

PLRP-S カラムを用いた合成ペプチドの 分析と精製の最適化

スケールとポアサイズが最適な信頼性の高いカラムと 充填剤による合成ペプチドの適切な精製

著者

Andrea Angelo P. Tripodi and Andrew Coffey Agilent Technologies, Inc.

概要

イオンペア試薬としてトリフルオロ酢酸(TFA)を含む移動相を用いた合成ペプチドの分析と精製に おいて、逆相イオンペアクロマトグラフィーの有用性はますます高まっています。分析から分取高速液体 クロマトグラフィー(HPLC)へのスケールアップは、結合相、pH条件、粒子サイズ、カラム長の違いに より、コストと時間がかかり、実施するのが困難なことがよくあります。このアプリケーションノートでは、 Agilent PLRP-S 分析 HPLC カラムを用いた、合成ペプチドの分析およびメソッドのスケールアップ方 法について説明します。グラジエントと保持情報は、同一の物質が充填されたより大きい分取カラムに 直接適用されます。

はじめに

がんの診断と治療、抗生物質の開発、新ワクチ ンなどのバイオテクノロジーおよびバイオエン ジニアリングが発展していることにより、ペプチ ド治療は普及しつつあります。大部分のペプチ ド医薬品は、固相ペプチド合成(SPPS)によ り生成されます。合成は高分子支持体や樹脂 で実施されており、反応から簡単に分離でき ます。合成経路は、脱保護、活性化、結合の 複数のステップで構成されています。最終的 なペプチド配列は、捕捉剤やその他の成分を 含む開裂混合物を用いて樹脂から分離され、 精製に向けた最終未精製物が生成されます。

固相ペプチド合成により合成された未精製 ペプチドを、アセトニトリル水溶液(通常、 イオンペア試薬として 0.1 % トリフルオロ酢 酸(TFA)を含む)でグラジエント溶出する 逆相カラムを用いた HPLC で分析します。 通常、液体クロマトグラフィー/質量分析法 (LC/MS)ベースのペプチド分析は、ターゲッ ト分子の構造を確認するために使用されます。 ただし、TFA はイオン抑制を引き起こし、生 成される MS シグナルはより弱くなるため、 LC/MS に適しているとはいえません。LC/MS メソッドに適したイオンペア試薬は、TFA より 弱酸性であるギ酸(FA)です。 この実験では、ヒトグルカゴン様ペプチド-1 (GLP-1) 7-36 アミドを使用します。これは、 30 種類のアミノ酸を含む一本鎖ポリペプチド であり、分子質量は 3,297.7 ダルトン (Da) です (図 1)。

このアプリケーションノートでは、分析 PLRP-S、 4.6 × 250 mm、8 µm カラムから、よりスケー ルの大きい分取 PLRP-S、21.2 × 250 mm、 8 µm カラムに直接スケールアップする手法に ついて説明します。100 および 300 Å という、 ペプチドの分離に適した2種類のポアサイズ について調査しました。Agilent PLRP-S は、 硬質のマクロポーラススチレン/ジビニルベンゼ ン (PS-DVB) HPLC 固定相であり、化学 的および物理的に優れた安定性を備えてい ます。PLRP-S HPLC 充填剤は元来疎水性 であり、C8 や C18 のような、疎水性を与 えるための結合アルキル鎖は必要ありませ ん。Agilent 6545XT AdvanceBio 液体クロ マトグラフィー /四重極飛行時間型質量分析 法 (LC/Q-TOF) および直交型 AdvanceBio ペプチドマッピングカラム、2.1 × 100 mm、 2.7 µm を用いて、最終製品の特性解析を確 認しました。

サンプル前処理

グルカゴン様ペプチド GLP-17-36 アミドは、 CS Bio(メンローパーク、カリフォルニア州 94025、米国)で合成しました。合成用の固 相担体は、アジレント・テクノロジーから入手 しました。合成は、標準の側鎖保護手法と結 合条件(フルオレニルメチルオキシカルボニル (Fmoc) 結合相)により実施しました。

分析機器

Agilent 1290 Infinity II LC システムは、次の モジュールで構成しました。

- Agilent 1290 Infinity II ハイスピードポンプ (G7120A)
- Agilent 1290 Infinity II マルチサンプラ、 サンプルサーモスタット付き(G7167B)
- Agilent 1290 Infinity II マルチカラム サーモスタット (G7116B)
- Agilent 1290 Infinity II ダイオードアレイ 検出器 (G7117C)、光路長 10 mm の InfinityLab Max-Light カートリッジセル (G7117-60020)を搭載

分取機器

Agilent 1290 Infinity II 分取 LC システムは、 次のモジュールで構成しました。

- Agilent 1290 Infinity II 分取バイナリポンプ (G7161B)
- Agilent 1260 Infinity II フラクションコレ クタ (G7157A)
- Agilent 1290 Infinity II 分取カラムコン
 パートメント(G7163B)
- Agilent 1260 Infinity II ダイオードアレイ 検出器 (G7165A)

LC/MS 機器

Agilent 1290 Infinity II LC システムと 6545XT AdvanceBio LC/Q-TOF(G6549AA)の組み 合わせ

ソフトウェアおよびデータ処理

- Agilent OpenLab ソフトウェアスイート、 バージョン 2.6
- OpenLab ChemStation CDS、 バージョン C01.09
- Agilent MassHunter Data Workstation Acquisition、バージョン B10.00
- Agilent MassHunter BioConfirm ソフト ウェア、バージョン 10.00

 $H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-NH_2$

図1. 合成 GLP-1 (7-36) アミドのアミノ酸配列

カラム

- 分析カラム: Agilent PLRP-S 100 Å、
 4.6 × 250 mm、8 μm(部品番号
 PL1512-5800)、Agilent PLRP-S 300 Å、
 4.6 × 250 mm、8 μm(部品番号
 PL1512-5801)
- 分取カラム: Agilent PLRP-S 100 Å、
 21.2 × 250 mm、8 µm、Agilent
 PLRP-S 300 Å、21.2 × 250 mm、8 µm
 (カスタム寸法)
- LC/MS カラム: AdvanceBio ペプチ
 ドマッピング、2.1 × 100 mm、2.7 µm (部品番号 655750-902)

固相担体

- AmphiSpheres 40 RAM、0.4 mmol/g、 75 ~ 150 μm (部品番号 PL3867-4764)
- PL-Rink 樹脂(1% DVB)、0.3 mmol/g、 75~150 μm(部品番号 PL1467-4749)

試薬および調製

試薬はすべて、HPLC グレード以上のものを 使用しました。

メソッド条件

表1.液体クロマトグラフィーのパラメータ

Agilent 1290 Infinity II 分析 LC システム			
パラメータ	設定値		
カラム	Agilent PLRP-S、 4.6 × 250 mm、8 µm		
サーモスタット	4 °C		
溶媒 A	0.1 % TFA 水溶液		
溶媒 B	0.1 % TFA アセトニトリル溶液		
グラジエント	グラジエント1: 時間(分)%B 0~235 2~2235~50 22~2450~90 24~2890 28~3090~35 30~3635 グラジエント2: 時間(分)%B 0~235 2~2235~65 2~2235~65 22~2465~90 24~2890 28~3090~35 30~3635		
カラム温度	25 °C		
流量	1.0 mL/min		
注入量	5.0 µL		
Agilent 1290 In	finity II 分取 LC システム		
カラム	Agilent PLRP-S、 21.2 × 250 mm、8 μm		
サーモスタット	4 °C		
溶媒 A	0.1 % TFA 水溶液		
溶媒 B	0.1 % TFA アセトニトリル溶液		
グラジエント	時間(分) %B 0~2 35 2~22 35~50 22~24 50~90 24~28 90 28~30 90~35 30~45 35		
カラム温度	室温		
流量	21.2 mL/min		
注入量	100 µL		
フラクション コレクション	 2.5 mL フラクション、 時間ベース		

表 2. LC/MS データ取り込みパラメータ

Agilent 6545XT AdvanceBio LC/Q-TOF				
パラメータ	設定値			
イオン源	デュアル AJS			
極性	ポジティブ			
ガス温度	325 ℃			
ガス流量	13 L/min			
ネブライザ	35 psi			
シースガス温度	275 ℃			
シースガス流量	12 L/min			
キャピラリ電圧	4,000 V			
ノズル電圧	500 V			
フラグメンタ電圧	175 V			
スキマ電圧	65 V			
取り込みモード	2.5 Hz			
質量範囲	100 ~ 2,100 m/z			
取り込みレート	5 スペクトル/秒			
Agilent 129	0 Infinity II LC システム			
カラム	AdvanceBio ペプチドマッピング、 2.1 × 100 mm、2.7 µm			
サーモスタット	4 °C			
溶媒 A	0.1 % ギ酸水溶液			
溶媒 B	0.1 % ギ酸アセトニトリル溶液			
グラジエント	時間 (分) %B 0~2 3 2~23 3~47 23~25 47~50 25~26 50~97 26~27 97~3 27~30 3* *イソクラディック (ポストラン)			
カラム温度	55 ℃			
流量	0.3 mL/min			
注入量	20 µL			

結果と考察

2 種類の樹脂を用いて、ターゲットの GLP-1 7-36 アミドペプチドを合成しました。最初 に、分析困難なペプチドに対する樹脂の性能 を高めるために、AmphiSpheres 40 RAM、 0.4 mmol/g、75~150 µm に、ポリエチ レングリコール鎖を加えています。次に、PL-Rink 樹脂 (1% DVB)、0.3 mmol/g、75~ 150 µm を少量保持していますが、これはより 長いペプチド鎖の合成に適しています。

合成を同一条件下で実施し、ペプチド 1A
(AmphiSpheres 樹脂で前処理)、ペプチド
1B (PL-Rink 樹脂で前処理) という2 種類の
未精製ペプチドを生成しました。

通常、ペプチドの精製に必要なポアサイズは 100 または 300 Å です。このポアサイズで保 持容量を最大化すると同時に、より大きい分 子のアクセスまたは排除の制限を最小限に抑 え、必要な質量移動を維持して最適な分離を 実施します。

未精製ペプチドの分析クロマトグラフィーは、 目的の分子の存在を確認し、溶出の特性に ついて理解するための出発点として必要になり ます。最初は2種類のサンプルの溶出プロファ イルが不明だったため、異なるグラジエント メソッドをスクリーニングし(図2A、2B、3A、 および3B)、分取に最適なグラジエントを決 定しました(35~50%B)。実際のメソッド 条件については、表1を参照してください。

図 2. (A) Agilent PLRP-S 100 Å カラムでのペプチド 1A のグラジエントの最適化。(B) Agilent PLRP-S 100 Å カラムでのペプチド 1B のグラジエントの最適化

図 3. (A) Agilent PLRP-S 300 Å カラムでのペプチド 1A のグラジエントの最適化。(B) Agilent PLRP-S 300 Å カラムでのペプチド 1B のグラジエントの最適化

図 4. Agilent PLRP-S 100 Å カラムでのペプチド 1A (A) およびペプチド 1B (B) の分取クロマトグラム

この例では、AmphiSpheres 40 RAM と比較し て、ペプチド 1B (PL-Rink 樹脂、0.3 mmol/g で前処理)の方が、未精製純度がより高くなっ ていることが明らかです(表 3)。

表3.未精製ペプチドの純度

	ペプチド 1A	ペプチド 1B
PLRP-S 100 Å	33.15 %	43.19 %
PLRP-S 300 Å	41.23 %	46.53 %

移動相 A (0.1 % TFA 水溶液を含む) に溶解 した、濃度 1 mg/mL の 100 µL の未精製ペ プチドを注入して、分取スケールの分離を実 施しました。カラムサイズを内径 4.6 mm から 21.2 mm にスケールアップした PLRP-S 100 Å カラムと PLRP-S 300 Å カラムの両方で、総量 1 mg を精製しました (図 4 および 6)。

2.5 mL 固定量のフラクションを使用し、メイン ピークが溶出する期間にわたって全長生成物 (FLP)を収集するようにフラクションコレクタ を設定しました。製品および近接して溶出する 不純物は、分析カラムで該当するフラクション を再分析することにより、簡単に同定できます (図 5 および 7)。

図7. (A) フラクション再分析を示す、Agilent PLRP-S 300 Å カラムでのペプチド 1A (右側)。(B) フラクション再分析を示す、Agilent PLRP-S 300 Å カラムでのペプチド 1B (右側)

全体の純度レベルは、各フラクションのピーク 面積パーセントから計算します(表 4)。

表 4. フラクションの組み合わせでの純度と 収率の一覧

ペプチド 1A	面積 % (純度)	全体収率 %
PLRP-S 100 Å (フラクション A6 〜 B9)	89.28	85.59
PLRP-S 300 Å (フラクション B8 ~ B5)	90.26	73.02
ペプチド 1B	面積 % (純度)	全体収率 %
PLRP-S 100 Å (フラクション B8 ~ B4)	97.81	92.69

精製した主成分の LC/MS 分析を AdvanceBio ペプチドマッピングカラムで実施 し、同定を確認しました。

合成ペプチドサンプルには、分子量の異なる もの、不純物、配列にアミノ酸が欠落している もの、水分の損失などが多数含まれている ことが多く、固相担体からの切断に失敗した 場合、合成時の保護基がターゲット分子に 付着している場合もあります。そのため、合 成ペプチドの分析メソッドが、幅広い潜在的 な不純物に対応していることが重要になりま す。最高純度のフラクションの主要成分とし て、660.34 で [M + 2H]²⁺、825.42 で [M + 3H]³⁺、1,099.89 で [M + 4H]⁴⁺、1,649.34 で [M + 5H]⁵⁺ が検出されました。この結果は、 3,297.7 Da の (GLP-1) 7-36 アミドの全長ア ミノ酸配列に対応しています (図 8)。メソッド 条件と機器パラメータについては、表2を参 照してください。

結論

このアプリケーションノートでは、未精製ペプ チドの純度は、固相樹脂の選択などの合成 条件に応じて異なる場合があることを実証し ました。ただし、Agilent PLRP-S は、合成ペ プチドのイオンペア逆相精製に最適なカラム です。利用できる表面積が大きくポアサイズ が100 Å と小さい粒子は、精製能力が高くな る可能性があります。ポアサイズが大きいと、 多数の種において質量移動が適切に行われ、 ピークがよりシャープになります。

Agilent PLRP-S 分取 HPLC カラムと Agilent 1290 Infinity II 分取 LC システムを 組み合わせることで、分離を効率的に実施で きます。最後に、LC/MS メソッドにおいて、 Agilent AdvanceBio ペプチドマッピングカラ ムおよび移動相調整剤としてギ酸を適切に使 用することにより、分子の同定を確認しました。

図8. Agilent AdvanceBio ペプチドマッピングカラムでLC/MS により分析された、精製ペプチドの質量スペクトルの結果(メソッド条件については、表2を参照)

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE85357928

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2023 Printed in Japan, May 3, 2023 5994-6087JAJP

