環境

水素キャリアガスと Agilent HydroInert イオン源を用いた EPA TO-15 分析

シングル四重極質量分析計(GC/MS)と水素キャリアガスを 組み合わせた冷媒不要の加熱脱着とガスクロマトグラフィーに よる環境大気試験

著者

Laura Miles, Hannah Calder, and Helen Martin Markes International Ltd. Llantrisant, UK

Tarun Anumol, Amanda McQuay, and Angela Smith Henry Agilent Technologies, Inc. Wilmington, DE, USA

概要

環境大気モニタリングの分析では一般的に、ガスクロマトグラフィー /質量分析(GC/MS)とヘリウム キャリアガスが用いられます。最近はヘリウムの入手が困難になっているため、ラボでは水素キャリアガ スについての積極的な調査が求められていますが、大部分のGC/MS分析では、イオン源における感 度、水素化、または脱塩素反応が低下してしまいます。このアプリケーションノートでは、加熱脱着予備 濃縮に冷媒不要のシステムを使用した、相対湿度(RH)100%における加湿キャニスターの「大気毒 性」サンプルのGC/MS分析での、水素キャリアガスとAgilent HydroInert イオン源の使用方法につい て説明します。また、プロペンからナフタレンまでに及ぶ、広い範囲の揮発性を持つ65種類のターゲッ ト化合物の検出についても示します。この結果は、11 pptvという低いメソッド検出限界(MDL)を含 む、米国環境保護庁(EPA)メソッド有害有機物-15(TO-15)で規定されている基準内に十分に収まっ ている、優れたピーク形状と性能を達成しました。

はじめに

環境大気中の化学物質のモニタリングでは、 これらの物質が環境と地球全体の気候に与え る影響について明らかにする必要があります。 このモニタリングにより、主に環境(特に都市 部の)大気、産業排出ガス、および埋立地ガ ス中の有害な可能性のある揮発性有機化合物 (VOC)に関する懸念の高まりに応じて、各 国の規制や国際的な規制の策定が推進されて います。

これらの VOC の分析はいくつかの標準メソッ ドに従って実施されます。そしてこの分析で は、吸着剤チューブ(ポンプ式またはパッシ ブ式)、キャニスター、またはオンライン手法 のいずれかを使用する必要があります。各メ ソッドは、独自のメリットおよび一定範囲の適 用性を備えていますが、米国や中国ではキャ ニスターサンプリングが最も一般的です。この アプローチを使用して必要な検出限界を達成 するには、分析対象の成分に注目してバルク 成分を選択的に除去するための予備濃縮が 必要になります。このアプローチは、キャニス ターで使用される最も一般的な標準メソッド である U.S. EPA メソッド TO-15 内で規定さ れています。¹

キャニスターサンプリングは一般的であるに もかかわらず、対象となる成分と濃度の範囲 がますます増大しているため、従来のキャニス ター予備濃縮技術では対応が困難になってい ます。サンプリング位置での温度と湿度の範 囲も問題になります。分析機器に水分が侵入 すると、成分のレスポンスと再現性に悪影響 を与えると同時に、カラムと検出器の寿命を 縮める可能性があるため、高い湿度での操作 は困難です。

ヘリウムの入手性はここ数年にわたる懸念事 項であり、水素のような代替キャリアガスへの 移行に対する関心が大きく高まっています。た だし、既存の MS システムには、高度に塩素 化された化合物の脱塩素反応に関する問題が 存在します。これらの問題は、トータルイオン クロマトグラム (TIC) 内のピークの質量スペ クトルに影響を与え、化合物の誤同定を引き 起こす可能性があります。Agilent HydroInert イオン源は、Agilent 5977B イナートプラス GC/MSD 用に新しく設計されたエクストラク タイオン源です。水素に関連するこれらの問題 に対応しており、GC/MS における水素キャリ アガスの性能向上に効果があります。水素キャ リアガス用の HydroInert イオン源は、質量ス ペクトルの正確さを維持しています。また、引 き続き既存のヘリウムベースの質量スペクト ルライブラリと定量メソッドを使用することも できます。

このアプリケーションノートでは、キャニス ターオートサンプラ、革新的なトラップベー スの脱水装置、および加熱脱着-ガスクロ マトグラフィー/質量分析 (TD) GC/MS を、 水素キャリアガスおよび HydroInert イオン源 と組み合わせて使用する方法について説明し ます。これにより、U.S. EPA メソッド TO-15 に従い、RH 100 % においてキャニスターのさ まざまな揮発性「大気毒性」物質を分析でき るようになります。「TO-15」という用語を使用 して、一般的なキャニスターサンプリングにつ いて説明しますが、今回の実験で重視してい る点は、メソッドの特定の要件の順守です。

U.S. EPA メソッド TO-15 の概要

主な操作を下に示します。

 サンプリング:キャニスターをクリーニン グして排気したら、サンプリング場所に移 動させます。キャニスターバルブを開き、 フローコントローラによりフィルタを通し てキャニスターに空気を引き込みます。設 定した定流量に対応するサンプリング時間 に達したら、キャニスターバルブを閉じて キャップで密閉します。

- 2. **保管:**サンプルは室温で保管して、サンプ リング後 20 日以内の可能な限り早い時 点に分析する必要があります。
- サンプル分析:既知量のサンプルを、脱水ユニットを通してキャニスターオートサンプラに接続されているキャニスターから、コンセントレータシステム内のマルチ吸着剤フォーカシングトラップに移します。脱水ユニットによりサンプルからほぼすべての水を除去し、トラップをパージしてサンプル内に残されている水蒸気をさらに減少させます。濃縮および乾燥ステップの完了後、VOCを加熱脱着し、キャリアガス流内に入れて、GCカラムに移してから分離します。
- 4. 化合物の同定と定量: メソッド TO-15 で は GC/MS を使用して、サンプルを定性 および定量分析します。リニア四重極 MS では、広い m/z 範囲のモニタリング(ス キャンモード)、またはイオン選択スキャン (SIM モード) パターンを使用して、関連 するターゲット化合物をモニタリングする ことができます。TIC 内の個別のピークの 質量スペクトルを調査し、定量および定性 イオンの強度に基づいて VOC を同定しま す。次に、取り込んだ質量スペクトルをラ イブラリスペクトルと比較して(同様の条 件下で実施)、化合物を同定します。指定 した化合物に対して、定量イオンのアバン ダンスを既知濃度の化合物のアバンダン スと比較し、サンプル中の化合物の濃度を 決定します。

実験方法

装置構成

この実験で使用した分析システムでは、マル チガス CIA Advantage-xr キャニスターオート サンプラと Kori-xr 脱水装置および UNITY-xr 加熱脱着装置を、Agilent 8890B GC、お よび HydroInert El イオン源と6 mm レン ズ (部品番号 G3870-20448)を搭載した Agilent 5977B シングル四重極 GC/MSD シ ステムと組み合わせました。

表 1 と 2 に、キャニスター、TD、GC、MS の パラメータを示します。

標準の前処理

特に記載がない限り、1 ppm で 65 種類の 「大気毒性」化合物を含む 1 ppm の標準を、 窒素バランスガスにより 6 L のキャニスターに 希釈して 10 ppbv にしました。適切な量の水 をキャニスターに注入して、RH を 100 % にし ました。

結果と考察

結果のリストを表 A1 に示します(付録を参 照)。

クロマトグラフィー

図1に、RH 100% における 10 ppbv TO-15 標準の代表的な分析結果を示します。また図 2に、広い範囲の揮発性を持つ 16 種類の成 分について、抽出イオンクロマトグラム (EIC) を示します。特に、軽い VOC において優れた ピーク形状を示しており、これは RH 100% での成分トラップ前の脱水に使用した Kori-xr モジュールが効果的であったことを実証して います。

別の注目すべき点として、水素キャリアガスが GC サイクルタイムを 40 % 縮めていることが あります (45 分から 27 分に短縮)。これは、 ナフタレンのリテンションタイムが 38 分から 23 分に短縮されていると同時に、すべての化 合物においてリテンションタイムの順序が維持 されていることにより示されています。クロマ トグラフィーが高速化したことにより、サンプ ルスループットが大幅に向上しています。

表1.GCとTDのパラメータ

パラメータ	値
ガスクロマトグラフ	Agilent 8890B GC
カラム	Agilent J&W DB-624、60 m × 0.25 mm、1.40 µm (部品番号 123-1364)
注入口	スプリットレス
注入口温度	120 °C
オーブン温度プログラム	30 ℃ (3 分間) 8.3 ℃ /min で 230 ℃ まで昇温(0 分間)
合計分析時間	27 分
MS トランスファーライン温度	230 °C
注入量	NA
キャリアガス	水素、2.0 mL/min 定流量
	キャニスターサンプリング
機器	CIA Advantage-xr (Markes International)
サンプル量	最大 400 mL (RH 50 ~ 100 % のサンプル用)
	脱水
機器	Kori-xr (Markes International)
トラップ温度	−30 °C /+300 °C
	TD
機器	UNITY-xr (Markes International)
フローパス	120 °C
スタンバイスプリット	10 mL/min
サンプル流量	50 mL/min
トラップパージ	1.0 分間、50 mL/min
トラップ脱着	2.0 分間、4 mL/min スプリット流量
コールドトラップ	フォーカシングトラップ:Air Toxics Analyzer (部品番号 U-T15ATA-2S)

表 2. MS パラメータ

パラメータ	値
イオン源	HydroInert イオン源
モード	電子イオン化、70 eV
イオン源温度	300 °C
四重極温度	200 °C
スキャン範囲	m/z 30 ~ 300

図 1. ヘリウム (A) および水素 (B) ガスを使用した、RH 100 % における 400 mL で 10 ppbv の 65 種類の成分の TO-15 標準の分析結果。 ナフタレンのリテンションタイムが 38 分から 23 分に短縮され、GC サイクルタイムが 40 % 縮まったことを示しています。

図 2. 選択した 16 種類の化合物を水素ガスを使用して 2.5 ppbv で分析した際の EIC の優れたピーク形状

スペクトルの正確さ

HydroInert イオン源では、水素キャリアガス の使用で発生する可能性のある水素化および その他の反応を防止することにより、スペクト ルの正確さを維持しています。65 種類の成分 混合物中のすべての成分におけるライブラリ 一致スコア (LMS)は、90%を十分に上回っ ており、これはイオン源での不要な反応が防 止されていたことを示しています。図3に、米 国国立標準技術研究所のヘリウムライブラリ (NIST20)に対する一致スコアが高かった2 つの例を示します。

図 3. LMS およびジクロロジフルオロメタン(A)とテトラクロロエチレン(B)の抽出スペクトルと NIST スペクトルの比較。スペクトルの正確さは維持されています。

直線性

濃度の直線性を、0.5、1.25、2.5、5、7.5、および 10 ppbv で算出しました。

RH 100 % で優れたシステム直線性が得られ ており (表 A1)、0.50 ~ 10 ppbv での平均 R^2 値は 0.999 でした。図 4 は、広い範囲の 揮発性を持つ 14 種類の化合物における、RH 100 % サンプルの直線性プロットを示してい ます。

メソッド検出限界

MDL は、0.1 ppbv でのサンプルの7回の繰り返し分析に基づいて算出しました。 2 メソッド TO-15 に適合するには、MDL が \leq 0.5 ppbv である必要があります。

水素キャリアガスを用いた計算では、分析した 28 種類の化合物の平均 MDL は 28 pptv で した (表 3)。これはメソッド基準内に十分収 まっており、メソッドコンプライアンスの達成が 可能で、HydroInert イオン源を用いた TO-15 で優れた結果が得られることが確認されまし た。MDL 値は、4-エチルトルエンの 11 pptv から二硫化炭素の 53 pptv の範囲でしたが、 唯一の外れ値はプロペンの 113 pptv でした。 これらの値はすべて、要件である \leq 0.5 ppbv を大幅に下回っています。

図 4. RH 100 % サンプルの広い範囲の揮発性を持つ 14 種類の化合物の 0.5 ~ 10 ppbv での直線性

No.	化合物	水素 MDL (pptv)
1	プロペン	113
2	ジクロロジフルオロメタン	38
3	塩化ビニル	29
4	ブタジエン	33
5	1,1-ジクロロエテン	24
6	1,1,2-トリクロロ-1,2,2-トリフル オロエタン	25
7	二硫化炭素	53
8	ジクロロメタン	29
9	tert-ブチルメチルエーテル	16
10	酢酸ビニル	23
11	メチルエチルケトン	42
12	テトラクロロメタン	17
13	ベンゼン	19
14	ヘプタン	13

No.	化合物	水素 MDL (pptv)
15	メタクリル酸メチル	34
16	ブロモジクロロメタン	34
17	トルエン	14
18	テトラクロロエテン	13
19	1,2-ジブロモエタン	28
20	クロロベンゼン	14
21	エチルベンゼン	14
22	スチレン	23
23	1,1,2,2-テトラクロロエタン	16
24	4-エチルトルエン	11
25	1,3,5-トリメチルベンゼン	14
26	1,2-ジクロロベンゼン	17
27	ヘキサクロロブタジエン	23
28	ナフタレン	50
	平均	28

再現性

メソッド TO-15 では、キャリブレーション テーブル内の各化合物の相対レスポンス係 数(RRF)の算出相対標準偏差(RSD)が 30%未満で、例外は多くても2つまで、その 最大制限値は 40%とするように要求してい ます。結果は、RH 100%でのメソッド TO- 15 の要件内に十分に収まっており、RSD は 7.47 % でした。さらに、RH 100 % における 10 ppbv での 10 回の繰り返し分析の平均面 積 RSD は 1.22 % でした。RH 100 % での幅 広い濃度にわたる 50 回の注入について、そ の平均リテンションタイム RSD は 0.09 % で した。基準には変動 < 1 % と記載されています (図 5)。UNITY-Kori-CIA Advantage-xr を 使用して水を効率的に管理することにより、水 素キャリアガスを使用した場合でも、安定した リテンションタイムおよび再現性の高いピーク 面積レスポンスを実現できます。

実際の大気サンプル

実際の大気サンプルでのシステム性能を示す ために、上述したものと同じ条件下で400 mLのラボの空気を分析しました。TO-15リス トの65種類の成分のうち7種類が定量可能 なレベルでした(図6)。

図 6.(A) 上述した条件を使用して、400 mL の田舎の大気の分析から生成した実際のサンプルクロマトグラム。TO-15 リストの化合物を示しています。 (B) TO-15 リストから検出された 7 種類の化合物の拡大図

結論

Agilent 8890 GC を、Agilent 5977B シング ル四重極 MS および水素キャリアガスを使用 した CIA Advantage-Kori-xr-UNITY-xr 予 備濃縮システムと組み合わせることにより、 U.S. EPA メソッド TO-15 に従って、高湿度環 境中の「大気毒性」物質を高い信頼性で分析 できます。

結果の主な特長として、相対湿度 100 % での 65 種類の成分の TO-15 混合物(プロペンか らナフタレンまで)の分析における、優れたク ロマトグラフィー性能があります。性能はメソッ ド TO-15 の要件内に十分に収まっており、メ ソッド検出限界は 11 pptv という低い値です。

決定的なのは、TO-15 混合物中の特に揮発 性の高い成分に対して、この性能が達成され たことです。その理由は、VOC および極性物 質の分析に影響を与えずに、高湿度の空気流 から水を効率的かつ選択的に除去したためで す。さらに、電気式トラップ冷却を使用するこ とにより、液体冷媒に関連するコストと手間を 低減しています。 Agilent HydroInert イオン 源と水素キャリアガスは、質量スペクトルの正 確さを維持しています。また、引き続き既存の ヘリウムベースの質量スペクトルライブラリと 定量メソッドを使用できます。GC/MSD の高 い堅牢性と信頼性を活用することにより、シ ステムを長期にわたって稼働できると同時に、 U.S. EPA TO-15 の要件に適合したデータを 生成できます。

参考文献

- Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/ Mass Spectrometry (GC/MS), Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air (second edition), US EPA 1999. www.epa.gov/ homeland-security-research/epaair-method-toxic-organics-15-15determination-volatile-organic
- Chinese EPA Method HJ 759, Ambient Air – Determination of Volatile Organic Compounds – Collected by Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry, Chinese Ministry of Environmental Protection 2015. http://kjs.mep.gov.cn/hjbhbz/ bzwb/dqhjbh/jcgfffbz/201510/ t20151030_315940.htm

付録

キャニスター分析用の従来のシステムの多くで は、液体冷媒を使用して VOC をトラップして います。Markes 社のシステムでは、代わりに 電気式(ペルチェ式)冷却を使用して、液体 冷媒によるコストを発生させずに、大容量サン プルの大部分の VOC を定量的に保持してい ます。

メソッド TO-15 には、クリーンであることを検 査していないキャニスター(ターゲット VOC が 0.2 ppbv 未満の加湿ゼロ空気の直接分析 と比較)は使用すべきでないと記載されてい ます。

7 つの値に対して、99 % の信頼度で MDL を 算出しました(MDL = 3.143 × 標準偏差 × 濃度)。 **表 A1.** ヘリウムおよび水素キャリアガスを使用し、RH 100 % での TO-15 標準で得られた分析結果データの比較。 直線性(R²)値は、ヘリウムキャリアガスを使用した分析では濃度範囲 0.22 ~ 10 ppbv、水素キャリアガスを 使用した分析では 0.5 ~ 10 ppv で生成しました。

		ヘリウムキャリア(RH 100 %)		水素キャリア(RH 100 %)			
No.	化合物	RT (分)	RRF RSD (%)	RRF RSD (%)	RT (分)	RRF RSD (%)	RRF RSD (%)
1	プロペン	4.894	0.9997	6.3	2.47	0.9994	12.4 %
2	ジクロロジフルオロメタン	5.032	0.9998	5.6	2.53	1.0000	8.4 %
3	ジクロロテトラフルオロエタン	5.500	0.9997	7.7	2.77	0.9999	4.2 %
4	クロロメタン	5.686	0.9808	11.0	2.88	0.9929	9.3 %
5	塩化ビニル	6.122	0.9994	4.6	3.10	0.9997	10.1 %
6	ブタジエン	6.276	0.9998	2.0	3.17	0.9999	12.4 %
7	ブロモメタン	7.346	0.9988	14.4	3.74	0.9988	10.3 %
8	クロロエタン	7.723	0.9870	9.1	3.95	0.9999	5.2 %
9	トリクロロフルオロメタン	8.646	0.9999	6.2	4.42	0.9996	5.6 %
10	エタノール	9.299	0.9997	24.4	4.80	0.9990	20.9 %
11	アクロレイン	9.925	0.9993	9.3	5.20	0.9988	18.9 %
12	1,1-ジクロロエテン	10.258	0.9998	1.2	5.35	0.9999	13.2 %
13	1,1,2-トリクロロ-1,2,2-トリフルオロエタン	10.337	1.0000	4.8	5.40	0.9998	2.2 %
14	アセトン	10.401	1.0000	2.7	5.45	0.9999	5.1 %
15	イソプロパノール	10.868	0.9981	18.8	5.74	0.9996	14.2 %
16	二硫化炭素	10.884	0.9999	0.9	5.67	0.9984	5.6 %
17	ジクロロメタン	11.657	0.9998	2.0	6.23	0.9995	8.7 %
18	1,2-ジクロロエテン	12.461	0.9999	1.6	6.65	0.9997	11.8 %
19	tert-ブチルメチルエーテル	12.513	0.9997	4.2	6.65	0.9999	3.4 %
20	ヘキサン	13.285	0.9956	13.6	7.11	0.9999	2.3 %
21	1,1-ジクロロエタン	13.578	1.0000	5.5	7.36	0.9996	10.1 %
22	酢酸ビニル	13.737	0.9998	1.5	7.39	0.9981	12.5 %
23	trans-1,2-ジクロロエテン	15.112	0.9998	3.6	8.24	0.9997	11.4 %
24	メチルエチルケトン	15.127	0.9998	9.2	8.23	0.9998	6.9 %
25	酢酸エチル	15.314	0.9999	5.5	8.30	1.0000	4.7 %
26	クロロホルム	15.904	0.9999	5.5	8.76	0.9984	8.6 %
27	テトラヒドロフラン	15.912	0.9998	9.2	8.60	0.9997	6.8 %
28	1,1,1-トリクロロエタン	16.447	0.9999	8.2	8.99	0.9969	7.9 %
29	シクロヘキサン	16.637	0.9999	8.8	9.08	0.9997	2.6 %
30	テトラクロロメタン	16.902	1.0000	7.4	9.21	0.9942	11.1 %
31	1,2-ジクロロエタン	17.378	1.0000	3.5	9.61	0.9999	5.6 %
32	ベンゼン	17.390	0.9999	6.1	9.52	0.9998	2.0 %
33	ヘプタン	18.075	0.9995	19.0	9.97	0.9998	2.8 %
34	トリクロロエテン	19.022	0.9999	5.1	10.51	0.9990	10.0 %
35	1,2-ジクロロプロパン	19.557	0.9999	7.1	10.91	0.9990	4.9 %
36	メタクリル酸メチル	19.822	0.9989	2.9	11.00	0.9997	2.8 %
37	p-ジオキサン	19.914	0.9998	12.6	11.01	0.9981	15.6 %
38	ブロモジクロロメタン	20.227	0.9999	6.2	11.32	0.9953	11.9 %
39	cis-1,3-ジクロロプロペン	21.399	1.0000	4.5	11.98	0.9961	12.9 %
40	4-メチルペンタン-2-オン	21.760	0.9999	2.8	12.21	0.9996	5.6 %
41	トルエン	22.326	0.9999	16.3	12.50	1.0000	4.1 %
42	trans-1,3-ジクロロプロペン	22.810	0.9997	2.9	12.88	0.9973	13.1 %
43	1,1,2-トリクロロエタン	23.305	1.0000	7.9	13.19	0.9990	6.3 %

		ヘリウムキャリア(RH 100 %)			水素キャリア(RH 100 %)		
No.	化合物	RT (分)	RRF RSD (%)	RRF RSD (%)	RT (分)	RRF RSD (%)	RRF RSD (%)
44	テトラクロロエテン	23.828	1.0000	8.8	13.31	0.9996	2.9 %
45	メチル n-ブチルケトン	23.959	0.9998	2.5	13.53	0.9942	17.0 %
46	クロロジブロモメタン	24.398	0.9999	4.7	13.79	0.9973	12.6 %
47	1,2-ジブロモエタン	24.735	1.0000	4.4	13.98	0.9973	14.2 %
48	クロロベンゼン	26.102	1.0000	11.9	14.78	0.9998	2.2 %
49	エチルベンゼン	26.407	0.9999	20.2	14.94	1.0000	4.6 %
50	m-キシレン	26.732	1.0000	20.8	15.16	0.9999	4.7 %
51	p-キシレン	26.732	1.0000	20.8	15.16	0.9999	4.7 %
52	0-キシレン	27.837	1.0000	25.2	15.81	1.0000	5.7 %
53	スチレン	27.857	0.9999	10.3	15.84	1.0000	4.1 %
54	トリブロモメタン	28.376	0.9998	4.4	16.15	0.9976	6.8 %
55	1,1,2,2-テトラクロロエタン x	29.624	0.9999	6.8	16.99	0.9990	8.1 %
56	4-エチルトルエン	30.385	0.9999	6.3	17.37	1.0000	4.1 %
57	1,3,5-トリメチルベンゼン	30.551	1.0000	19.6	18.13	1.0000	4.5 %
58	1,2,4-トリメチルベンゼン	31.653	1.0000	10.4	17.48	0.9999	4.6 %
59	1,2-ジクロロベンゼン	32.485	0.9999	3.9	18.62	1.0000	1.0 %
60	1,4-ジクロロベンゼン	32.738	0.9999	3.3	18.80	0.9999	2.4 %
61	塩化ベンジル	33.107	0.9998	2.3	19.01	0.9998	2.0 %
62	1,3-ジクロロベンゼン	33.840	0.9999	7.4	19.43	0.9999	3.8 %
63	1,2,4-トリクロロベンゼン	38.594	0.9965	18.9	22.30	0.9998	2.2 %
64	ヘキサクロロブタジエン	39.121	0.9997	9.4	22.57	0.9988	7.5 %
65	ナフタレン	39.315	0.9975	19.7	22.78	1.0000	1.6 %
	平均值		0.9992	8.5		0.9990	7.5 %

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE14855333

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2022 Printed in Japan, September 27, 2022 5994-5359JAJP

