

アジレントの高分解能 LC/(Q-)TOF 質量分析によるオリゴヌクレオチドおよび その不純物分析の統合型ワークフロー

ターゲットオリゴヌクレオチドおよびその不純物の分離、 特性解析、相対定量

はじめに

オリゴヌクレオチド (低分子干渉 RNA、アンチセンスオリゴヌクレオチド、アプタマ、CRISPR ガイドな ど) は近年、急速に広がりを見せるモダリティです。これらの候補物質の開発とともに、特性解析する ための堅牢な分析メソッドと、使いやすいデータ解析ワークフローのニーズが高まっています。さらに、 製品に関連する不純物の特性解析は、新しいバイオ医薬品の開発において重要なタスクです。一般的 な不純物には、ホスホロチオエートからリン酸ジエステルへの変換、切断、伸長、脱塩基オリゴヌクレ オチドなどがあります。¹²

著者

David L. Wong and Peter Rye Agilent Technologies, Inc. 多くの場合に数が多く、アバンダンスが非常に 低く、互いに関連して存在するターゲットオリ ゴヌクレオチドとその不純物の特性解析には、 LC/MS 分析などの高度な分析メソッドが不 可欠です。したがって、このようなプロファイ ルの作業を支援し自動化するソフトウェアが非 常に有用となります。

これらの障害を克服するために、アジレント は、ターゲットとその不純物の同定のための Find-by-Formula (FBF) および最大エントロ ピーアルゴリズムに対応した、自動化された 新しい Agilent MassHunter BioConfirm ソ フトウェア、バージョン 12.0 を開発しました。 図 2 に Target Plus Impurities (TPI) データ 解析ワークフローの詳細を示します。

実験方法

試薬と実験方法

トリエチルアミン (TEA) と 1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール (HFIP) は Sigma-Aldrich (セントルイス、ミズー リ州、米国) から購入しました。メタノール (InfinityLab Ultrapure LC/MS グレード、 部品番号 5191-4497) はアジレント・テクノ ロジーで用意しました。 オリゴヌクレオチド (DNA) ラダー標準(部 品番号 5190-9029)、オリゴヌクレオチ ド (RNA) 分解能標準(部品番号 5190-9028)、RNA 標準(100-mer)はすべてアジ レントで用意しました。

A 21-mer (CAG TCG ATT GTA CTG TAC TTA) および 40-mer (CCA CGA CCA AGT GAC AGC AAT GAA TCG AGT CGA GAT CCA T) オリゴヌクレオチドは、標準の脱塩精 製を含め、Integrated DNA Technologies, Inc. (コーラルビル、アイオワ州、米国) から 購入しました。

サンプル前処理

- オリゴヌクレオチド(DNA)ラダー標準および(RNA)分解能標準はどちらも使用前に1mL脱イオン(DI)水で溶解しました。最終濃度はどちらも2pmol/µLでした。
- 100-mer RNA 標準サンプルの濃度は
 0.4 mg/mL でした。
- 21-mer および 40-mer オリゴヌクレオチ ドサンプルも、さらに精製することなく、1 mL の DI 水で溶解しました。次に、0.50 mg/mL 原液になるまでサンプルを希釈し ました。

図1. オリゴヌクレオチド分析の分析コンポーネント - Target Plus Impurities (TPI) ワークフロー

装置構成

- Agilent 1290 Infinity II LC は以下の 構成です。
 - Agilent 1290 Infinity II ハイスピード ポンプ (G7120A)
 - Agilent 1290 Infinity II マルチ サンプラ (G7167B)、Agilent Infinity II サンプル冷却システム (オプション #100)を搭載
 - Agilent 1290 Infinity II マルチカラム サーモスタット (G7116B)
- Agilent 6545XT AdvanceBio LC/Q-TOF

LC/MS 分析

LC/MS 分析は、1290 Infinity II LC とデュ アル Agilent Jet Stream イオン源搭載 6545XT AdvanceBio LC/Q-TOF システム を組み合わせて実施しました。コンプライアン ス機能を有効にして、Agilent MassHunter Acquisition ワークステーションソフトウェア (バージョン 11.0)を使用しました。LC 分離 には Agilent AdvanceBio オリゴヌクレオチ ドカラム (2.1 × 50 mm、2.7 μ m、部品番 号 659750-702)を使用しました。

表 1 と表 2 に使用した LC/MS パラメータの 詳細を示します。

データ処理

オリゴヌクレオチド標準試料と合成オリゴヌク レオチドサンプルの LC/MS データファイルは すべて、Agilent MassHunter BioConfirm ソ フトウェア (バージョン 12.0)を使用して処理 しました。

表1.液体クロマトグラフィーのパラメータ

Agilent 1290 Infinity II LC					
カラム	AdvanceBio オリゴヌクレオチド、2.1 × 50 mm、2.7 µm (部品番号 659750-702)				
サーモスタット	4 °C				
溶媒 A	15 mM TEA および 400 mM HFIP 水溶液				
溶媒 B	メタノール				
グラジエント	0~1分、10%B 1~10分、10~40%B 10~11分、40~95%B				
カラム温度	65 °C				
流量	0.5 mL/min				
注入量	5.0 µL				

表 2. MS データ取り込みパラメータ

Agilent 6545XT AdvanceBio LC/Q-TOF システム					
パラメータ	設定値				
イオン源	デュアル AJS				
極性	ネガティブ				
ガス温度	275 °C				
ガス流量	12 L/min				
ネブライザ	35 psi				
シースガス温度	350 ℃				
シースガス流量	12 L/min				
VCap	3,500 V				
ノズル電圧	2,000 V				
フラグメンタ電圧	175 V				
スキマ電圧	65 V				
取り込みモード	HiRes (4 GHz)				
質量範囲	300 ~ 3,200 m/z				
取り込みレート	4 スペクトル/秒				

結果と考察

オリゴヌクレオチドサンプルの包括的な特性解 析は、困難で時間を要するプロセスとなる場 合があります。ターゲットオリゴヌクレオチドを プロファイルするだけでなく、すべての関連不 純物を同定し、相対定量を行う必要があるか らです。

さまざまなオリゴヌクレオチド標準試料の HPLC 分離

調査を開始するために、優れたクロマトグラ フィー分解能と高分解能精密質量(HRAM) 検出により、LC/MS ベースのメソッドを最適 化しました。図3に2種類のアジレントのオ リゴヌクレオチド標準試料、DNA ラダー標準 および RNA 分解能標準の LC/MS 分析を示 します。イオンペア逆相クロマトグラフィーを 使用して、優れたクロマトグラフィー分離が得 られました。メインピークから不純物(小さい ピーク)を分離し、検出することもできました。

合成オリゴヌクレオチドの LC/MS 分析

同じメソッドで高感度の質量分離 MS データ が生成されました。図 4 に合成オリゴヌクレ オチド (40-mer) サンプルの LC/MS 結果を 示します。約 2.5 µg の サンプルをカラムに注 入し、0.5 mL/min の流量で11 分のグラジエ ントを使用しました。40-mer オリゴヌクレオ チドの荷電状態の分布は、m/z 600 ~ 3,000 (-5 ~ -19) の質量範囲でした。図 4B のイ ンサートの拡大表示に、荷電状態が -13 のオ リゴヌクレオチドに対する優れた MS 同位体 分解能が示されています。 Q-TOF ソース条件を最適化し、質量誤差が 低い (3.6 ppm) 高品質の MS スペクトルが 得られました (表 3)。さらに、低アバンダン スの切断種 (約 12,000 Da) と伸長種 (約 12,600 Da) が検出されました (図 4C)。

図 5 に示されているように、100-mer RNA 標準サンプルで同様に高品質の MS 結果が 得られました。この場合も、優れた質量精度 (9.96 ppm) が観察されました。

図3. アジレントのオリゴヌクレオチドラダー標準 (DNA) およびアジレントの分解能標準 (RNA) の LC/MS 分析

図 4. 合成オリゴヌクレオチド(40-mer)の LC/MS 分析。(A) 40-mer オリゴヌクレオチドのトータルイオンクロマトグラフィー(TIC)。(B) 40-mer の生 MS スペクトル。 (C) デコンボリュートした 40-mer の MS スペクトル

図 5. 合成オリゴヌクレオチド (RNA、100-mer)の LC/MS 分析

表 3. 分析されたオリゴヌクレオチドのリスト。緑色で表示された算出質量値は(FBF を用いてマッチングされた)モノアイソトピック質量、 青色で表示された数字は(最大エントロピーデコンボリューションを用いてマッチングされた)平均質量です。全般的に、分析したすべての オリゴヌクレオチドサンプルで優れた質量精度が得られました。

オリゴヌクレオチド	オリゴ 長	シーケンス	算出 質量(Da)	測定 質量(Da)	質量精度 (ppm)
	15		4 498 7348	4 498 7319	-0.64
	20		6.018.9650	6.018.9635	-0.25
オリゴヌクレオチド (DNA)	25		7,539.1952	7,539.1989	0.50
ラダー標準	30	TTTTT TTTTT TTTTT TTTTT TTTTT	9,063.8431	9,063.7988	-4.89
	35	TTTTT TTTTT TTTTT TTTTT TTTTT TTTTT	10,584.8111	10,584.8065	-0.43
	40	TTTTT TTTTT TTTTT TTTTT TTTTT TTTTT TTTT	12,105.7790	12,105.8295	4.17
	14	rCrArCrUrGrArArUrArCrCrArArU	4,395.6479	4,395.6429	-1.14
オリゴヌクレオチド (RNA)	17	rUrCrArCrArCrUrGrArArUrArCrCrArArU	5,335.7670	5,335.7623	-0.88
分解能標準	20	rUrCrArUrCrArCrArCrUrGrArArUrArCrCrArArU	6,275.8861	6,275.8800	-0.97
	21	rGrUrCrArUrCrArCrArCrUrGrArArUrArCrCrArArU	6,620.9335	6,620.9263	-1.09
DNA-21	21	CAGTCGATTGTACTGTACTTA	6408.0961	6408.0952	-0.14
DNA-40	40	CCACGACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT	12291.9558	12292.0000	3.60
RNA 標準(長鎖)	100	AACACCACCAUACAGUGCAGGUUUUAGAGCUAGAAAUA GCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAA AAGUGGCACCGAGUCGGUGCUUU	32178.5878	32178.9083	9.96

Target Plus Impurities (TPI) データ解析 ワークフロー

優れた MS 結果を得ることが必要であると 同時に、結果を解釈するための高性能なソ フトウェアプログラムも不可欠です。アジレ ントは、存在する種の同定のための、Findby-Formula および最大エントロピーアルゴ リズムの両方に対応した、自動化された新 しい MassHunter BioConfirm 12.0 ソフト ウェアを開発しました。これらの Target Plus Impurities (TPI) ワークフローは、MS/MS データを使用した配列確認ワークフローとと もに、BioConfirm 12.0 で作成されました。 本アプリケーションノートでは TPI ワークフ ローのユニークな特徴について説明していま す。シーケンスワークフローについては、別の アプリケーションノートで説明しています。 BioConfirm 12.0 の TPI ワークフローで は、オリゴヌクレオチド MS データを使用し て、ターゲットオリゴヌクレオチドと関連不 純物をプロファイル (つまり、同定および相 対定量) します。図 6 に TPI ワークフローの ユーザーインタフェースを示します。ユーザー は、データ処理のために、ターゲットオリゴ 配列、潜在的な修飾、マッチングルール (5' または 3' 切断、欠失、または分割)を定義 します。同定されたターゲットやそのオリゴ ヌクレオチド不純物など、詳細な結果を複 数のウィンドウ/表フォーマットで表示できます。

TPI ワークフローの 2 つのオプション

TPI ワークフローでは、FBF (ターゲットア プローチ) または最大エントロピーデコンボ リューション (ノンターゲットアプローチ) の いずれかを使用することができ、ワークフロー トランジション質量機能によってそれぞれのサ ンプルに使用されるアルゴリズムが決定され ます。FBF は、サンプルシーケンスの質量が ワークフロートランジション質量によりも小さ い場合に使用されます。最大エントロピーデ コンボリューションは、サンプルシーケンスの 質量がワークフロートランジション質量と同じ (または上回る)場合に使用されます。この ユーザー定義の値は、MS 機器の分解能、ター ゲットおよび不純物の質量、ノンターゲット分 析に対するターゲット分析の優先度、質量精 度の要件など、複数の要素によって通知され ます。

表3 に、測定質量および質量精度とともに、 さまざまなインタクトオリゴヌクレオチドサン プルの LC/MS 分析の概要を示します。FBF アルゴリズムを使用し、30-mer よりも短い多 数のオリゴヌクレオチド配列に対して ppm 以 下の質量精度を達成できました。より大きなオ リゴサンプルに対しては、最大エントロピーア ルゴリズムにより、低 ppm レベルの質量誤差 も達成されました。

図 6. Target Plus Impurities (TPI) ワークフローを搭載した Agilent BioConfirm ソフトウェア、バージョン 12.0 の概要

オリゴヌクレオチド不純物分析

オリゴヌクレオチド不純物分析は、合成オリゴ ヌクレオチドの製品関連の不純物を特性解析 するために、非常に重要なタスクです。オリゴ ヌクレオチド合成における不十分な化学結合 効率により、切断、付加、脱塩基オリゴヌクレ オチドなど、多数の種類の不純物が報告され ています。²すべての製品関連の不純物の包括 的なプロファイルを維持するにあたっては、分 析上の課題があります。低濃度の不純物を検 出するためには、クロマトグラフィーによる分 離と優れた MS 感度が必要です。

この研究では、全長オリゴヌクレオチドター ゲットとその不純物の特性解析のための高 速 LC/MS メソッドを開発しました。図7に、 FBF を使用して測定された 21-mer 合成オリ ゴヌクレオチドと一連の関連不純物の LC/MS プロファイルを示します。この 21-mer の 5' 切断不純物のほとんどは、11 分の短い LC グラジエントで良好に分離されました。 実際 のところ、これらの不純物とターゲットは、6 分以内に溶出されました (図 7A)。図 7B に示されているように、BioConfirm 12.0 Find-by-Formula アルゴリズムを使用した データ解析により、正確なモノアイソトピック 質量と、すべてのターゲット不純物の相対定 量結果が得られました。最初の脱塩プロセス の後、この 21-mer 合成オリゴヌクレオチドサ ンプルはさらなる精製はされなかったため、 ターゲットオリゴヌクレオチドの可能性のある ほとんどすべての 5' 切断不純物は、相対定量 において、0.5%未満で同定されました。

表 4 に、デコンボリュートした優れた質量精 度(ほとんどが ppm 以下のレベル)と、相対 定量の再現性により、ターゲットとして検出さ れた 19 のすべてのオリゴヌクレオチド不純物 をまとめます。5' リンカー切断や 3' 切断(リ ンカーあり、またはリンカーなし)など、多数 の他の種類のターゲット関連不純物も、非常 に低いアバンダンスレベルで検出されました (データは示していません)。

40-mer オリゴヌクレオチドで一連の 5' 切断 を同定するために、最大エントロピーデコン ボリューションを使用しました。40-mer オリ ゴヌクレオチドサンプルのほとんどの 5' 切断 不純物が同定されました。図 8 に上位 10 の 不純物 (および 40-mer ターゲット)を示しま す。表 5 には、最大エントロピー手法を用い た相対定量分析の詳細を示します。 FBF の結果と同様に、より大きなオリゴヌクレ オチド分子(40-mer)に対して、高い質量精 度と、正確な相対定量の結果が得られました。 結果はまた、低濃度のオリゴヌクレオチド不 純物の検出において優れた感度も示していま す。40-mer オリゴヌクレオチドサンプルの上 位15の不純物において、0.65%もの低い相 対定量が達成されています(表 5)。説明した ように、多数の他の種類のターゲット関連不 純物も非常に低いアバンダンスレベルで検出 されました(データは示していません)。

図 7. Agilent BioConfirm ソフトウェアの Find-by-Formula アルゴリズムによる、合成オリゴヌクレオチド(21-mer)およびターゲット不純物の相対定量分析。 (A) 21-mer オリゴヌクレオチドとその不純物の、抽出化合物のクロマトグラフィー。(B) 21-mer オリゴヌクレオチド とその不純物の相対定量分析の結果。 合計 12 のサンプル注入で、非常に低い RSD (3 % 未満) により優れた再現性が得られました。

			算出			平均 %				
不純物	+11-1 E	RT	モノアイソトピック	測定	平均質量精度	定量 (n = 12)	博進信業	RSD	S	
L-9			貝里	貝里	(ppiii) (ii = 12)	(11 - 12)	惊华偏左	(%)	5-172	
1	20~21	0.321	555.1479	555.1486	1.21	0.57	0.01	2.39	ТрА	
2	19~21	0.354	859.1939	859.1950	1.09	0.89	0.02	1.76	ТрТрА	
3	18~21	0.371	1148.2403	1148.2410	0.81	1.28	0.02	1.44	СрТрТрА	
4	$17 \sim 21$	0.604	1461.2979	1461.2978	0.15	0.53	0.01	1.18	АрСрТрТрА	
5	$16 \sim 21$	0.920	1765.3439	1765.3442	0.57	0.72	0.01	1.72	ТрАрСрТрТрА	
6	$15 \sim 21$	1.386	2094.3964	2094.3969	0.65	1.86	0.01	0.66	GpTpApCpTpTpA	
7	14~21	2.018	2398.4425	2398.4438	0.69	4.61	0.04	0.91	ТрGpTpApCpTpTpA	
8	13~21	2.500	2687.4889	2687.4916	0.73	4.98	0.04	0.72	СрТрGрТрАрСрТрТрА	
9	12~21	3.199	3000.5465	3000.5483	0.33	2.14	0.02	0.75	АрСрТрGрТрАрСрТрТрА	
10	11~21	3.531	3304.5925	3304.5928	0.04	1.23	0.01	1.05	ТрАрСрТрGрТрАрСрТрТрА	
11	10~21	3.698	3633.6450	3633.6453	0.21	2.55	0.02	0.93	GpTpApCpTpGpTpApCpTpTpA	
12	9~21	3.964	3937.6911	3937.6929	0.15	2.45	0.02	0.76	ТрGpTpApCpTpGpTpApCpTpTpA	
13	8~21	4.213	4241.7371	4241.7380	0.47	3.97	0.03	0.70	ТрТрGpTpApCpTpGpTpApCpTpTpA	
14	$7 \sim 21$	4.430	4554.7947	4554.7973	0.33	1.49	0.01	0.97	АрТрТрGрТрАрСрТрGрТрАрСрТрТрА	
15	6~21	4.430	4883.8472	4883.8468	-0.23	1.74	0.01	0.85	GpApTpTpGpTpApCpTpGpTpApCpTpTpA	
16	5 ~ 21	4.513	5172.8936	5172.8945	0.05	1.91	0.02	0.80	СрGpApTpTpGpTpApCpTpGpTpApCpTpTpA	
17	4~21	4.696	5476.9396	5476.9458	1.22	1.81	0.01	0.79	ТрСрGрАрТрТрGрТрАрСрТрGрТрАрСрТрТрА	
18	3~21	4.729	5805.9921	5806.0001	1.51	4.04	0.04	0.99	GpTpCpGpApTpTpGpTpApCpTpGpTpApCpTpTpA	
19	2~21	4.812	6119.0498	6119.0490	-0.32	2.75	0.05	1.92	АрGpTpCpGpApTpTpGpTpApCpTpGpTpApCpTpTpA	
ターゲット	21-mer	4.879	6408.0961	6408.1044	1.29	58.49	0.20	0.34	СрАрGрТрСрGрАрТрТрGрТрАрСрТрGрТрАрСрТрТрА	

表 4. 21-mer 合成オリゴヌクレオチドの 19 のオリゴヌクレオチド不純物の分析の概要 (n = 12)

図8.最大エントロピー MS デコンボリューション手法を用いた、40-mer とその5'切断 (2-40~11-40)の相対定量

オリゴ長	RT (分)	測定質量	% 定量	シーケンス				
16~40	5.861	7699.0915	2.08	AGCAATGAATCGAGTCGAGATCCAT				
$15 \sim 40$	5.878	7988.2299	2.26	CAGCAATGAATCGAGTCGAGATCCAT				
$14 \sim 40$	5.994	8301.3760	1.24	ACAGCAATGAATCGAGTCGAGATCCAT				
13~40	5.990	8631.0440	1.35	GACAGCAATGAATCGAGTCGAGATCCAT				
$12 \sim 40$	6.048	8935.0245	1.60	TGACAGCAATGAATCGAGTCGAGATCCAT				
$11 \sim 40$	6.073	9263.8039	2.39	GTGACAGCAATGAATCGAGTCGAGATCCAT				
$10 \sim 40$	6.148	9577.3536	2.54	AGTGACAGCAATGAATCGAGTCGAGATCCAT				
$9 \sim 40$	6.193	9891.1191	0.94	AAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$8 \sim 40$	6.185	10179.5068	1.18	CAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$7 \sim 40$	6.214	10468.9206	2.36	CCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$6 \sim 40$	6.289	10782.0017	1.08	ACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$5 \sim 40$	6.276	11111.0793	2.03	GACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$4 \sim 40$	6.280	11400.2121	2.82	CGACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$3 \sim 40$	6.334	11712.5835	0.65	ACGACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
$2 \sim 40$	6.339	12002.3602	2.68	CACGACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				
ターゲット	6.384	12292.1749	72.80	CCACGACCAAGTGACAGCAATGAATCGAGTCGAGATCCAT				

表 5.	40-mer	合成オ	リゴヌク	レオチドの	上位 15	のオリゴヌ	クレオチ	ド不純物の	分析の概要
	10 11101	Щ /-/0 - 5	/ / / / /					1 1 1 0 1 2	22 11 - 2 19030

結論

HRAM MS データを使用したターゲットオリ ゴヌクレオチドとその関連不純物の特性解析 のために、2 つの新しい統合型の自動オリゴ ヌクレオチドデータ解析手法が開発されまし た。分析結果は、対象のオリゴヌクレオチドに ついて、優れたクロマトグラフィー分離と質量 精度 (ppm 以下)が得られたことを示してい ます。LC/MS 結果はまた、観察対象のオリゴ ヌクレオチドとその不純物について、優れた 再現性とともに、高精度の相対定量が達成さ れたことを示しています。新たに開発された Agilent MassHunter BioConfirm ソフトウェ ア (バージョン12.0)は、高スループットでの 自動 TPI データ処理を実現し、データ解析の 時間を大幅に短縮します。

参考文献

- Capaldi, D. et al. Impurities in Oligonucleotide Drug Substances and Drug Products. Nucleic Acid Ther. 2017, 27, 309–322.
- 2. Okafo, G.; Elder, D.; Webb, M. Analysis of Oligonucleotides and Their Related Substances.*ILM Publications* **2012**.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE29613125

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2022 Printed in Japan, May 13, 2022 5994-4817JAJP

