されています。サンプルを採取 する一般的な方法は 2 つあります。1 つは、サンプルの捕集と濃縮に吸 着チューブを使用し、TD-GC/MSD システムによる分析を行う方法です。 HJ 734-2014² メソッドでは、24 種類の VOC を検出するために、吸着 チューブと TD-GC/MSD を使用することが規定されています。Markes International は HJ734 メソッドに基づくアプリケーションノートを公開 しており、その中で、吸着チューブサンプリングメソッドを使用して得られ た性能結果が優れていることを明らかにしています。³ 代替メソッドでは サンプル採取のために事前に真空にしたキャニスターを使用し、低温濃 縮により予備濃縮を行います。HJ759-20234 標準では、サンプリングに キャニスターを使用し、環境大気中の 65 種類の VOC を同定するメソッド について詳しく説明しています。 この研究ではリファレンスとして HJ759-2023 メソッドを使用し、キャニ スターサンプリングにより 65 種類の VOC の定性/定量分析を実施します。 優れた直線性、高い精度、優れた再現性の結果が実証され、流路全体の 不活性度、高い感度、TD-GC/MSD システム全体の耐久性が示されました。

実験方法

この研究は、8890 GC と電子イオン化 (EI) イオン源付き 5977 シングル 四重極 GC/MSD を組み合わせて実施しました。Markes のマルチガス 熱脱着サンプル導入/濃縮システムを使用し、次の 3 つのモジュールを 用いました:

- CIA Advantage-xr (CIA):キャニスターオートサンプラ
- Kori-xr:水分除去モジュール
- Unity-xr:加熱脱着装置

最初に、CIA によって Unity トラップに 3 種類の内部標準(ISTD)を 導入しました。次にサンプルを加熱トランスファーライン経由で CIA Advantage を通して Kori に送り、水分を除去しました。最後にサンプル を Unity のフォーカシングコールドトラップに導入し、濃縮を行いました。 最終的に Unity トラップを高温で脱着し、65 種類の VOC と 3 種類の ISTD をすべて GC/MSD に入れて分析を行いました。図 1 は、複合シス テムの流路を示しています。表 1 と 2 は、システムで使用した機器条件 と消耗品をまとめたものです。

図 1. Markes TD と Agilent 8890/5977 GC/MSD システムの流路図

表 1. TD パラメータ

パラメータ	設定値							
操史	マルチガス UNITY-xr、 マルチガス CIA							
1/26 that	Advantage xr、Kori-xr							
コールドトラップ	Markes HJ 759 (部品番号 U-HJ759-KXR)							
	一般							
流路温度	120 °C							
サンプリングライン温度	120 °C							
プレサンプリング								
サンプルのパージ時間	0.1 分							
サンプルのパージフロー	50 mL/min							
内部標準容量	30 mL							
	サンプリング							
サンプル量	30 ~ 300 mL							
サンプル流量	20、50 mL/min							
サンプ	プリング後のパージ							
サンプリング後のパージ時間	4分							
サンプリング後のパージフロー	50 mL/min							
CIA サンプリング後のパージフロー	50 mL/min							
	Kori 設定							
Kori トラップ低	-30 °C							
Kori トラップ高	300 °C							
	トラップ設定							
トラップパージ時間	1分							
昇温したトラップパージ温度	10 °C							
トラップパージ流量	50 mL/min							
トラップ低温	-25 ℃							
トラップ高温	250 °C							
トラップ脱着時間	3分							
脱着スプリット流量	2 mL/min							

表 2. GC 分析条件

パラメータ	設定値				
	Agilent 8890 GC				
カラム	Agilent DB-624 UI、60 m × 0.25 mm、1.4 μm (部品番号 122-1364 UI)				
キャリアガス	ヘリウム、定流量、1 mL/min				
オーブンプログラム	35 ℃ (5 分間)、5 ℃ /min で 150 ℃まで昇温(7 分間)、 10 ℃ /min で 200 ℃まで昇温(4 分間)				
Agilent 5977 MSD					
イオン源温度	230 ℃				
四重極温度	150 °C				
チューニングファイル	Atune.u				
測定タイプ	スキャン/SIM、 m/z スキャン範囲 35 ~ 500				
ゲイン係数	1				
エクストラクタレンズ	6 mm				

この研究で用いた標準ガスは Zhongce Standards Technology Co., Ltd. (中国・成都) から購入しました。1 本の容器に、65 種類の VOC の 混合標準 (それぞれ濃度は約 1 µmol/mol) が入っています。もう一方の 容器には 4 種類の化合物が入っています。そのうち 3 種類は ISTD (ブロ モクロロメタン: ISTD 1、1,4-ジフルオロベンゼン: ISTD 2、クロロベ ンゼン-d₅: ISTD 3)、4 つ目の化合物は 4-ブロモベンゼン (BFB) です。 濃度はすべておよそ 1 µmol/mol です。システム全体、特に質量分析計 が適切な条件で動作しているかどうかを確認するために、チューニング評 価中、注入のために BFB が必要でした。これらの 2 本の標準ガス容器に はどちらも、バランスガスとして窒素を使用しました。

65 種類の VOC 標準ガスの調製

検量線を作成する前に、1 µmol/mol の標準ガスをそれぞれ 0.5、5、 20 nmol/mol に希釈し、キャニスターで保管しました。HJ 759 メソッド の要件に従って、実際のサンプルを可能な限りシミュレートするため、標 準ガスも加湿する必要がありました。最終希釈後のキャニスター内の 標準ガスの相対湿度は 50 % でした。したがって、J 759 の付録 B に 記載の加湿メソッドに準じて、キャニスターの洗浄後、キャニスターに 特定の量の脱イオン水を追加しました。次に、希釈ガスとして高純度の 窒素(99.999 % 純度)を使用した静的希釈システムにより、1 µmol/ mol の標準ガスをターゲット濃度に希釈しました。表 3 と表 4 に示す とおり、スキャンモードのターゲット濃度はそれぞれ 5 nmol/mol と 20 nmol/mol、SIM モードのターゲット濃度はそれぞれ 0.5 nmol/mol と 5 nmol/mol でした。複数の濃度のキャリブレーションレベルを得るた めに、CIA によって量を変えて注入しました。

表 3. スキャンモードのための 65 種	類の VOC キャリブレーション混合物の調製
------------------------------	------------------------

スキャン	5	nmol/m	ol	20 nmol/mol			
サンプル量(mL)	30	60	150	60	150	300	
キャリブレーションレベル (nmol/mol)	0.5	1	2.5	4	10	20	

表 4. SIM モードのための 65 種類の VOC キャリブレーション混合物の調製

SIM	0.	5 nmol/n	nol	5 nmol/mol			
サンプル量(mL)	60	150	300	60	150	300	
キャリブレーションレベル (nmol/mol)	0.1	0.25	0.5	1	2.5	5	

ISTD ガスの調製

1 µmol/mol の ISTD を高純度窒素により直接 50 nmol/mol に希釈し ました。HJ 759 メソッドに細説されているように、システムに送られたサン プル量は 300 mL でした。CIA を通じて 30 mL をシステムに導入するこ とにより、300 mL のサンプルに配分された内部標準の対応する濃度は 5 nmol/mol でした。

HJ 759 メソッドではサンプル採取のためにキャニスターが必要です。 65 種類の VOC の一部は高極性で、吸着されやすかったため、不活性化 キャニスターを使用する必要がありました。さらに、極性化合物または高 沸点化合物が内部で吸着するのを低減するため、キャニスターを念入り に洗浄する必要がありました。高純度窒素が充填されたキャニスターを 用意することが推奨されます。サンプルの各バッチを分析する前に、キャ ニスターとシステムのブランクチェックを実行する必要があります。

結果と考察

TD パラメータの最適化

実際のサンプルの湿度をシミュレートするために、調製の間に標準ガスに 50%の加湿処理を施しました。UNITY-CIA Advantage-xr Kori-xr 機器は ガス相サンプルの湿度を効率的に処理する Dry Focus3 を採用すること で、GC カラムの寿命を延ばし、MSD のイオン源洗浄の頻度を低減しつつ、 堅牢な結果を確保しました。

Dry Focus3 は、高湿度サンプルの水分除去、フォーカシング、注入の ための3 段階の自動プロセスです。図2 に3 段階プロセスを示します。 ステップ2ではコールドトラップの温度プログラムパージを利用し、HJ 759 で必要とされる強い吸着剤に貯まった水分を除去します。少量の水分でも、 質量分析計のイオン化効率が影響を受け、水と共溶出するターゲット化

図 2. 概略図は Dry Focus3 の全プロセスを示しています。

合物に非常に大きな影響をもたらす可能性があります。この研究では、 -25 ℃での成分トラップによりターゲット化合物の高感度検出を実現する とともに、パージ時の温度を最適化することで水分を除去しました。パー ジ温度がより高く、時間がより長くなるほど、より早く揮発性の高いター ゲット化合物はブレークスルーを生じ始め、Unity トラップから消失し ます。パージ温度が低すぎたり、時間が短すぎたりすると、有効な水分除 去効果が得られません。図 3 と図 4 に、10 ℃の最適化された昇温パー ジ条件と、1 分間の 50 mL/min のパージフローを示します。これにより、 揮発性の高いターゲット成分のリテンションと、有効な水分除去のバランス が図られます。

図 3. 「トラップパージ時に温度を上げる」 機能あり/なしでの、スキャンモード (m/z 35 からスキャン) でのクロマトグラムの比較。水分チェックのために、 m/z 12 からスキャンを 実施

	Trap settings	
	Desorb trap	
ĺ	Trap purge time (min) Enable elevated trap purge temperature	1.0
	Elevated trap purge temperature (°C)	
	Trap purge flow (mL/min)	50
	Trap low temperature (°C)	-25
	Trap heating rate (°C/s)	MAX 🗸 🖯

図 4. TD ソフトウェアで「トラップパージ時に温度を上げる」 機能を有効にします。

スキャンモードの結果

ターゲット定量分析と、未知の化合物の定性分析の両方のために、スキャ ンモードを使用します。ライブラリ検索機能を用いて、未知のピークの質 量スペクトルをライブラリの標準の質量スペクトルと比較し、簡便な定性 結果を得ることができます。 図 5 は、 65 種類の VOC に対し、 フルスキャン モードで取得した 2.5 nmol/mol 標準ガスのトータルイオンクロマトグラム (TIC)です。すべての化合物ピークはシャープで左右対称です。1,4-ジ オキサンやイソプロパノールなど、一部の極性化合物では、サンプルの相 対湿度が 50 % の場合でも優れたピーク形状が維持されます。ほとんど の化合物はベースライン分離を達成しましたが、少数の化合物は共溶出 しました。定量中に異なる定量イオンを選択できるため、定性/定量分析 の精度には影響しません。図 5 には、65 種類の VOC および 3 種類の ISTD に加え、BFB ピークも示されています。これは、BFB が標準ガス 容器で3種類の内部標準物質により調製されたためです。したがってス キャンモードで BFB のピークを確認できます。反対に、SIM モードでは、 ターゲット物質と ISTD 物質のイオンのみが採取されたため、SIM モード の TIC で BFB のピークは確認できません (図 7)。

0.5 nmol/mol から 20 nmol/mol までの 6 つの濃度に対し、ISTD メソッ ドに基づき検量線を作成しました。すべての化合物で最良の直線性を得る ために、6 mm ドローアウトプレートを使用しました。各キャリブレーション レベルで、ISTD メソッドにより平均相対レスポンス係数(RRF)を求め ました。パーセント相対標準偏差(%RSD)の RRF は分析対象のすべて の物質で 28 % 未満でした。線形曲線の近似に関して、各成分の相関係 数(R²)は 0.994 以上であることがわかりました(図 5)。

再現性は、0.5 nmol/mol(低)、2.5 nmol/mol(中)、10 nmol/mol(高)濃度で、8 回の繰り返し分析から面積の相対標準偏差(RSD)を計算し、 $評価しました(図6)。表5は、総体的な面積%RSDが<math>0.3\% \sim 6.8\%$ で あったことを示しています。中濃度/高濃度の場合、ほとんどの化合物の 面積%RSDは3%未満でした。低濃度では、小さいピーク面積により、 RSDは若干大きくなり、ほとんどの化合物の%RSDは3%から4%の 範囲になりました。

この研究では、0.5 nmol/mol の標準ガスを用いて、8 回の繰り返し試 験を実施し、メソッド検出下限(MDL)を算出しました。個々の化合物 の濃度を線形方程式で計算して、その後、標準偏差を計算し、3 を掛け て MDL を求めました。その結果、65 種類の VOC の検出下限は、0.013 ~ 0.113 nmol/mol の範囲でした(表 5)。

図 5. スキャンモードにおける濃度 2.5 nmol/mol での 65 種類の VOC のトータルイオンクロマトグラム

				RRF		面積 %RSD		MDL		
No.	物質名	RT	m/z	%RSD	CF R2	低	中	高	(nmol/mol)	ISTD
1	プロペン	4.813	41	5.7	0.9984	1.9	1.5	1.5	0.039	1
2	ジクロロジフルオロメタン	4.929	85	3.1	0.9996	2.9	0.9	0.6	0.032	1
3	1,1,2,2-テトラフルオロ-1,2-ジクロロエタン	5.36	134.9	3.3	0.9993	2.7	1.2	0.7	0.041	1
4	クロロメタン	5.515	50	8.1	0.9956	6.3	2.5	2.8	0.113	1
5	クロロエテン	5.921	62	3.4	0.9996	2.7	0.8	0.9	0.040	1
6	1,3-ブタジエン	6.045	54	4.3	0.9997	5.1	1.9	1.7	0.072	1
7	ブロモメタン	7.00	94	7.2	0.9941	5.1	0.8	1.1	0.069	1
8	クロロエタン	7.331	64	3.6	0.9997	4.4	1.7	0.5	0.056	1
9	トリクロロフルオロメタン	8.134	101	3.6	0.9995	2.3	0.3	0.6	0.039	1
10	アクロレイン	9.325	56.1	8.6	0.9997	6.6	2	2.2	0.067	1
11	1,1-ジクロロエチレン	9.63	96	5.0	0.9997	3.6	1.4	1.4	0.050	1
12	1,2,2-トリフルオロ-1,1,2-トリクロロエタン	9.671	150.9	2.8	0.9995	2.9	1.3	1.3	0.047	1
13	アセトン	9.762	58	2.2	0.9999	4.1	1.5	2	0.064	1
14	イソプロピルアルコール	10.187	45	7.5	0.9988	4.6	1.3	1.9	0.056	1
15	二硫化炭素	10.236	76	3.1	0.9997	2	0.8	0.6	0.023	1
16	ジクロロメタン	10.937	84	3.8	0.9996	3.4	1.6	1	0.041	1
17	trans-1,2-ジクロロエチレン	11.693	96	4.3	0.9996	5.1	1.6	1.3	0.072	1
18	メチル-tert-ブチルエーテル	11.73	73	9.0	0.9997	3.1	1.6	2.2	0.033	1
19	n-ヘキサン	12.435	57	6.1	0.9997	2.8	1.4	1.6	0.033	1
20	1,1-ジクロロエタン	12.766	63	3.9	0.9995	2	1.4	1	0.039	1
21	酢酸ビニル	12.9	43	13.2	0.9996	4.3	1.3	2.2	0.044	1
22	cis-1,2-ジクロロエチレン	14.246	96	4.1	0.9997	2	1.3	1.7	0.027	1
23	2-ブタノン	14.272	72	8.6	0.9997	6.8	1.3	2.3	0.068	1
24	酢酸エチル	14.433	43	10.1	0.9998	5.3	2	1.4	0.059	1
25	トリクロロメタン	15.02	83	4.5	0.9998	1.7	0.7	0.8	0.041	2
26	テトラヒドロフラン	15.038	72	12.3	0.9997	5.8	1.3	1.7	0.058	1
27	1,1,1-トリクロロエタン	15.548	97	3.1	0.9998	3.3	0.7	2.4	0.048	2
28	シクロヘキサン	15.721	84	5.9	0.9997	2.8	1.9	3.3	0.027	2
29	四塩化炭素	15.983	116.9	3.3	0.9997	3	1.1	3.2	0.031	2
30	1,2-ジクロロエタン	16.471	62	4.4	0.9999	3.1	1.2	1	0.048	2
31	ベンゼン	16.471	78	5.3	0.9998	1.2	0.5	1.6	0.031	2
32	ヘプタン	17.117	43	6.8	0.9998	4.1	1.4	2.1	0.046	2
33	トリクロロエチレン	18.081	130	5.9	0.9999	2.9	1.1	1.6	0.042	2
34	1,2-ジクロロプロパン	18.627	63	2.7	0.9999	3.3	1.7	1.7	0.039	2
35	メタクリル酸メチル	18.888	100.1	17.4	0.9991	4.8	1.7	2.8	0.058	2
36	1,4-ジオキサン	18.995	88	11.3	0.9951	3.5	2.3	2	0.058	2
37	ブロモジクロロメタン	19.296	83	4.0	0.9999	3.1	1.1	1	0.041	2
38	cis-1,3-ジクロロプロペン	20.459	75	6.7	0.9996	3	0.7	2	0.045	2
39	ジメチルジスルフィド	20.709	94	17.2	0.9978	3.8	2.1	3.1	0.027	2
40	メチルイソブチルケトン	20.839	43	8.6	0.9991	3.2	1.7	2.1	0.040	2
41	トルエン	21.376	91	4.4	0.9999	1.4	1.1	1.7	0.027	2
42	trans-1,3-ジクロロプロペン	21.882	75	8.5	0.9997	2.9	1.2	2.2	0.036	2
43	1,1,2-トリクロロエタン	22.38	96.9	3.2	0.9997	1.7	1.1	1.4	0.032	2
44	テトラクロロエチレン	22.863	165.8	5.6	0.9997	1.6	0.8	1.7	0.046	2
45	2-ヘキサノン	23.042	43	12.4	0.9989	3.7	1.2	1.9	0.047	2

表 5. スキャンモードでの 65 種類の VOC の直線性、再現性、MDL の結果(次のページに続く)

				RRF		面積 %RSD		MDL		
No.	物質名	RT	m/z	%RSD	CF R2	低	中	高	(nmol/mol)	ISTD
46	ジブロモクロロメタン	23.467	128.8	4.5	0.9998	1.7	1	1.6	0.029	2
47	1,2-ジブロモエタン	23.815	106.9	3.9	0.9999	2.6	1.8	1.6	0.041	2
48	クロロベンゼン	25.169	112	3.2	0.9999	1.4	1.2	1.6	0.019	3
49	エチルベンゼン	25.455	91	6.9	0.9998	2.5	0.8	1.7	0.020	3
50,51	m,p-キシレン	25.778	91	8.9	0.9998	2.4	0.8	1.4	0.013	3
52	0-キシレン	26.898	91.1	9.3	0.9998	3.1	0.8	2.1	0.027	3
53	スチレン	26.924	104	15.3	0.9997	3.4	0.4	1.4	0.027	3
54	ブロモホルム	27.449	173	6.2	0.9997	3.2	1.3	2.1	0.036	3
55	1,1,2,2-テトラクロロエタン	28.735	83	6.4	0.9997	3.3	1.1	2.4	0.034	3
56	p-エチルトルエン	29.528	105.1	17.6	0.9996	1.8	1.7	2.2	0.016	3
57	1,3,5-トリメチルベンゼン	29.729	105.1	19.6	0.9997	3.1	1.7	1.9	0.024	3
58	1,2,4-トリメチルベンゼン	31.029	105	22.3	0.9996	4.7	1.3	2.3	0.029	3
59	1,3-ジクロロベンゼン	32.115	146	8.4	0.9998	3.4	1	1.8	0.032	3
60	1,4-ジクロロベンゼン	32.46	146	9.3	0.9998	3.8	0.9	2.2	0.032	3
61	塩化ベンジル	32.984	91	27.8	0.9988	3.2	1.4	2.6	0.024	3
62	1,2-ジクロロベンゼン	34.065	145.9	10.3	0.9997	3.6	0.6	2.4	0.036	3
63	1,2,4-トリクロロベンゼン	40.312	179.9	11.4	0.9992	4.7	2.6	2.3	0.054	3
64	ヘキサクロロブタジエン	40.908	224.8	11.3	0.9996	4.6	1.4	1.6	0.046	3
65	ナフタレン	41.101	128	22.4	0.9986	4.9	2.4	2	0.042	3

SIM モードの結果

SIM モードでは指定の化合物リストを使用して、高感度ターゲット分析を 実施します。SIM モードでは、事前にターゲット物質をグループ化し、各 ターゲット物質の特徴的なイオンを入力して、測定メソッドを確立する必 要があります。図7は、SIM モードで収集された1 nmol/mol 標準ガス のTIC です。対象のイオンのみが採取されるため、クロマトグラム上に ターゲット物質のピークのみが現れます。したがって、スキャンモードと 比較して、SIM モードで収集されたデータは干渉ピークが少なく、BFB ピークは確認できません。スキャンモードデータと同様に、SIM モード でもすべての化合物ピークでシャープで対称的なピークが得られ、TD/ GC/MSD システム全体の優れた不活性度と、TD から GC までの高速注 入が実証されています。 SIM モードで、包括的なメソッド評価も実施しました。SIM モードの直線 範囲は、スキャンモードでの濃度よりも約5倍低く、0.1 ~ 5 nmol/mol で す。この直線範囲内で、分析したすべての成分の RRF %RSD は 22 % 未 満でした。84 % の化合物の相関係数値は 0.999 を上回り、その他 16 % の化合物はすべて 0.99 を上回りました。これは、メソッド HJ759-2023 で 規定されている要件を完全に満たします。メソッドの精度と機器の安定性 を検証するために、0.1 nmol/mol (低)、0.5 nmol/mol (中)、2.5 nmol/ mol (高)の濃度の標準ガスを 8 回測定しました。すべての化合物のピー ク面積 %RSD は 7 % 未満、平均 %RSD 値は 2.3 % でした (図 8)。 MDL の決定には、0.1 nmol/mol 標準ガスを 8 回繰り返し分析しました。 SIM モードで、すべての化合物の MDL 値は 0.002 ~ 0.013 nmol/mol の範囲で、このシステムが超高感度であることが示されています。すべて の結果を表 6 に示します。

図7. SIM モードにおける濃度1 nmol/mol での65 種類の VOC のトータルイオンクロマトグラム

			RRF		面積 %RSD		MDL		
No.	物質名	RT	%RSD	CF2	低	中	高	(nmol/mol)	ISTD
1	プロペン	4.618	5.0	0.9999	1.9	2.4	2.4	0.004	1
2	ジクロロジフルオロメタン	4.729	3.1	0.9999	1.6	1.8	1.9	0.002	1
3	1,1,2,2-テトラフルオロ-1,2-ジクロロエタン	5.171	2.5	0.9999	1.7	1.9	2.2	0.002	1
4	クロロメタン	5.46	16.0	0.9989	4.1	4.5	3.2	0.013	1
5	クロロエテン	5.725	2.8	0.9999	1.1	2.1	1.9	0.003	1
6	1,3-ブタジエン	5.865	2.9	0.9998	2.1	2.1	2.6	0.004	1
7	ブロモメタン	6.824	7.0	0.9998	1.9	6.7	1.6	0.004	1
8	クロロエタン	7.149	3.0	0.9998	3.4	2	2.3	0.007	1
9	トリクロロフルオロメタン	7.947	3.0	0.9998	1.8	1.9	1.9	0.003	1
10	アクロレイン	9.202	10.1	0.9998	3.1	1.7	3.1	0.012	1
11	1,1-ジクロロエチレン	9.5	3.4	0.9999	2	2.2	2.7	0.003	1
12	1,2,2-トリフルオロ-1,1,2-トリクロロエタン	9.532	2.9	0.9997	1.7	1.8	1.8	0.004	1
13	アセトン	9.654	21.6	0.9999	2.6	2.9	2.5	0.009	1
14	イソプロピルアルコール	10.081	9.3	0.9981	1.9	2.6	2.4	0.006	1
15	二硫化炭素	10.105	5.8	0.9999	2	1.6	1.9	0.006	1
16	ジクロロメタン	10.824	7.6	0.9998	1.1	1.5	1.9	0.004	1
17	trans-1,2-ジクロロエチレン	11.597	3.5	0.9999	1.6	2	2.3	0.003	1
18	メチル-tert-ブチルエーテル	11.648	5.5	0.9996	1.4	2	3.2	0.003	1
19	n-ヘキサン	12.35	18.5	0.9999	1.7	2.5	3.3	0.007	1
20	1,1-ジクロロエタン	12.689	4.0	0.9996	1.5	1.9	2.1	0.002	1
21	酢酸ビニル	12.827	7.9	0.9996	3.4	2.5	3.6	0.008	1
22	cis-1,2-ジクロロエチレン	14.177	4.0	0.9998	1.2	2.1	2.4	0.003	1
23	2-ブタノン	14.221	5.1	0.9996	3.5	2.1	2.7	0.011	1
24	酢酸エチル	14.384	5.7	0.9997	1.6	1.9	2.5	0.005	1
25	トリクロロメタン	14.966	3.4	0.9997	1.3	1.9	1.9	0.003	2

表 6. SIM モードでの 65 種類の VOC の直線性、再現性、MDL の結果(次のページに続く)

			RRF		面積 %RSD			MDL	
No.	物質名	RT	%RSD	CF2	低	中	高	(nmol/mol)	ISTD
26	テトラヒドロフラン	15.005	5.7	0.9996	2.2	2.7	2.7	0.007	1
27	1,1,1-トリクロロエタン	15.495	2.5	0.9999	1.8	2.2	1.9	0.005	2
28	シクロヘキサン	15.665	3.5	0.9999	2.1	2.6	3.1	0.004	2
29	四塩化炭素	15.932	2.7	0.9998	2	2.5	1.6	0.005	2
30	1,2-ジクロロエタン	16.428	8.1	0.9998	2.5	1.9	2	0.007	2
31	ベンゼン	16.428	6.0	0.9996	2.2	2.4	2.2	0.005	2
32	ヘプタン	17.079	3.0	0.9997	2.1	2.6	3.3	0.003	2
33	トリクロロエチレン	18.041	3.4	0.9998	1.4	2.2	2	0.003	2
34	1,2-ジクロロプロパン	18.594	3.9	0.9998	1.7	2.2	2.1	0.004	2
35	メタクリル酸メチル	18.867	6.7	0.9986	2	2.5	2.9	0.003	2
36	1,4-ジオキサン	18.981	15.3	0.9913	2.7	2.4	1.7	0.008	2
37	ブロモジクロロメタン	19.265	3.4	0.9999	1.7	2.2	1.6	0.004	2
38	cis-1,3-ジクロロプロペン	20.437	4.8	0.9998	1.9	2.4	2.6	0.002	2
39	ジメチルジスルフィド	20.684	10.0	0.9980	2.3	2.7	2.9	0.003	2
40	メチルイソブチルケトン	20.83	9.1	0.9992	2.4	3.1	2.1	0.004	2
41	トルエン	21.36	5.5	0.9999	2	2.2	2.5	0.004	2
42	trans-1,3-ジクロロプロペン	21.87	6.2	0.9998	2.3	2.5	2.5	0.005	2
43	1,1,2-トリクロロエタン	22.362	4.5	0.9997	1.8	2.2	1.7	0.005	2
44	テトラクロロエチレン	22.851	4.6	0.9997	1.3	2	1.7	0.003	2
45	2-ヘキサノン	23.04	9.7	0.9993	3.1	3.1	2.1	0.007	2
46	ジブロモクロロメタン	23.45	4.1	0.9999	1.3	2	1.5	0.003	2
47	1,2-ジブロモエタン	23.801	4.1	0.9999	1.4	2.3	1.8	0.003	2
48	クロロベンゼン	25.161	4.4	0.9998	1.2	2.5	2.1	0.003	3
49	エチルベンゼン	25.447	5.4	0.9998	2.5	2.7	2.6	0.005	3
50,51	m,p-キシレン	25.767	9.2	0.9997	2.8	2.7	2.3	0.004	3
52	0-キシレン	26.897	8.9	0.9996	2.8	2.8	2.6	0.005	3
53	スチレン	26.921	13.1	0.9992	2.9	2.7	2.3	0.004	3
54	ブロモホルム	27.445	5.2	0.9999	2	2.2	1.6	0.004	3
55	1,1,2,2-テトラクロロエタン	28.731	3.3	0.9999	1.6	2.2	1.7	0.003	3
56	p-エチルトルエン	29.528	11.7	0.9987	2.9	2.5	2.7	0.004	3
57	1,3,5-トリメチルベンゼン	29.73	14.4	0.9988	3	2.5	2.5	0.005	3
58	1,2,4-トリメチルベンゼン	31.03	13.4	0.9978	2.5	2.6	2.8	0.004	3
59	1,3-ジクロロベンゼン	32.113	6.6	0.9999	2.3	2.2	2.2	0.003	3
60	1,4-ジクロロベンゼン	32.459	7.6	0.9999	3	2.1	2.4	0.005	3
61	塩化ベンジル	32.993	13.4	0.9978	2.7	2.8	2.6	0.004	3
62	1,2-ジクロロベンゼン	34.07	5.9	0.9999	3.1	2.7	2.5	0.006	3
63	1,2,4-トリクロロベンゼン	40.318	12.0	0.9992	5.1	3	3.1	0.013	3
64	ヘキサクロロブタジエン	40.912	7.4	0.9997	2.5	2.8	2.3	0.006	3
65	ナフタレン	41.107	16.5	0.9978	5.8	2.6	4	0.012	3

図9に、スキャンおよびSIM モードで計算した MDL 結果を示します。 スキャンモードと比較し、SIM モードの感度結果は約10倍向上しました。 これは予想と一致しています。したがって、分析で既知の微量成分を定 量する場合、より優れた感度を得るためにSIM は良い選択肢となります。

図9. スキャンモードおよび SIM モードにおける 65 種類の VOC の MDL 結果

結論

マルチガス CIA Advantage-xr TD と組み合わせた Agilent 8890/5977 GC/MSD システムは、環境大気中の 65 種類の VOC 分析のための堅牢 な分析手順を実現します。このシステムは、大気質モニタリングラボおよび 半導体クリーンルームの両方において、複数の VOC の同時分析のため の、有効性と感度の優れたソリューションとなります。さまざまなアプリ ケーション要件に基づいて、スキャンまたは SIM モードを選択してデータ を収集できることから、アジレント機器の柔軟性が示されています。スキャ ンおよび SIM モードの両方で、このシステムに基づき優れた分析性能が 達成され、メソッド HJ 759-2023 に記載の要件に完全に対応できます。

参考文献

- 1. GB/T25915.8-2021 Cleanrooms and Associated Controlled Environments Part 8: Classification of Air Cleanliness by Chemical Concentration (ACC).
- HJ 734-2014 Stationary Source Emission Determination of Volatile Organic Compounds–Sorbent Adsorption and Thermal Desorption Gas Chromatography Mass Spectrometry Method.
- 3. The Monitoring of Organic Waste Gas VOCs Emitted by Fixed Pollution Sources is Sampled With Adsorption Tubes and Analyzed by Thermal Desorption/Gas Chromatography-Mass Spectrometry Method, Which Complies with the Chinese Environmental Protection Standard HJ 734-2014.
- HJ 759-2023 Determination of 65 Volatile Organic Compounds–Collected in Canisters and Analyzed By Gas Chromatography/Mass Spectrometry.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE-000635

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2024, 2025 Printed in Japan, February 11, 2025 5994-7723JAJP

