環境

水素キャリアガスと Agilent HydroInert イオン源を用いた GC/MS による 半揮発性有機化合物の分析

著者

Angela Smith Henry, PhD Agilent Technologies, Inc.

概要

ガスクロマトグラフィー /質量分析 (GC/MS) は、環境マトリックス中の半揮発性有機化合物 (SVOC) の分析において重要な役割を果たしています。近年のヘリウム (He)の供給不足問題から、各機関は 水素 (H₂)キャリアガスの調査を積極的に行っていますが、多くの GC/MS 分析では感度が低下し、 イオン源で水素化または脱塩素化反応が起こります。Agilent HydroInert イオン源は、H₂キャリアガス を使用した場合でも、広いキャリブレーション範囲 (0.1 ~ 100 μg/mL)で分析でき、米国環境保護庁 (EPA) メソッド 8270 キャリブレーション基準を満たすことができます。

はじめに

GC/MS は、SVOC の分析に最適な分析手法とされています。政府の規制 機関は、環境および産業マトリックス中に存在する汚染物質として特定さ れた SVOC の測定のためのメソッドと性能基準を確立しています。例えば、 U.S. EPA メソッド 8270 (8270D および 8270E) には、GC/MS 分析に 適した固形廃棄物、土壌、空気、水抽出物中の 200 種類以上の化合物 のリストが記載されています^{1、2}。メソッド 8270 には、酸性、塩基性、 中性化合物の複数成分の SVOC や多環芳香族炭化水素 (PAH) が含まれ ています。また、このメソッドでは、SVOC を定量分析するための詳細な 仕様と要件も規定されています。

数年前からヘリウム (He) の確保について懸念されていましたが、近年、 水素 (H₂) などの代替キャリアガスへの移行についての関心が著しく高まっ ています。しかし、既存の MS システムでは、ニトロ化合物など一部の官 能基の水素化や過塩素化合物の脱塩素化の問題があり、これらの問題が トータルイオンクロマトグラム (TIC) のピークのマススペクトルを変え、化 合物の誤同定につながる可能性があります。Agilent 5977B Inert Plus GC/MSD 用に新たに設計されたエクストラクタイオン源は、これらの H₂ に関する問題に対処し、GC/MS における H₂ キャリアガスの性能を向上 させることができます。H₂ キャリアガスを用いた HydroInert イオン源は 質量スペクトルの忠実度を維持し、ユーザーは既存の He ベースの質量 スペクトルライブラリおよび定量メソッドを引き続き使用することができます。

このアプリケーションノートでは、ニトロ基やハロゲンなどの重要な官能基 を保持しながら、H₂ キャリアガスの使用を可能にする HydroInert イオン 源の能力を実証します。質量スペクトルの忠実度を維持することは、特に EPA メソッド 8270 のような環境分析において、GC/MS システムで H₂ キャリアガスを使用するための突破口となります。また、He キャリアガス 分析に近い感度を維持できる EP A8270 用のメソッドが開発され、多く の化合物を 0.1 ~ 100 μ g/mL の範囲でキャリブレーションでき、線形曲 線フィットを必要とする化合物は 20 % 未満です。

実験方法

酸性、塩基性、中性の化合物の代表的な混合物と、ニトロフェノール から PAH までのさまざまな化合物クラスで構成される混合物を生成する ため、119 種類のターゲット化合物とサロゲート化合物を含む標準原 液のセットを選択しました。ターゲット化合物の9つの標準原液は、濃度 2,000 μg/mL でした。これらの標準原液の部品番号は以下のとおり です。SVM-160、SVM-121、SVM-122、SVM-123、SVM-124、SVM-125、SVM-126-1、SVM-127、US-211。ピリジンは、純粋な標準を 1,000 µg/mL に希釈し、作業標準としました。サロゲート標準(部品番 号 ISM-332) には、表1に示すように、6 つの 2,000 µg/mL の化合物 が含まれていました。分析対象物の回収とキャリブレーションには、6種 類の重水素化 PAH (部品番号 ISM-560)の内部標準混合物を使用しま した。標準原液を混合してジクロロメタンで希釈し、200 µg/mL の分析 用標準を作製しました。次にこの分析用標準を希釈して、次の濃度、0.1、 0.2、0.5、0.8、1、2、5、10、20、35、50、75、100 μg/mL のキャリブレー ション標準用のターゲット化合物とサロゲート化合物を作成しました。内 部標準は、各キャリブレーション標準液に 40 µg/mL を添加しました。 表1は、実験で使用した化合物のリストです。表1の化合物番号はター ゲット化合物とサロゲート化合物の溶出順序に基づいています。内部標 準については溶出順ではなく、表の最後にまとめて記載しています。

ベンジジン、ペンタクロロフェノール、4,4'-ジクロロジフェニルトリクロロ エタン(4,4'-DDT)およびデカフルオロトリフェニルホスフィン(DFTPP) を混合したチューニング標準(部品番号 GCM-150)を 25 µg/mL に希 釈し、MS キャリブレーションおよびチューニング設定を得ました。

ジクロロメタンで抽出した土壌の複合混合物を EPA メソッド 8270 の分 析用に調製しました。この混合物は、ラボでよく使用される代表的なマト リックス残留物で、Pace Analytical (Mt. Juliet, TN) から調達したもの です。

表1.ターゲット化合物、サロゲート化合物、内部標準

No.	化合物	No.	化合物	No.	化合物
1	N-ニトロソジメチルアミン	43	4-クロロ-3-メチルフェノール	85	ペンタクロロフェノール
2	ピリジン	44	2-メチルナフタレン	86	ペンタクロロニトロベンゼン
3	2-ピコリン	45	ヘキサクロロシクロペンタジエン	87	プロピザミド
4	N-ニトロソ-N-メチルエチルアミン	46	1,2,4,5-テトラクロロベンゼン	88	ジノセブ
5	メタンスルホン酸メチル	47	2,4,6-トリクロロフェノール	89	ジスルホン
6	2-フルオロフェノール	48	2,4,5-トリクロロフェノール	90	フェナントレン
7	N-ニトロソジエチルアミン	49	2-フルオロビフェニル(サロゲート)	91	アントラセン
8	メタンスルホン酸エチル	50	2-クロロナフタレン	92	メチルパラチオン
9	フェノール-d ₆ (サロゲート)	51	1-クロロナフタレン	93	フタル酸ジブチル
10	フェノール	52	2-ニトロアニリン	94	パラチオン
11	アニリン	53	フタル酸ジメチル	95	4-ニトロキノリン-1-オキシド
12	ビス(2-クロロエチル)エーテル	54	2,6-ジニトロトルエン	96	フルオランテン
13	2-クロロフェノール	55	アセナフチレン	97	ベンジジン
14	1,3-ジクロロベンゼン	56	m-ニトロアニリン	98	ピレン
15	1,4-ジクロロベンゼン	57	アセナフテン	99	アラマイト
16	ベンジルアルコール	58	2,4-ジニトロフェノール	100	p-テルフェニル-d ₁₄ (サロゲート)
17	1,2-ジクロロベンゼン	59	4-ニトロフェノール	101	アラマイト II
18	2-メチルフェノール (o-クレゾール)	60	ペンタクロロベンゼン	102	p-ジメチルアミノアゾベンゼン
19	ビス(2 - クロロ - 1 - メチルエチル)エーテル	61	2,4-ジニトロトルエン	103	クロロベンジレート
20	1-ニトロソピロリジン	62	ジベンゾフラン	104	3,3'-ジメチルベンジジン
21	p- クレゾール	63	1-ナフタレンアミン	105	フタル酸ベンジルブチル
22	N-ニトロソジ-n-プロピルアミン	64	2,3,4,6-テトラクロロフェノール	106	3,3-ジクロロベンジジン
23	アセトフェノン	65	2-ナフタレンアミン	107	ベンゾ[a]アントラセン
24	4-ニトロソモルホリン	66	フタル酸ジエチル	108	クリセン
25	0-トルイジン	67	チオナジン	109	フタル酸ビス(2-エチルヘキシル)
26	ヘキサクロロエタン	68	フルオレン	110	フタル酸ジ-n-オクチル
27	ニトロベンゼン-d₅ (サロゲート)	69	4-クロロフェニルフェニルエーテル	111	7,12-ジメチルベンゾ[a]アントラセン
28	ニトロベンゼン	70	5-ニトロ-o-トルイジン	112	ベンゾ[b]フルオランテン
29	N-ニトロソピペリジン	71	4-ニトロアニリン	113	ベンゾ[kb]フルオランテン
30	イソホロン	72	2-メチル、4,6-ジニトロフェノール	114	ベンゾ[a]ピレン
31	2-ニトロフェノール	73	ジフェニルアミン	115	3-メチルコラントレン
32	2,4-ジメチルフェノール	74	アゾベンゼン	116	ジベンズ[a,j]アクリジン
33	安息香酸	75	2,4,6-トリブロモフェノール	117	インデノ(1,2,3-cd)ピレン
34	ビス(2-クロロエトキシ)メタン	76	スルホテップ	118	ジベンズ[a,h]アントラセン
35	2,4-ジクロロフェノール	77	ジアレートー	119	ベンゾ[ghi]ペリレン
36	1,2,4-トリクロロベンゼン	78	ジアレートⅡ	120	1,4-ジクロロベンゼン-d₄ (内部標準)
37	ナフタレン	79	ホレート	121	ナフタレン-d ₈ (内部標準)
38	a,a-ジメチルフェネチルアミン	80	フェナセチン	122	アセナフタレン-d ₁₀ (内部標準)
39	p-クロロアニリン	81	4-ブロモフェニルフェニルエーテル	123	フェナントレン-d10(内部標準)
40	2,6-ジクロロフェノール	82	ヘキサクロロベンゼン	124	クリセン-d ₁₂ (内部標準)
41	ヘキサクロロブタジエン	83	ジメトエート	125	ペリレン-d ₁₂ (内部標準)
42	N-ニトロソジブチルアミン	84	4-アミノビフェニル		

機器と分析メソッド

Agilent 8890 GC システムは、Agilent HydroInert イオン源を備えた Agilent 5977B Inert Plus MS システムに Agilent J&W DB-5ms ウル トライナートカラム (部品番号 121-5523UI)を接続しました。表 2 に、 今回の分析で使用した GC/MS 機器および消耗品をまとめます。GC およ び MSD メソッドパラメータ (表 3)は、12 分のメソッドを実現するため に最適化したものです。同時に、異性体に必要な分離能を保持しており、 スキャン範囲やスキャン速度などのパラメータは、EPA メソッド 8270 ガイドラインにも準拠しています。

装置構成

表 2. GC および MSD 機器および消耗品

パラメータ	設定値
GC	Agilent 8890 GC システム
MS	Agilent 5977B イナートプラス GC/MSD
イオン源	Agilent HydroInert イオン源と 9 mm HydroInert エクストラクタレンズ
シリンジ	Agilent ブルーラインオートサンプラーシリンジ、10 µL、PTFE-チップ プランジャ (部品番号 G4513-80203)
カラム	Agilent J&W DB-5ms ウルトライナート、20 m × 0.18 mm、0.36 μm (部品番号 121-5523UI)
注入ロライナ	Agilent ウルトラ イナートライナ、スプリット低圧力損失、ガラスウール入り (部品番号 5190-2295)

分析条件

表 3. GC および MSD 機器の条件

パラメータ	設定値
注入量	1 μL
注入口	230 ℃、スプリット比 10:1
カラム温度プログラム	40 ℃ (0 分ホールド) 30 ℃ /min で 320 ℃ まで(2 分ホールド)
キャリアガスと流量	H ₂ 、1.2 mL/min 定流量モード
トランスファライン温度	320 °C
イオン源温度	300 °C
四重極温度	150 ℃
スキャン	m/z 35 ~ 500
チューニング	etune.u
ゲイン係数	0.5
スレッシュホールド	0
A/D サンプル	4

メソッド開発

キャリアガスを He から H2 に変更することにより、GC/MS シングル四重 極機器を用いた EPA メソッド 8270 分析において、次に示すようないくつ かの課題が生じます。多くの化合物で 0.1 ~ 100 µg/mL の必要なキャリ ブレーション範囲を達成するためには、感度の変化、注入口圧力と流量、 カラム容量と寸法のバランスを管理する必要があります。例えば、He キャリ アガスを用いた典型的な EPA メソッド 8270 分析で 30 m × 0.25 mm、 0.25 μm DB-5ms ウルトライナートカラムを使用していたものを、H2 キャ リアガス用に 20 m \times 0.18 mm、0.18 μ m DB-5ms ウルトライナート カラムに変更すると、30 m カラム容量の約 33 % になるため、カラム への過負荷を避けるために注入パラメータの変更が必要になります。 しかし、20:1 のスプリット注入を行った場合、注入濃度 0.5 μg/mL (カラ ム上は 25 ng/mL) 以下となるため、感度の問題が発生し、etune.u を 使用しても問題は解決されませんでした。別の検証メソッドでは、30 m × 0.25 mm, 0.25 µm DB-5ms ウルトライナートカラムを使用し、パル スドスプリットレス注入、流量 1.5 mL/min を用いました。このメソッド では、多くの化合物で下限濃度 0.1 µg/mL に到達することができました が、約75 µg/mL 以上では過負荷を示す著しいピークのリーディングが 確認され、直線近似も増加する問題がありました。atune.u チューンを用 いた 30 m カラム、10:1 スプリットのパルスドスプリット注入を検証しま したが、ほとんどの化合物は 0.1 μg/mL で検出されませんでした。この 検証で使用したしたカラム (20 m × 0.18 mm, 0.36 µm DB-5ms ウル トライナート) で、さまざまな注入パラメータと atune および etune アル ゴリズムの両方を検証しました。表3に、カラム容量、感度、および0.1 ~ 100 µg/mL の検量線作成のために最適化された最終メソッドを示し ます。atune が望ましいものの、多くの化合物で検出される最低濃度が 0.2 μg/mL となる傾向がありました。

結果と考察

質量スペクトルの忠実性

H。キャリアガスを使用する場合、ニトロ化合物や重ハロゲン化合物の マススペクトルが変化することが懸念されます。H2存在下、高温下、金属 表面で、ニトロ官能基は水素化されてアミン類になり、過塩素化化合物 は脱塩素化されます。これらの要因はすべて質量分析計に存在します。 HydroInert イオン源を用いたニトロベンゼン分析の一例を紹介します。 3 mm の抽出レンズを使用したエクストラクタイオン源の検証では、キャ リアガスに H₂を使用し、ニトロベンゼンは混合物(部品番号 SVM-122-1) 内の化合物の1つでした。ニトロベンゼン(分子量 m/z 123) を 水素化すると、アニリン(分子量 m/z 93)が生成されます。エクストラク タイオン源、H2キャリアガスで取得した TIC のマススペクトルを確認する と、図 1A のマススペクトルが観測されました。m/z 93 のアバンダンスが 大きく、m/z 123 では小さいことから、ニトロベンゼンからアニリンへの 変換がイオン源で起こっていることがわかります。この質量スペクトルは、 ニトロベンゼンのリテンションタイムで観測され、アニリンのリテンションタ イムとはよく分離されていることから、イオン源で発生したことが確認さ れました。比較として、ニトロベンゼンを含む同じ混合物を HydroInert イオン源 (9 mm レンズ) で確認したところ、He キャリアで確認される 質量スペクトルと同等のスペクトルパターン、m/z 123 および 93 が観察 され (図 1B)、ニトロベンゼンがイオン源に保持され、アニリンに変換さ れていないことを示しています。 図 2A (エクストラクタイオン源) と図 2B (HydroInert イオン源) に示すニトロベンゼンの抽出イオンクロマトグラム (EIC) でも確認することができます。ここで、HydroInert イオン源を使用 した場合、123/93の比率が改善されていますが、エクストラクタイオン 源の EIC 重ね表示では m/z 93 への著しい変換とテーリングが見られま した。

図1. ニトロベンゼンのリテンションタイムで溶出するピークの質量スペクトルは、(A) 3 mm エクストラクタレンズ付きのイオン源では、十分な m/z 93 イオンでアニリンへ の水素化を示し、(B) Agilent HydroInert イオン源では、ニトロベンゼンと相関する 質量スペクトルが改善されています。

図 2. H2 キャリアガスを用いたニトロベンゼンの EIC は、(A)3 mmエクストラク タレンズ付きのイオン源では、十分な m/z 93イオンでアニリンへの水素化を示し、 (B)Agilent HydroInert イオン源では、m/z 123 対 m/z 93 の比の改善を示して います。

GC/MS チューニングミックス

EPA メソッド 8270 の重要な構成要素は、DFTPP のイオン比に関連する クライテリアです。このメソッドでは、スプリット注入のバランスをとるた めに、信号を10 倍増加させるための etuneを使用しました。GC/MS シングル四重極システムでは、表 3 に示す EPA メソッド 8270E および 8270D のDFTPP イオン比クライテリアを使用して、H₂ キャリアガスを用 いた HydroInert イオン源をテストしました。¹² EPA メソッド 8270D は、 EPA525 のクライテリアを反映した EPA8270E よりも多くのクライテリア を含んでいます。表 4 には、25 μg/mL での DFTPP イオン比の相対 アバダンス、メソッドの基準、および測定した相対アバダンスが基準に 一致した場合、測定したすべての相対アバダンスが EPA メソッド 8270E および 8270D のイオン比基準の両方をパスした実測値をまとめました。 表 4. DFTPP イオン、EPA メソッド 8270D および 8270E のアバンダンス基準^{1,2}、 相対アバンダンスの測定値、および相対アバンダンスの合否

ターゲット質量 (<i>m/z</i>)	イオン存在量基準	相対アバンダンスの 測定値	合格/不合格
51	*10 ~ 80 % (m/z 198)	38.5 %	合格
68	<2 % (<i>m</i> /z 69)	1.0 %	合格
69	あり	36.5 %	合格
70	<2 % (m/z 69)	0.4 %	合格
127	*10 ~ 80 % (m/z 198)	54.4 %	合格
197	<2 % (<i>m</i> /z 198)	0.0 %	合格
198	ベースピークまたは存在 *または >50 % (m/z 442)	51.6 %	合格
199	5~9% (m/z 198)	5.0 %	合格
275	ベースピークの 10 ~ 60 %	30.4 %	合格
365	ベースピークの>1%	4.9 %	合格
441	<150 % (m/z 443存在)、 *しかし <24 % (442)	83.1 %、*15.7 %	合格
442	ベースピークまたは存在 *または >50 % (m/z 198)	100 % (ベースピーク)	合格
443	15 ~ 24 % (m/z 442)	18.9 %	合格

*8270D の要求値と EPA メソッド 8270E の要求値の差を示します。

EPA メソッド 8270 が機能するためには、キャリアガスに関係なく、常に 注入口とカラムの清潔度が懸念事項であり、DDT、ペンタクロロフェノール、 ベンジジンが、注入口とカラムの健全性を追跡するために使用されます。 DDT 分解率の上昇は注入口のメンテナンスの必要性を、ベンジジンと ペンタクロロフェノールのテーリングファクターの増大はカラムの切断また は交換の必要性を示します。H₂ キャリアガスの導入により、DDT のよう な活性化合物の注入口での反応の増加が懸念される可能性があります。 そのため、注入口温度を 230 ~ 250 ℃ に下げるか、マルチモード注入 口のような温度制御可能な注入口を使用して活性化合物を保護しつつ、 320 ℃ まで温度を上げ、PAH を排出することを推奨しています。本研究 では、ラボで最も多く使用されているスプリット/スプリットレス注入口を 使用し、注入口温度 230 ℃ で運転しました。

DDT の分解とテーリングファクターについて GC/MS 用チューニング混 合物の結果を確認すると、DDT 分解率は 0.2 %、ペンタクロロフェノール のテーリングファクターは 1.2、ベンジジンのテーリングファクターは 1.3 でした。これらの値は、EPA メソッド 8270 の基準値である、DDT 分解 率が <20 %、テーリングファクターが <2.0 を満たしています。

キャリブレーション基準

この 12 分メソッドでは、0.1 ~ 100 µg/mL の濃度範囲で 13 段階の初期 キャリブレーションが行われました。 図 3 は、標準品、サロゲートおよび 内部標準の TIC です。

図 3. H₂ キャリアガスと Agilent HydroInert イオン源を使用した、119 種類のターゲット分析物およびサロゲートと 6 種類の内部標準を含む 20 μg/mL キャリブレーション 標準液の TIC

近接したピークの分解能

メソッド時間の短縮とカラムの変更により、フェナントレンとアントラセン (EIC m/z 178)、ベンゾ[a]アントラセンとクリセン(EIC m/z 228)、 ベンゾ(b)フルオランテンとベンゾ(k)フルオランテン(EIC m/z 252) で、50%を超える近接したピークの分離能が確認されました。図4には、 5 μg/mL の中間濃度での 3 つの異性体の結果を示しています。フェナン トレンとアントラセン (図 4A) はベースライン分離、ベンゾ[a]アントラセ ンとクリセン (図 4B) はほぼベースライン分離、ベンゾ (b) フルオラン テンとベンゾ (k) フルオランテン (図 4C) は分離能 50 % 以上であり、 EPA method 8270 基準を満たしていることがわかります。

図 4. 重要な異性体の中間濃度 (5 μg/mL)のEIC: (A) フェナントレンとアントラセン (EIC m/z 178)、(B) ベンゾ[a] アントラセンおよびクリセン (EIC m/z 228)、 (C) ベンゾ(b) フルオランテンおよびベンゾ(k) フルオランテン (EIC m/z 252)

水素キャリアガスとヘリウムキャリアガスのレスポンスファクター (RF)の比較

キャリアガスを He から H_2 に変更する場合、シングル四重極システムの レスポンスファクター(RF)および感度を常に維持することが重要です。 表 5 には、EPA メソッド 8270E ガイダンス基準 (表 4)の RF を示して います。He キャリアガスを用いた GC/MS 分析で、スプリットレス注入を 使用した場合の RF、次にパルスドスプリット注入を使用した場合の RF、 さらに HydroInert イオン源と H₂ キャリアガスを用いた GC/MS 分析 の RF です。H2 メソッドではスプリット注入を行うため、He を用いた パルスドスプリット注入は良い比較対象となり、スプリットレス He のデー タは従来の手法です。EPA メソッド 8270E の RF (表 4) はガイダンス 基準であり、メソッド合格の要件ではありませんが、理想的には RF は このガイダンス値と同等であるべきです。He を用いた(スプリットレス 注入) GC/MS 分析では、ヘキサクロロエタンと N-ニトロソジ-n-プロピル アミンの2種類の化合物の RF がガイダンス基準を下回っており、これら の化合物の RF は、H2 を使用した HydroInert の結果でも低くなってい ます。H₂ HydroInert GC/MS 分析では、さらに 5 つの化合物 の RF が ガイダンス基準以下となり、4 つは基準値から 0.1 ポイント以内でした。 例えば、ビス(2-クロロエチル)エーテルのガイダンス RF 基準は 0.7 であ り、H2 HydroInert GC/MS の RF は 0.6 でした。パルスドスプリット He GC/MS の結果については、報告されたすべての RF が EPA のガイダンス と一致するか、それ以上でしたが、このデータセットでは表5に示した7つ の指標化合物の RF は報告されていません。H2 HydroInert GC/MS の 結果では、表 5 に示した 72 化合物のうち、RF が EPA ガイダンスを 下回ったのは合計7化合物のみでした。そのうち5つはRF値がガイダンス の 0.1 ポイント以内であり、他の 2 つの RF 値はガイダンスの 0.3 ポイント 以内でした。

表 5. EPA メソッド 8270E から選択した化合物の RF (EPA メソッドの表 4)²、キャリア ガスに He を用いた GC/MS シングル四重極分析³、He およびパルスドスプリット注入 を用いた GC/MS シングル四重極分析⁴、および Agilent HydroInert イオン源と H₂ キャリアガスを使用した GC/MS シングル四重極分析

	レスポンスファクター					
	EPA 8270E	He	He GC/MS,	H ₂ HydroInert		
化合物	より	GC/MS ³	パルスドスプリット⁴	GC/MS		
アセナフテン	0.9	1.3	1.1	1.1		
アセナフチレン	0.9	1.9	2.0	1.4		
アセトフェノン	0.01	1.2		0.4		
アントラセン	0.7	1.1	1.1	1.0		
ベンゾ(a)アントラセン	0.8	1.4	1.3	1.5		
ベンゾ(a)ピレン	0.7	1.2	1.0	0.9		
ベンゾ(b)フルオランテン	0.7	1.4	1.0	1.2		
ベンゾ (g,h,i) ペリレン	0.5	1.1	1.1	1.0		
ベンゾ(k)フルオランテン	0.7	1.2	1.1	1.2		
ビス(2-クロロエトキシ)メタン	0.3	0.4	0.4	0.3		
ビス(2-クロロエチル)エーテル	0.7	0.8	1.1	0.6		
フタル酸ビス-(2-エチルヘキシル)	0.01	0.8	0.5	0.5		
4-ブロモフェニルフェニルエーテル	0.1	0.3	0.2	0.2		
フタル酸ブチルベンジル	0.01	0.6	0.5	0.3		
4-クロロアニリン	0.01	0.4	0.4	0.4		
4-クロロ-3-メチルフェノール	0.2	0.3	0.2	0.2		
2-クロロナフタレン	0.8	2.4	1.2	1.0		
2-クロロフェノール	0.8	0.8	1.2	0.7		
4-クロロフェニルフェニルエーテル	0.4	0.7	0.6	0.5		
クリセン	0.7	1.2	1.2	1.1		
ジベンゾ(a,h)アントラセン	0.4	1.1	1.0	1.0		
ジベンゾフラン	0.8	1.7	1.7	1.5		
フタル酸ジ-n-ブチル	0.01	1.3	1.2	0.8		
3,3-ジクロロベンジジン	0.01	0.5		0.4		
2,4-ジクロロフェノール	0.2	0.3	0.3	0.2		
フタル酸ジエチル	0.01	1.4	1.3	1.0		
フタル酸ジメチル	0.01	1.4	1.3	1.0		
2,4-ジメチルフェノール	0.2	0.3	0.3	0.3		
4,6-ジニトロ-2-メチルフェノール	0.01	0.2		0.1		
2,4-ジニトロフェノール	0.01	0.2		0.1		
2,4-ジニトロトルエン	0.2	0.4	0.3	0.2		
2,6-ジニトロトルエン	0.2	0.3	0.3	0.2		
フタル酸ジ-n-オクチル	0.01	1.3	1.4	0.8		
フルオランテン	0.6	1.2	1.2	1.2		
フルオレン	0.9	1.3	1.3	1.2		
ヘキサクロロベンゼン	0.1	0.3	0.3	0.3		
ヘキサクロロブタジエン	0.01	0.2	0.2	0.2		
ヘキサクロロシクロペンタジエン	0.05	0.3	0.4	0.1		
ヘキサクロロエタン	0.3	0.2	0.5	0.1		
インデノ(1,2,3-cd)ピレン	0.5	1.2	1.0	1.2		
イソホロン	0.4	0.6	0.5	0.4		

	レスポンスファクター					
化合物	EPA 8270E より	He GC/ MS ³	He GC/MS, パルスドスプリット⁴	H ₂ Hydrolnert GC/MS		
2-メチルナフタレン	0.4	0.7	0.7	0.7		
2-メチルフェノール	0.7	0.7	1.0	0.6		
4-メチルフェノール	0.6	1.0	1.1	0.3		
ナフタレン	0.7	1.1	1.0	1.0		
2-ニトロアニリン	0.01	0.4	0.3	0.2		
3-ニトロアニリン	0.01	0.3	0.3	0.2		
4-ニトロアニリン	0.01	0.3	0.3	0.2		
ニトロベンゼン	0.2	0.3	0.3	0.2		
2-ニトロフェノール	0.1	0.2	0.2	0.1		
4-ニトロフェノール	0.01	0.2		0.1		
N-ニトロソジ-n-プロピルアミン	0.5	0.4	0.7	0.4		
N-ニトロソジフェニルアミン	0.01	2.1	0.6	0.9		
2,2'-オキシビス-(1-クロロプロパン)	0.01	0.5	1.1	0.5		
ペンタクロロフェノール	0.05	0.2		0.1		
フェナントレン	0.7	1.2	1.1	1.1		
フェノール	0.8	0.9	1.4	0.7		
ピレン	0.6	1.3	1.3	1.2		
1,2,4,5-テトラクロロベンゼン	0.01	0.4		0.3		
2,3,4,6-テトラクロロフェノール	0.01	0.4	0.3	0.2		
2,4,5-トリクロロフェノール	0.2	0.3	0.4	0.3		
2,4,6-トリクロロフェノール	0.2	0.3	0.4	0.2		

検量線

最大 13 段階の濃度でマルチポイントキャリブレーションを行い、各化合物 および各キャリブレーションレベルの相対的な RF を決定しました。平均 RF は、相対標準偏差(RSD)とともに各化合物の検量線を作成するた めに計算されました。平均 RF %RSD は 20 % 未満でなければならず、 これは望ましい合格基準です。少なくとも 6 つの検量線レベルで達成でき ない場合は、直線近似で R² 値 >0.990 が必要であり、二次曲線近似が 用いられる可能性もあります。少なくとも 6 つのポイントの曲線近似で、 最も低いデータポイントの精度が推定濃度の 30 % 以内である必要が あります。 H_2 キャリアガスと HydroInert イオン源を使用した初期キャリ ブレーションの結果を、表 6 に示します。 119 化合物のうち、直線近似を必要としたのは 14 化合物、二次曲線近似 を必要としたのは 1 化合物でした。表 6 には、119 のターゲット化合物 およびサロゲートに対するキャリブレーション結果の平均 RF %RSD 値と、 フルキャリブレーション範囲(0.1 ~ 100 μg/mL)と値が異なる場合の 最低濃度および最高濃度をまとめました。87 %以上の化合物は平均 RF %RSD が 20 % 未満であり、キャリブレーション基準をパスしています。 H₂ は He よりも反応性が高く、また、高温で水が存在すると塩酸が生成 されるため注入口の温度を低く設定していることから、直線近似を必要と する化合物数の増加が予想されます。マルチモード注入口を使用するこ とにより、重フタル酸塩と PAH の結果が改善される場合があります。

H。キャリアガスと既存の質量分析計システムによる感度の低下について はよく報告されています。この懸念から、特にキャリブレーション範囲に 注意を払い、多くの化合物が以前の He 分析と同じキャリブレーション範 囲を達成できることを確認しました。感度に関しては、GC/MS で He キャ リアガスを用いた以前の EPA メソッド 8270 のアプリケーションで、96 種類の化合物を分析しました³。これらの化合物について、HydroInert イオン源とH₂キャリアガス(同じくGC/MS)を使用した同じセットと比 較すると、15の化合物では狭いキャリブレーション範囲でした。ここで、 6 種類の化合物は、100 ng/mL ではなく 200 ng/mL から始まり、1 つ の濃度レベルだけ狭くなっており、4 種類の化合物は、500 ng/mL から始まります。安息香酸については、H。キャリアガスを使用した HydroInert イオン源は、GC/MS の He キャリアガスで観察されたのと同じ 0.8 ~ 100 µg/mL のキャリブレーション範囲でした。ここで、2,4-ジニト ロフェノールも、 H_2 および HydroInert イオン源で 0.5 \sim 100 µg/mL の 範囲で直線近似し、キャリブレーション基準をクリアしています。ペンタク ロロフェノールにおいても、He と H2の結果は 0.5~100 µg/mL のキャ リブレーション範囲で一致しましたが、H2のデータでは直線近似が必要 でした。ポジティブな面として、4-ニトロフェノールや2-メチル-4,6-ジニト ロフェノールなど、H₂ および HydroInert イオン源でキャリブレーション 範囲が広がった化合物もあり、それぞれ 100 ng/mL と 200 ng/mL の 追加のキャリブレーションレベルが含まれました。また、これら2つの化 合物は直線近似を必要とせず、平均 RF %RSD 値が 4-ニトロフェノール で18.7%、2-メチル-4,6-ジニトロフェノールで19.7%でキャリブレーション 基準をパスしています。119 化合物のうち合計 24 化合物では、キャリブ レーション範囲がデフォルトの 0.1~100 µg/mL より狭くなっていました。 HydroInert イオン源と H₂ キャリアガスを使用することで、過去にテスト した 96 種類の SVOC のうち 84 % 以上の感度範囲を維持することがで きました。

表 6. EPA メソッド 8270 に関して、H₂ キャリアガスと Agilent HydroInert イオン源を用いた、119 種類のターゲット化合物およびサロゲートの初回キャリブレー ションの結果

						低濃度標準液 (µq/mL)	高濃度標準液 (µg/mL)
名前	リテンションダイム (分)	平均 RF	平均 RF %RSD	曲線近似 R ²	曲線近似	デフォルトは 0.1	~ 100 µg/mL
N-ニトロソジメチルアミン	1.339	0.273	7.41				
ピリジン	1.372	0.459	15.39			0.5	
2-ピコリン	1.705	0.561	5.89				
N-ニトロソ-N-メチルエチルアミン	1.741	0.232	7.23				
メタンスルホン酸メチル	1.890	0.256	15.04				
2-フルオロフェノール	1.983	0.568	5.20				
N-ニトロソ-N-ジエチルアミン	2.120	0.258	7.13				
メタンスルホン酸エチル	2.286	0.374	13.02				
$ abla \mathbf{r} = \mathbf{r} - \mathbf$	2.532	0.667	4.93				
フェノール	2.541	0.664	6.32				
アニリン	2.583	0.968	7.50				
ビス(2-クロロエチル)エーテル	2.617	0.616	10.72				
2-クロロフェノール	2.665	0.661	8.50				
1,3-ジクロロベンゼン	2.774	0.773	6.96				
1,4-ジクロロベンゼン	2.825	0.804	7.53				
ベンジルアルコール	2.892	0.442	12.90				
1,2-ジクロロベンゼン	2.931	0.756	7.53				
2-メチルフェノール (0-クレゾール)	2.965	0.559	9.73				
ビス(2 - クロロ - 1 - メチルエチル)エーテル	2.998	0.545	11.21				
1-ニトロソピロリジン	3.068	0.260	6.02				
p- クレゾール	3.074	0.333	7.00				
N-ニトロソジ-n-プロピルアミン	3.089	0.370	12.94				
アセトフェノン	3.092	0.445	6.48				
4-ニトロソモルホリン	3.095	0.107	8.43				
o-トルイジン	3.116	0.487	8.39				
ヘキサクロロエタン	3.180	0.112	8.62				
ニトロベンゼン-d5	3.201	0.097	10.05				
ニトロベンゼン	3.216	0.197	6.59				
ニトロソピペリジン	3.325	0.132	8.87				
イソホロン	3.395	0.433	7.86				
2-ニトロフェノール	3.455	0.112	11.43				
2,4-ジメチルフェノール	3.480	0.295	6.34				
安息香酸	3.519	0.117		0.9946	直線	0.8	
ビス(2-クロロエトキシ)メタン	3.558	0.345	8.69				
2,4-ジクロロフェノール	3.637	0.243	13.22				
1,2,4-トリクロロベンゼン	3.710	0.356	10.34				
ナフタレン	3.773	0.978	8.27				
a,a-ジメチルフェネチルアミン	3.782	0.360		0.9976	直線	0.2	
4-クロロアニリン	3.807	0.401	8.01				
2,6-ジクロロフェノール	3.816	0.232	16.62				
ヘキサクロロブタジエン	3.873	0.177	19.36				

						低濃度標準液	高濃度標準液
	リテンションタイム					(µg/mL)	(µg/mL)
名前	(分)	平均 RF	平均 RF %RSD	曲線近似 R ²	曲線近似	デフォルトは 0.1	~ 100 μg/mL
N-ニトロソジブチルアミン	4.079	0.172	9.34			0.2	
4-クロロ-3-メチルフェノール	4.185	0.204	10.56				
2-メチルナフタレン	4.321	0.656	6.20				
ヘキサクロロシクロペンタジエン	4.455	0.136		0.9928	直線		
1,2,4,5-テトラクロロベンゼン	4.458	0.308	19.22				
2,4,6-トリクロロフェノール	4.545	0.241	13.05				
2,4,5-トリクロロフェノール	4.570	0.288	13.13				
2-フルオロビフェニル	4.618	0.613	9.30				
1-クロロナフタレン	4.715	1.018	9.32				
2-クロロナフタレン	4.733	1.003	9.15				
2-ニトロアニリン	4.791	0.226	14.72				
フタル酸ジメチル	4.948	1.005	10.34				
2,6-ジニトロトルエン	4.994	0.153	17.84			0.2	
アセナフチレン	5.051	1.362	9.04				
m-ニトロアニリン	5.124	0.178	10.30				
アセナフテン	5.196	1.083	9.75				
2,4-ジニトロフェノール	5.212	0.074	15.34			0.5	
4-ニトロフェノール	5.260	0.143	18.74				
ペンタクロロベンゼン	5.305	0.428	14.62				
2,4-ジニトロトルエン	5.321	0.200	16.37				75
ジベンゾフラン	5.339	1.486	9.57				
1-ナフチルアミン	5.396	0.655	19.57				
2,3,4,6-テトラクロロフェノール	5.436	0.177		0.9912	直線	0.5	
2-ナフチルアミン	5.463	0.908	8.77				
フタル酸ジエチル	5.536	0.978	12.37			0.2	
チオナジン	5.599	0.142	16.65				
フルオレン	5.620	1.242	9.88				
5-ニトロ-o-トルイジン	5.623	0.209	19.75				
4-クロロフェニルフェニルエーテル	5.623	0.530	15.50				
4-ニトロアニリン	5.626	0.206		0.9943	直線	0.2	
2-メチル、4,6-ジニトロフェノール	5.654	0.098	19.68			0.2	
ジフェニルアミン	5.717	0.943	9.95				
アゾベンゼン	5.754	0.397	5.84				
2,4,6-トリブロモフェノール	5.814	0.083	19.91				
スルホテップ	5.863	0.082		0.9976	二次曲線	0.2	
ジアレートー	5.963	0.144	7.38				
ホレート	5.969	0.210	11.43				
フェナセチン	5.972	0.224	12.11				
4-ブロモフェニルフェニルエーテル	6.026	0.197	8.23				
ジアレート	6.038	0.050	10.31				
ヘキサクロロベンゼン	6.072	0.245	16.95				
ジメトエート	6.099	0.141	16.58				
4-アミノビフェニル	6.235	0.611	10.94				

	リテンションタイム					低濃度標準液 (µg/mL)	高濃度標準液 (µg/mL)
名前	(分)	平均 RF	平均 RF %RSD	曲線近似 R ²	曲線近似	デフォルトは 0.1	~ 100 μg/mL
ペンタクロロフェノール	6.235	0.101		0.9911	直線	0.5	
ペンタクロロニトロベンゼン	6.247	0.054	19.27			0.5	
プロピザミド	6.293	0.204	14.45				
ジノセブ	6.390	0.089	19.44				
ジスルホン	6.402	0.317		0.9966	直線	0.5	
フェナントレン	6.411	1.091	14.31				
アントラセン	6.453	1.009	11.90				
メチルパラチオン	6.708	0.124	10.22				
フタル酸ジブチル	6.889	0.840	16.44				
パラチオン	7.032	0.089	12.62				
4-ニトロキノリン-1-オキシド	7.044	0.064	19.82				
フルオランテン	7.395	1.188	8.54				
ベンジジン	7.504	0.544	9.47				
ピレン	7.580	1.207	8.59				
アラマイト	7.710	0.044	18.03			0.2	
p-テルフェニル-d ₁₄	7.716	0.422	14.16				
アラマイト II	7.770	0.044	12.41			0.2	
p-ジメチルアミノアゾベンゼン	7.834	0.195		0.9919	直線	0.5	
クロロベンジレート	7.876	0.294	10.53				
3,3'-ジメチルベンジジン	8.107	0.466	17.39				
フタル酸ベンジルブチル	8.128	0.343		0.9926	直線	0.5	
3,3-ジクロロベンジジン	8.549	0.364		0.9939	直線	0.5	
ベンゾ[a]アントラセン	8.570	1.443		0.9985	直線	0.2	
クリセン	8.600	1.047	11.58				
フタル酸ビス(2-エチルヘキシル)	8.612	0.502	17.43				
フタル酸ジ-n-オクチル	9.118	0.832	16.61				
7,12-ジメチルベンゾ[a]アントラセン	9.397	0.376		0.9947	直線	0.8	
ベンゾ[b]フルオランテン	9.400	1.198	17.62				
ベンゾ[k]フルオランテン	9.421	1.170	16.60				
ベンゾ[a]ピレン	9.657	0.874	17.50				
3-メチルコラントレン	9.954	0.328		0.9905	直線	0.8	
ジベンズ[a,j]アクリジン	10.523	0.594		0.9908	直線	0.8	
インデノ(1,2,3-cd)ピレン	10.720	1.210	19.76				
ジベンズ[a,h]アントラセン	10.738	1.016	19.11				
ベンゾ[ghi]ペリレン	11.020	1.024	17.29				

図 5 では、例として、He キャリアガス(図 5A)と HydroInert イオン源を 用いた H₂ キャリアガス(図 5B)のニトロベンゼンの検量線を比較しま した。He キャリアガスとH₂ キャリアガスおよび HydroInert イオン源の平 均 RF %RSD結果は、ほぼ同等であり、He キャリアガスは 6.33 %RSD、 H₂ キャリアガスおよび HydroInert イオン源は 6.59 %RSD でした。この データセットに含まれるニトロベンゼンのクオリファイアとスペクトルを 確認することで、H₂ キャリアガスと HydroInert イオン源による質量スペ クトルとイオンフラグメント率の一貫性を確認することができます。図 6 は、キャリブレーションレベル 8 (10 µg/mL) における、(A) ニトロベン ゼンのベースピーク EIC、(B) ベースピークとクオリファイア EIC の重ね 表示、(C) 質量スペクトルを示しています。図 6B では、クオリファイア EIC高さに合わせて表示していますが、図の右上には確認イオンとベース ピークの比を示し、定量メソッドの基準比との比の精度を示しています。 この定量メソッドにおけるm/z 93/77の基準比は 31 であり、図 6B の 93/77 比は 35.1 と予想された比の 20 % 以内であり、ニトロベンゼンか らアニリンへの有意な変換は観察されませんでした。ニトロベンゼンの保 持と水素化の回避は、図 6C のスペクトルでも示されており、m/z 93 が m/z 123 や m/z 77 より高くないことがわかります。

図 5. GC/MS システムで (A) He キャリアガスと (B) H₂ キャリアガスおよび Agilent HydroInert イオン源を用いて作成したニトロベンゼンの検量線 (0.1~100 µg/mL)

図 6.10 μg/mL 標準のニトロベンゼン化合物情報: (A) ベースピークの抽出イオン クロマトグラム (EIC m/z 77)、(B) ベースピーク (m/z 77) と上位 3 つのクオリファイア EIC (m/z 123, 51, 93) の重ね表示、(C) 3.216 分のニトロベンゼンのピークの未加工 の質量スペクトル

土壌マトリックスサンプルで再現性の確認

15 μg/mL はキャリブレーションポイントではないため、EPA メソッド 8270 の混合化合物を 15 µg/mL の濃度に希釈し、キャリブレーション検証 標準としました。H2 キャリアガスを用いた GC/MS における HydroInert イオン源の再現性をテストするために、標準サンプルを1µLの複合土壌 マトリックスでサンドイッチ注入し、スパイクされたマトリックスサンプルを 分析しました。この注入を9回繰り返しました。表7には、各化合物に ついて、土壌マトリックスでの 15 µg/mL キャリブレーション検証の 9 回 繰り返し注入の平均計算濃度、および土壌マトリックスでの9回繰り返し 注入の %RSD の結果が示されています。マトリックス中の 15 µg/mL サンプルの平均計算濃度を見ると、キャリブレーション検証のために 土 20%の範囲外となったものは次の2つの化合物のみで、いずれも低い 結果となりました。5-ニトロ-o-トルイジンおよびフタル酸ジブチル。この 2 つの化合物は添加濃度 15 µg/mL の 25 % 以内に収まっており、マト リックスによるわずかなシグナル抑制が起きている可能性があります。 土壌マトリックスの繰り返し注入の %RSD はすべて 7 %RSD 以下であり、 このメソッドが堅牢で一貫性があることが示されています。

表 7. 土壌マトリックス中の 15 μg/mL キャリブレーション検証標準の平均濃度 (9 回繰り返し注入) および 9 回繰り返し注入の %RSD

名前	15 μg/mL 添加濃度 マトリックス中の 平均計算濃度	9 回繰り返し注入の %RSD
N-ニトロソジメチルアミン	15.6	2.21 %
ピリジン	17.6	3.16 %
2-ピコリン	14.9	1.35 %
N-ニトロソ-N-メチルエチルアミン	15.8	1.26 %
メタンスルホン酸メチル	15.0	2.05 %
2-フルオロフェノール	15.9	1.82 %
N-ニトロソ-N-ジエチルアミン	15.6	2.53 %
メタンスルホン酸エチル	15.0	2.14 %
フェノール-d ₆	15.6	1.91 %
フェノール	15.1	1.00 %
アニリン	15.7	1.62 %
ビス(2-クロロエチル)エーテル	15.0	1.49 %
2-クロロフェノール	15.1	1.54 %
1,3-ジクロロベンゼン	15.0	1.11 %
1,4-ジクロロベンゼン	14.4	1.31 %
ベンジルアルコール	15.2	2.39 %
1,2-ジクロロベンゼン	15.3	1.86 %
2-メチルフェノール (0-クレゾール)	15.6	1.43 %
ビス(2 - クロロ - 1 - メチルエチル)エーテル	14.4	1.91 %
1-ニトロソピロリジン	14.9	2.73 %
p- クレゾール	14.2	1.08 %
N-ニトロソジ-n-プロピルアミン	14.6	2.71 %
アセトフェノン	14.7	2.35 %

名前	15 μ g/mL 添加濃度 マトリックス中の 平均計算濃度	9 回繰り返し注入の %RSD		
4-ニトロソモルホリン	14.4	2.40 %		
0-トルイジン	14.4	1.26 %		
ヘキサクロロエタン	15.0	4.80 %		
ニトロベンゼン-d ₅	15.0	1.53 %		
ニトロベンゼン	14.8	1.87 %		
ニトロソピペリジン	14.5	2.32 %		
イソホロン	14.7	2.52 %		
2-ニトロフェノール	15.4	3.43 %		
2,4-ジメチルフェノール	14.3	1.79 %		
安息香酸	14.3	6.81 %		
ビス(2-クロロエトキシ)メタン	14.8	1.73 %		
2,4-ジクロロフェノール	14.9	1.64 %		
1,2,4-トリクロロベンゼン	15.0	1.31 %		
ナフタレン	14.4	1.50 %		
a,a-ジメチルフェネチルアミン	14.0	2.25 %		
4-クロロアニリン	15.5	1.80 %		
2,6-ジクロロフェノール	17.9	1.34 %		
ヘキサクロロブタジエン	13.5	3.66 %		
N-ニトロソジブチルアミン	14.2	2.45 %		
4-クロロ-3-メチルフェノール	15.1	2.29 %		
2-メチルナフタレン	14.7	1.59 %		
ヘキサクロロシクロペンタジエン	12.6	3.44 %		
1.2.4.5-テトラクロロベンゼン	14.9	2.77 %		
2.4.6-トリクロロフェノール	15.3	1.92 %		
2.4.5-トリクロロフェノール	15.3	1.91 %		
2-フルオロビフェニル	15.5	1.47 %		
1-クロロナフタレン	14.9	1.65 %		
	15.3	1.64 %		
2-ニトロアニリン	15.4	1.75 %		
フタル酸ジメチル	15.8	1.42 %		
2.6-ジニトロトルエン	13.1	3.81 %		
アセナフチレン	15.0	1.03 %		
m-ニトロアニリン	12.4	2.93 %		
アセナフテン	14.5	1.52 %		
2,4-ジニトロフェノール	12.3	5.97 %		
4-ニトロフェノール	12.8	2.57 %		
ペンタクロロベンゼン	16.2	1.84 %		
2,4-ジニトロトルエン	15.6	2.45 %		
ジベンゾフラン	14.9	1.23 %		
1-ナフチルアミン	14.1	1.28 %		
2,3,4,6-テトラクロロフェノール	12.7	3.86 %		
2-ナフチルアミン	14.7	1.26 %		
フタル酸ジエチル	14.4	2.21 %		
チオナジン	14.0	2.99 %		
フルオレン	14.2	1.72 %		
4-クロロフェニルフェニルエーテル	14.4	2.41 %		
5-ニトロ-o-トルイジン	11.4	4,16 %		
4-ニトロアニリン	14.9	3.37 %		

名前	15 μ g/mL 添加濃度 マトリックス中の 平均計算濃度	9 回繰り返し注入の %RSD
2-メチル、4,6-ジニトロフェノール	13.6	2.93 %
ジフェニルアミン	15.2	0.66 %
アゾベンゼン	14.8	2.76 %
2,4,6-トリブロモフェノール	15.5	3.74 %
スルホテップ	13.1	4.28 %
ジアレートI	15.6	3.38 %
ホレート	14.9	2.14 %
フェナセチン	16.1	2.66 %
4-ブロモフェニルフェニルエーテル	14.8	2.08 %
ジアレートⅡ	14.9	3.70 %
ヘキサクロロベンゼン	16.9	2.73 %
ジメトエート	12.7	2.42 %
ペンタクロロフェノール	13.4	4.84 %
	16.0	2.40 %
ペンタクロロニトロベンゼン	16.7	6.40 %
 プロピザミド	15.2	2.86 %
ジノセブ	13.0	3.24 %
ジスルホン	14.2	4.39 %
フェナントレン	14.5	0.88 %
アントラセン	15.0	2.01 %
メチルパラチオン	15.5	3.70 %
 フタル酸ジブチル	11.5	3.70 %
パラチオン	15.7	2.21 %
4-ニトロキノリン-1-オキシド	16.9	2.04 %
フルオランテン	15.0	0.95 %
ベンジジン	14.0	2.76 %
アラマイト	13.9	3.71 %
アラマイト	13.3	3.59 %
ピレン	14.8	1.62 %
p-テルフェニル-d ₁₄	15.3	1.98 %
p-ジメチルアミノアゾベンゼン	14.0	2.05 %
クロロベンジレート	14.9	1.92 %
3,3'-ジメチルベンジジン	14.6	2.11 %
フタル酸ベンジルブチル	13.8	2.51 %
3,3-ジクロロベンジジン	15.8	1.90 %
ベンゾ[a]アントラセン	13.7	0.98 %
クリセン	14.5	1.31 %
フタル酸ビス(2-エチルヘキシル)	15.2	1.89 %
フタル酸ジ-n-オクチル	14.3	1.30 %
7,12-ジメチルベンゾ[a]アントラセン	12.2	1.40 %
ベンゾ[b]フルオランテン	14.7	1.50 %
ベンゾ[k]フルオランテン	15.4	2.94 %
ベンゾ[a]ピレン	15.4	2.07 %
3-メチルコラントレン	14.6	2.77 %
ジベンズ[a,j]アクリジン	13.0	1.58 %
インデノ(1,2,3-cd)ピレン	15.8	1.44 %
ジベンズ[a,h]アントラセン	15.5	2.18 %
ベンゾ[ghi]ペリレン	15.5	1.56 %

結論

Agilent 5977B イナートプラス GC/MSD に、H₂ キャリアガスと Agilent HydroInert イオン源を使用して SVOC を検証するメソッドを開発しました。 これにより、ターゲット化合物の水素化と脱塩素化が回避できます。EPA メソッド 8270D/E のメソッド基準は、GC/MS チューニング用混合物、 DFTPP チューニング基準、および 0.1~100 μ g/mL の検量線において、 12 分間の分析で満たされ、試験した 119 化合物のうち直線近似を必要 とする化合物は 15 未満でした。質量スペクトルの忠実度を維持することは、 特に EPA メソッド 8270 のような環境分析において、GC/MS システムで H₂ キャリアガスを使用するための突破口となります。

参考文献

- Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS); Method 8270D, United Stated Environmental Protection Agency, Revision 4, February 2007.
- 2. Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS); Method 8270E, United Stated Environmental Protection Agency, Revision 4, June **2018**.
- Smith Henry, A. Agilent 焼結ガラスフリットライナを用いたガス クロマトグラフィー /質量分析法による半揮発性有機化合物の分析、 アジレント・テクノロジー・アプリケーションノート, 資料番号 5994-0953JAJP, 2019.
- Ciotti, R. EPA 8270E with Pulsed Split Injection and Retention Time Locking on an 8890GC with a 5977 Series MSD, Agilent Technologies application note, publication number 5994–1500EN, 2020.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE83360322

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2022 Printed in Japan, June 23, 2022 5994-4890JAJP

