

Agilent 1290 Infinity II Bio LC による キノロン剤のピーク形状の改善

BIO

Authors

林 慶子 滝埜 昌彦

アジレント・テクノロジー株式会社

はじめに

一般的な HPLC の流路はステンレススチール (SUS) を材質としており、測定対象の化合物の構造や移動相組成、装置の履歴などにより、SUS との非特異的な相互作用を受ける場合があります。たとえば、ピーク形状の悪化や感度低下、キャリーオーバーなどを引き起こすと考えられています。

1290 Infinity II Bio LC は SUS を用いず、MP35N を材質として用いた HPLC です。MP35N は優れた耐薬品性を持ち、幅広い pH 範囲や塩濃度で使用できる素材です。リン酸などで不動態化処理した SUS よりも不活性であることも特長です。

本アプリケーションノートでは、動物用医薬品の1つのキノロン剤を例に HPLC システムの材質がピーク形状に及ぼす影響について評価したので報告します。

装置

表 1. 装置構成

サンプラ	G7137A 1290 Infinity II Bio Multisampler	
ポンプ	G7132A 1290 Infinity II Bio Highspeed pump	
カラム恒温槽	G7116A The 1290 Infinity II Multicolumn Thermostat	
検出器	Agilent Ultivo トリプル四重極 LC/MS	

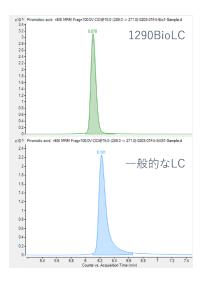
分析条件

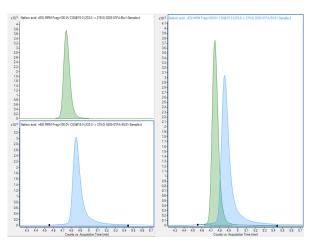

表 2. HPLC 条件

カラム	ZORBAX Eclipse Plus C18 RRHD (2.1 x 100 mm, 1.8 μm, PN : 959758-902)	
カラム温度	40 °C	
移動相 A	0.1 % ギ酸	
移動相 B	メタノール	
グラジエント	30 %B (10 min)100 %	
流速	0.3 mL/min	
注入量	1 µL	

表 3. MS

イオン源	Agilent JetStream-ESI	
極性	Positive	
	MRM	
取り込みモード	289.0>271.0, Frag=100V,CE@15eV	
	233.0>215.0, Frag=100V,CE@15eV	


対象化合物



PL 動物薬 LC/MS Mix 2 (林純薬、99056111) を希釈し 100 ppb としたものを試料とし、上記 2 成分について比較しました。

結果

図1. ピロミド酸(289.0>271.0)のクロマトグラム 上: Bio LC 使用時、下: 一般的な LC 使用時

図 2. ナリジクス酸 (233.0>215.0) の結果 上: Bio LC 使用時、下: 一般的な LC 使用時、右: 重ね書き

本実験では MP35N を材質に使用した BioLC と HPLC に一般的な SUS システム (汎用 LC) で比較を行いました。図 1 にピロミド酸のクロマトグラム、図 2 にナリジクス酸のクロマトグラムを示しました。ピークの幅や形状に違いが認められました。表 4 に示すように、Bio LC を使用することでピーク形状を改善できることがわかりました。

表 4. 各成分のテーリングファクターの比較

テーリングファクター	ピロミド酸	ナリジクス酸
Bio LC	1.4	1.2
一般的な LC	2.1	1.8

まとめ

1290 Infinity II Bio LC を用いて、流路の材質の違いが及ぼすピーク形状への影響を確認しました。比較すると MP35N を用いた Bio LC ではピーク形状が良好でした。このことから 1290 Infinity II BioLC は材質への非特異的な相互作用を軽減し、検出感度やデータ処理精度を向上できる可能性が示唆されました。

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE44362.9577777778

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2021 Printed in Japan, June 16, 2021 5994-4473JAJP

