臨床研究

希少疾患フリードライヒ運動失調症の 血液バイオマーカー、フラタキシン-M タンパク質の定量

Agilent 6495 トリプル四重極 LC/MS システムによる分析

概要

フリードライヒ運動失調症(FRDA)は、ミトコンドリア成熟型フラタキシン(フラタキシン-M)タンパク 質の発現不全を原因とする、進行性の神経系損傷と運動障害を伴う遺伝性疾患です。フラタキシン-M (81-210)は、ミトコンドリアプロセシングペプチダーゼ(MPP)による、完全長フラタキシン(1-210) の2段階のタンパク質分解切断によって生じます。フラタキシン-Mは循環血中に分泌されないため、 血漿や血清では分析できません。しかしフラタキシン-Mは、血小板やヒト末梢血単核球(PBMC)など、 ミトコンドリアを有する血液細胞中に存在しています。

質量分析 (MS) と免疫沈降 (IP) および安定同位体希釈メソッドの組み合わせにより、高い精度と正 確度でフラタキシン-M を定量することが可能です。この定量では、主に、高分解能 MS とナノフロー液 体クロマトグラフィー (ナノフロー LC) システムの組み合わせが用いられてきていますが、この手法には 時間がかかり、ナノフロー LC/MS システムを維持するために厳格な品質管理が必要とされます。ユニッ ト分解能トリプル四重極 LC/MS (LC/TQ) システムと組み合わせた標準流速 LC システムは、通常は、 フラタキシン-M のような低濃度タンパク質の定量には使用されません。このアプリケーションノートで は、マルチプルリアクションモニタリング (MRM) 取り込みモードを用いる Agilent 6495 LC/TQ と標 準流速 HPLC の組み合わせによる、より優れたフラタキシン-M の定量分析を紹介します。このシステ ムは、パラレルリアクションモニタリング (PRM) 取り込みモードを用いる高分解能オービタルトラッピ ング質量分析計と組み合わせたトラップ溶出ナノフロー LC/MS システムと比較して、より優れた感度、 精度、正確度、装置のランタイムを実現します。したがって、血液サンプル中のフラタキシン-M の高スルー プット定量には、標準流速 HPLC を使用した 6495 LC/TQ プラットフォームが、トラップ溶出ナノフロー LC/MS システムよりも適していることがわかります。

著者

Nicolas Eskenazi, Teerapat Rojsajjakul, Clementina Mesaros, and Ian A. Blair Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania

Linfeng Wu Agilent Technologies, Inc.

はじめに

FRDA は希少疾患とされていますが、米国で 最も一般的な遺伝性運動失調症です。進行性 の性質の結果として、大部分の患者は、発症 後 15.5 ±7.4 年 (平均年齢 ±SD) で車いす での生活になります¹。しかし、主な死因は心 臓疾患です²。現在、FRDA のための有効な治 療はないものの、NRF-2 活性化因子オマベロ キソロンは治療投与量において安全で、神経 機能を改善することが明らかになっており、今 後の治療戦略としての可能性が示されていま す³。多くの FRDA 症例の遺伝的基盤は、フラ タキシン (FXN) 遺伝子の第一イントロンに おける両方のアレル (GAA1 および GAA2) のGAA トリプレットリピートの伸長であり、こ れはエピジェネティックな転写サイレンシング と完全長のフラタキシンタンパク質の発現低 下の原因となります⁴。 少数の FRDA 患者 (3) % 未満)は、一方のアレルに突然変異または 小さな変異があり、もう一方のアレルに GAA リピート伸長がある、複合ヘテロ接合体です ⁵。 典型的な FRDA 症例において、GAA1の長 さ(最短の伸長)は疾患の重症度と相関して いる一方で、GAA 伸長が長くなるほど早期に 発症し、より速く進行します。

ヒト完全長フラタキシン(アイソフォーム1、 MW = 23,135 Da) は、N 末端にミトコンドリ ア標的配列を有する 210 アミノ酸の前駆体タ ンパク質として発現します (図 1)。ミトコン ドリアプロセシングペプチダーゼ (MPP) に よる2段階のタンパク質分解切断により、ミ トコンドリアフラタキシン-M (81-210; MW = 14,268 Da) が形成されます。鉄硫黄クラス ター形成、鉄の貯蔵、ヘム生合成、呼吸鎖、 酸化ストレスに対する細胞応答などを含む一 連のパスウエイにおいて、フラタキシン-M が 機能的構成要素であることが、いくつかの証 拠により強く示唆されています⁷⁻¹⁰。対照的に、 赤血球に見られるミトコンドリア外のフラタキ シンアイソフォーム E (フラタキシン-E) タンパ ク質(76-210: MW = 14.953 Da)には、ミト コンドリア標的配列がありません。ミトコンド リア標的配列は、翻訳において、選択的スプ ライシングとそれに次ぐ N 末端アセチル化を

図 1. 完全長フラタキシンおよびフラタキシン-M のアミノ酸配列 (青で表示)。Asp-N 消化ペプチド 1 および 2 (茶色の枠)は定量のために、ペプチド 3 ~ 5 (緑色の枠)はタンパク質検出の確認のために使用しました。

通じて生じます。¹¹。その発現は、FRDA にお いて、DNA の過剰メチル化によって下方制御 されます¹²。フラタキシン-E に起因する機能は まだ明らかにされていません。

フラタキシンは循環血中に分泌されないた め血漿や血清では分析できません。これま で、フラタキシンの量は、一般的に、FRDA 線 維芽細胞、リンパ球、筋生検、PBMC から、 ウェスタンブロット分析、酵素結合免疫測定 法(ELISA)、または電気化学発光測定法を 用いて測定されていました¹³。フラタキシン-E が赤血球のみに存在するという発見により、フ ラタキシンは、血小板や PBMC などの個々 の細胞ではなく、全血サンプルでの分析が可 能になりました¹⁴。この発見により、フラタキ シン-Mは、ミトコンドリアを有する、血小板や PBMC などの血液細胞のみに存在することが 明らかとなりました。さらに、質量分析(MS) と安定同位体希釈メソッドにより、高い精度と 正確度でフラタキシン-M を定量することが可 能です。このような分析では主に、ナノフロー 液体クロマトグラフィー分離と高分解能 MS (ナノフロー LC/MS) が組み合わされて使用 されていますが、これは時間がかかり、分析 機器を維持するために厳密な品質管理と専門 知識が必要とされます¹³。本研究で紹介した ものなど、疾患とバイオマーカーの研究では、 統計的に信頼できる所見を得るために大規模 なサンプルコホートの分析が必要となること が多く、スループットが重要な考慮事項となり ます。標準流速 LC システム(LC/TQ)と組み 合わせたユニット分解能トリプル四重極装置 は、特に大規模なコホート研究において、より 堅牢に、高スループットに対応するように設計 されています。

標準流速 6495 LC/TQ 装置が、フラタキシン -M のルーチン定量において、現行のトラップ 溶出ナノフロー LC/MS システムを改善できる かどうかを判断するために、両方のシステムで サンプルを分析しました。FRDA被験者由来の 全血サンプルにフラタキシン-M の安定同位体 アナログを添加し、IP で濃縮してから、Asp-N プロテアーゼで消化しました。 消化されたペプ チドを 2 種類の LC/MS 機器で分析しました。 線形検量線回帰直線、検出下限(LOD)、定 量下限(LLOQ)の相関係数は、6495 LC/TQ システムでより優れた結果を示しました。こ の結果は、トラップ溶出ベースのナノフロー LC/MS システムで必要とされる量よりも、少 ないオンカラムのサンプル量で得ることがで きました。また、2 つのLC/MS プラットフォー ムにおいて、機器の分析時間に非常に大きな 差が生じました。個々の合計の分析時間が、 6495 LC/TQ システムでは 11 分、ナノフロー LC/MS システムでは 105 分となります。した がって、10人の対照群と30人の FRDA 被験 者からの血液サンプルの標準的な分析は、ナ ノフロー LC/MS システムでは 8 日間かかると ころ、1日以内で完了することが可能でした。 これらのデータは、血液サンプル中のフラタキ シン-M の高スループット定量においては、ト ラップ溶出ナノフロー LC/MS システムよりも、 標準流速 6495 LC/TQ プラットフォームの方 が適していることを示しています。

実験方法

化学物質および材料

別途記載のない限り、試薬と溶媒はすべて LC/MS グレードのものを使用しました。[¹³C₄]-ロイシンは Cambridge Isotope Laboratories (マサチューセッツ州アンドーバー)から入 手しました。抗フラタキシン抗体(クローン 1D9) は LifeSpan Biosciences, Inc. (ワシン トン州シアトル)から入手しました。 ピメルイミ ド酸ジメチル二塩酸塩(DMP)、エチレンジア ミン四酢酸 (EDTA)、cOmplete Mini EDTA フリー Easypack プロテアーゼ阻害剤混合物 錠剤、エンドプロテアーゼ Asp-N シーケンス グレード、DL-ジチオスレイトール(DTT)、ウ シ血清アルブミン (BSA)、ヒトリゾチーム、 イミダゾール、グリセロール、フッ化フェニル メチルスルホニル (PMSF)、トリエタノール アミン、エタノールアミン、M9 最小塩類 5倍 濃縮粉末、最小微生物培地(M9 培地)は MilliporeSigma(マサチューセッツ州ビレリ カ)から購入しました。Ni-NTA アガロース樹 脂は Qiagen (メリーランド州ジャーマンタウ ン)から購入しました。HPLC グレードの水と アセトニトリルは Burdick and Jackson (ミ シガン州マスキーゴン)から入手しました。重 炭酸アンモニウムと酢酸は Fisher Scientific (ペンシルベニア州ピッツバーグ)から購入 しました。タンパク質 G 磁性 Dynabeads は Life Technologies Corporation (= - = -ク州グランドアイランド)から入手しました。

全血サンプル

血液サンプルは2人の健康な対照被験者、お よび38人のホモ接合性FRDA被験者から 取得しました。全員がフィラデルフィア小児病 院で実施中の自然史研究に同時に登録しま した。この研究に参加した各ドナーから、書 面でのインフォームドコンセントを取得しま した。18歳未満の被験者の場合、親または 法的保護者から書面でのインフォームドコン セントを取得しました。この研究は、フィラデ ルフィア小児病院の倫理審査委員会(IRB) により承認されました(IRB プロトコル # 01-002609)。静脈血は紫色のキャップの 8.5 mL Vacutainer EDTA チューブで採取し、静 かに反転して混合しました。すべてのサンプル をすぐに Eppendorf チューブに分注し、分析 までの間 -80 ℃で冷凍しました。

非標識および安定同位体標識フラタキシ ン-M の発現と精製

非標識および細胞培地アミノ酸安定同位体標 識 (SILAC) 標識成熟フラタキシンの発現は、 大腸菌 BL21 DE3 で以前に記述のとおり行い ました¹⁵。簡潔に説明すると、FXN cDNA プ ラスミド (pTL1) からのヒト成熟型フラタキ シン (81-210) のコード配列の増幅を行って から、pET21b プラスミドヘクローニングし、 6x ヒスチジン (His) 配列に結合しました。 6x His タグと融合したフラタキシンは、1 mM MgSO₄、10 μM CaCl₂、0.5 % グルコース、お よび 100 mg/L アンピシリンを含む M9 培地 の 大腸菌 BL21 DE3 で発現しました。非標 識フラタキシンの発現のために、M9 培地に 0.025 % のロイシンを添加しました。SILAC-標識フラタキシンの発現のために、M9 培地 に 0.025 % [¹³C₄]-ロイシンを添加しました。 培養細胞切片を収集して、100 µg/mL ヒト リゾチームを含む溶解バッファ(50 mM Tris-HCI (pH 8.0)、500 mM NaCl、10 mM イミ ダゾール、10%グリセロール、2mMβ-メル カプトエタノール、2x プロテアーゼ阻害剤混 合物、1 mM PMSF) で溶解しました。 溶解液 は 20,000 × g、4 ℃で 30 分間遠心分離し、 上清を Ni-NTA 樹脂で精製しました。 非標識 フラタキシン-M と SILAC-標識フラタキシン -M の純度は、SDS-PAGE とクマシーブルー 染色によって 95% より高いことが確認されま した。

IP に先だつ全血サンプルの前処理

すべての血液サンプルを室温で解凍し、500 μL の各サンプルを、プロテアーゼ阻害剤混合 物を含む 750 µL の NP-40 溶解バッファ(150 mM NaCl、 50 mM Tris-HCl pH 7.5、 0.5 % Triton X-100、0.5 % NP-40、1 mM DTT、 1 mM EDTA) と混合しました。内部標準とし て、同量の SILAC-標識フラタキシン-M(20 ng)を各サンプル (キャリブレータ、QC、全 血) に添加しました。サンプルに、超音波ディ スメンブレーター (Fisher、ペンシルベニア州 ピッツバーグ)を使用して 30 パルス、5 の強 度で氷上でプローブ超音波処理を行ってから、 17,000g、4 ℃で 15 分間遠心分離して、溶 解しました。上清をペレットから移し、免疫沈 降(IP)のために、調製済み DMP-架橋結合 抗フラタキシンタンパク質 G Dynabeads を 用いてインキュベーションしました。

免疫沈降 (IP) および Asp-N 消化

DMP を用いてマウスモノクローナル抗フラ タキシン抗体(4 µg)をタンパク質 G ビー ズ (0.5 mg) に前述のように架橋結合しまし た¹⁵。簡潔に説明すると、最初にマウスモノク ローナル抗フラタキシン抗体を一晩にわたり 4 ℃でタンパク質 G 磁性 Dynabeads を用い てインキュベーションし、抗体結合ビーズを作 成しました。mAb-結合ビーズを13 mg/mL の DMP 溶液を用いて室温で1 時間インキュ ベーションし、安定な架橋結合抗フラタキシン タンパク質 G 磁性 Dynabeads を作成しまし た。架橋結合タンパク質 G ビーズは、PBS 中 で、4℃で1週間保存可能です。処理済みの 全血サンプル (1.25 mL) を 0.5 mg の抗フ ラタキシンタンパク質 G 磁性 Dynabeads に 添加し、回転攪拌下で、一晩にわたり4℃で IP を行いました。0.02 % Tween-20 を含む PBS でビーズを3回洗浄し、フラタキシン-M を 100 µL の溶出バッファ (10 % のアセトニト リルを含む 100 mM の酢酸水溶液) で溶出 させました。溶出液を不活性化ガラスインサー ト (Waters、マサチューセッツ州ミルフォー ド) に移し、減圧濃縮器 (Jouan RC 10.22、 Fisher、ペンシルベニア州ピッツバーグ) で乾 燥させました。 サンプルを 100 ng の Asp-N を含む 50 µL の 25 mM重炭酸アンモニウム 水溶液で溶解し、LC/MS 分析の前に一晩に わたり37℃でインキュベーションしました。

LC/MS 分析

6495 トリプル四重極 LC/MS システムと Agilent 1290 Infinity II LC システムを組み合 わせて使用し、標準流速超高性能液体クロマ トグラフィーとマルチプルリアクションモニタ リング質量分析(UHPLC-MRM/MS)を行 いました。LC 条件の詳細は表 1 のとおりで す。サードパーティ製トラップ溶出ナノフロー LC システムに高分解能オービタルトラッピン グ質量分析計を組み合わせ、(PRM)取り込 みモードにより、ナノフロー超高性能液体クロ マトグラフィーとパラレルリアクションモニタリ ング質量分析(UHPLC-PRM/MS)を行いま した。UHPLC-PRM/MS の条件は表 2 のと おりです。

データ解析

データ解析はSkyline(ワシントン大学 MacCoss Laboratory、ワシントン州シア トル)を使用して行いました。Skyline ソ フトウェアを使用して、非標識/Light (L) ペプチドと標識/Heavy (H) ペプチドの各 MRM または PRM トランジションのピーク面 積比を算出し、絶対定量に使用しました。ペ プチドの比率は、S⁸¹GTLGHPGSL⁹⁰ Asp-N ペプチドの y_4^+ イオンと D^{198} LSSLAYSGK²⁰⁸ Asp-N ペプチドの y_8^+ イオンの PRM トランジ ションの L/H 比を使用して算出しました。フラ タキシン-M の量は各ペプチドの検量線から算 出しました。次に、2 つのペプチドに対して得 られた平均濃度からフラタキシン-M 濃度を算 出しました。フラタキシン-M が存在することを さらに確認するため、その他の3種類のペプ チドをモニタリングしました。macOS バージョ ン 9.3.1 用 Prism 9 (GraphPad Software, LLC) で直線回帰モデルを使用して、GAA リ ピートとフラタキシン濃度との相関付けを実行 しました。

表 1. UHPLC-MRM/MS の条件

Agilent 1290 Infinity II LC の条件								
分析カラム	Agilent ZORBAX RRHD Rapid Resolution HD、2.1 × 50 mm、1.8 µm (部品番号 959757-902)							
カラム温度	35 ℃							
溶媒A	水、0.1 % ギ酸							
溶媒 B	アセトニトリル、0.1% ギ酸							
分析 LC 流速	0.4 mL/min							
グラジエント	0 分で 5 % B 1.00 分で 10% B 2.75 分で 24 % B 3.50 分で 36 % B 5.00 分で 95 % B 6.50 分で 95 % B 7.00 分で 5 % B 8.50 分で 5 % B							
注入量	2 µL							
インジェクタ温度	4 °C							
ニードル洗浄	5秒フラッシュ							
ニードル洗浄溶媒	30%メタノール							
	Agilent 6495 LC/TQ の条件							
ガス温度	230 °C							
ガス流量	13 L/min							
イオン極性	ポジティブモード							
ネブライザ	40 psi							
シースガス温度	300 °C							
シースガス流量	10 L/min							
キャピラリ電圧	4,500 V							
ノズル電圧	500 V							

結果と考察

サンプル前処理

メソッド開発中に、全血サンプルに含まれる低 濃度のタンパク質である フラタキシン-M の分 析のために、抗フラタキシンマウス mAb と磁 性 Dynabeads との共有結合を使用した免疫 沈降が必要であることが明らかとなりました。 Dynabeads との結合は、高濃度タンパク質に よるバックグラウンドの干渉を最小限に抑制す るために有用でした。さらに、サンプル濃縮時 およびプロテアーゼ消化時の変動により、プロ テアーゼ消化ステップの後に標識ペプチド内 部標準を使用することは、正確で高精度のタ ンパク質の定量には不十分と考えられました。 したがって、「light」(非標識)および「heavy」 (安定同位体標識) フラタキシン-M タンパク 質は、個々に調製し、精製しました。安定同位 体標識フラタキシン-M タンパク質への安定同 位体標識ロイシンの取り込みは 99.0 % 超で した。IP ステップの前に、内部コントロールと して、精製済みの安定同位体標識フラタキシ ン-M タンパク質を血液サンプルに添加しまし た。図2に全体的な実験ワークフローを示し ます。

表 2. ナノフロー UHPLC-PRM/MS の条件

ナノフロー UHPLC の条件								
トラッピングカラム	Acclaim PepMap C18 カートリッジ、0.3 mm × 5 mm、100 Å (Thermo Scientific)							
分析カラム	C18 AQ キャピラリカラム、10 µm プルドチップ付き、75 µm × 25 cm、 3 µm 粒子サイズ(Columntip、コネチカット州ニューヘイブン)。							
カラム温度	25 °C							
ローディング溶媒	水/アセトニトリル(99.5:0.5、v/v)、0.1 % ギ酸を含む							
溶媒 A	水/アセトニトリル(99.5:0.5、v/v)、0.1 % ギ酸を含む							
溶媒 B	アセトニトリル/水(98.0:2.0、v/v)、0.1 % ギ酸を含む							
トラッピングカラムへのロード量	4 分間で 10 µL/min							
分析 LC 流量	400 nL/min							
グラジエント	0分で2%B 10分で2%B 30分で35%B 35分で60%B 53分で98%B 73分で80%B 74分で2%B 100分で2%B							
注入量	8 µL							
インジェクタ温度	4 °C							
ニードル洗浄	5秒							
ニードル洗浄溶媒	10% メタノール							
7	ービタルトラッピング質量分析計の条件							
スプレー電圧	2,500 V							
イオン移送キャピラリ温度	275 °C							
イオン極性	ポジティブモード							
S-レンズ Rf レベル	55							
インソース CID	2.0 eV							
分解能	60,000							
AGC ターゲット	2.00E+05							
最大IT	80 ms							

図 2. フラタキシン-M サンプル前処理および LC/MS 分析の実験ワークフローの概略図

MRM および PRM トランジションの比較

モニタリング対象のフラタキシン-Mタ ンパク質由来のペプチド配列、それら に対応する MRM および PRM トラン ジション、2種の LC/MS システムでの ペプチド溶出時間を表3に示します。 UHPLC-MRM/MS では、プリカーサイオンお よびプロダクトイオンの両方にノミナル質量 を使用しました。一方、UHPLC-PRM/MS で は、プリカーサイオンにノミナル質量を使用し ましたが、プロダクトイオンには精密質量を使 用しました。高分解能 LC/MS システムと比 較して、ユニット質量 LC/TQ システムには原 則的に、ある程度のバックグラウンド干渉が生 じる可能性がありますが、このような問題は、 6495 LC/TQ による血液のフラタキシン-M の 分析では観察されませんでした。したがって、 最初のタンパク質の探索とメソッド開発の後 に、ルーチン分析のための定量の精度と正確 度に関して、より高速な UHPLC-MRM/MS 手法を評価しました。

ペプチド分離

フラタキシン-M の定量 (SGTLGHPGSL) と総フラタキシンの定量 (DLSSLAYSGK) に使用した Asp-N-消化ペプチド、お よび検出確認のためのその他3 種 類のペプチド (DETTYERLAEETL、 DGVSLHELLAAELTKALKTKL、DSLAEFFE) はそれぞれ明確に分離されました。分離に は、標準流速 UHPLC-MRM/MS とナノフ ロー UHPLC-PRM/MSの両方のメソッドを使 用しました(図 3)。MRM/MS システムでは、 PRM/MS システム(8 µL、表 2)と比較し て、より少量のサンプルを注入しましたが(2 µL、表 1)、どちらのシステムでも検出と定量 に対し十分な MS シグナルが得られました。

図 3. ターゲットペプチドの LC/MS クロマトグラム:S⁸¹GTLGHPGSL⁹⁰ (ペプチド-1)、D¹⁹⁸LSSLAYSGK²⁰⁸ (ペプチド-2)、D⁹¹ETTYERLAEETL¹⁰³ (ペプチド-3)、D¹⁷⁸GVSLHELLAAELTKALKTKL¹⁹⁸ (ペプチド-4)、D¹⁰⁴SLAEFFE¹¹¹ (ペプチド-5)。(A) 標準流速 UHPLC-MRM/MS。(B) ナノフロー UHPLC-PRM/MS。

表 3. フラタキシン−M 分析のための MRM/MS および PRM/MS トランジション。 定量は網掛けの枠で示したペプチドで実行し、 MRM/MS にはノミナル質量を使用しました。 L = [¹³C₆]-ロイシン、L = light (非標識)、H = heavy (標識)。

No.	開始	終了	ペプチド	L または H	プリカーサ イオン	プリカーサ イオン (m/z)	プロダクト イオン1	プロダクト イオン 1 (m/z)	プロダクト イオン 2	プロダクト イオン 2 (m/z)	プロダクト イオン 3	プロダクト イオン3 (m/z)	UHPLC 溶出時間 (分)	ナノ UHPLC 溶出時間 (分)
1	81	90	SGTLGHPGSL	L	MH2 ²⁺	463.24	y ₇ *	680.373	y ₆ +	567.289	y ₄ +	373.208	2.02	24.05
1	81	97	SGT L GHPGSL	н	MH22+	469.26	y ₇ ⁺	692.413	y ₆ +	573.309	y4 +	379.229	2.02	24.05
2	198	208	DLSSLAYSGK	L	MH22+	520.77	y ₈ +	812.415	y ₇ *	725.383	y ₃ *	291.166	2.44	26.85
2	198	208	DLSSL AYSGK	н	MH22+	527.79	y ₈ +	818.435	y ₇ *	731.403	y ₃ *	291.166	2.44	26.85
3	91	103	DETTYERLAEETL	L	MH33+	523.91	b ₁₂ **	719.820	b ₁₁ **	669.296	b ₁₀ **	604.775	3.26	32.25
3	91	103	DETTYER LAEET L	н	MH ₃ 3+	527.93	b ₁₂ **	722.830	b ₁₁ **	672.307	b ₁₀ **	607.785	3.26	32.25
4	178	198	DGVSLHELLAAELTK ALKTKL	L	MH4 ⁴⁺	563.33	y ₁₂ **	643.906	y ₁₁ **	608.387	b ₂ *	173.056	3.66	37.05
4	178	198	DGVSLHELLAAELTK ALKTKL	н	MH4 ⁴⁺	563.33	y ₁₂ **	652.936	y ₁₁ **	617.417	b ₂ *	173.056	3.66	37.05
5	104	111	DSLAEFFE	L	MH2 ²⁺	479.21	b ₄ *	387.187	b ₃ +	316.150	y ₂ *	295.129	3.68	36.05
5	104	111	DSLAEFFE	н	MH2 ²⁺	482.22	b ₄ +	393.208	b ₃ +	316.150	y ₂ +	295.129	3.68	36.05

検量線は SGTLGHPGSL $(MH_2^{2+} \rightarrow y_4^{+})$ お よび DLSSLAYSGK $(MH_2^{2+} \rightarrow y_8^{+})$ において 0.5 ~ 60 ng の範囲で直線性を示しました。 標準流速 UHPLC-MRM/MS システムでの検 量線の R² 値はそれぞれ 0.9985 と 0.9985 で した (図 4A)。ナノフロー UHPLC-PRM/MS システムでの検量線の R² 値はそれぞれ 0.9622 と 0.9951 でした (図 4B)。6495 LC/TQ システムで得られた検量線は、ナノ フロー UHPLC-PRM/MS システムで得られ た検量線と比較して、より優れた精度および 正確度を示しています。この結果は標準流速 UHPLC-MRM/MS システムにおける両方の ペプチドの LOD と LOQ が、より優れているこ とを示しました。

分析時間においても大きな差が生じました。 標準流速 UHPLC システムでは 5 つすべて のペプチドが4分以内に溶出したのに対し、 ナノフロー UHPLC では 38 分かかりました (図3)。これらの個別の分析時間の合計は、 標準流速 UHPLC システムでは 11 分、ナノフ ロー UHPLC システムでは 105 分ということ になりました (図 5)。フラタキシン-M の標準 のアッセイには、10の標準サンプルと、30の FRDA 被験者由来の血液サンプルが含まれま す。これらのサンプルの三連での測定にかかっ た時間は、ナノフロー UHPLC-PRM/MS シ ステムでは8日間と18時間だったのに対し、 標準流速 UHPLC-MRM/MS では 23 時間で した (図 5)。標準流速 UHPLC-MRM/MS における大幅な機器分析時間の短縮と優れた 定量の品質により、ラボでは、他にも、フラタ キシンに関するいくつかのハイスループットな 実験を実行することができました^{11,12}。

図 4.ペプチド SGTLGHPGSL.D (MH₂²⁺ \rightarrow y₄^{*}) および L.DLSSLAYSGK.D (MH₂²⁺ \rightarrow y₈^{*}) の検量線。(A) UHPLC-MRM/MS。(B) ナノフロー UHPLC-PRM/MS。上のプロットは 0 \sim 80 ng の濃度範囲における 検量線の相関係数 (R²) と二乗平均平方根誤差 (RMSE)、下のプロットは 0 \sim 8 ng のより低い濃度範囲に おける検量線と対応する LOD および LOQを示しています。

健康な対照被験者および FRDA 被験者 の血液サンプル

2人の健康な対照被験者のフラタキシン-Mの 血中濃度はそれぞれ 4.5 と 5.2 ng/mL(図 6) で、以前の研究で確認されたレベルと同 様でした。反対に、FRDA 被験者の血中フラ タキシン-M 濃度は 0.3 ~ 3.8 ng/mL の範 囲でした。FRDA 被験者サンプルでの最高濃 度は、GAA リピートが平均わずか 200 回の 被験者で確認されました。これは FRDA の軽 症型と一致します。最低濃度は、GAA リピー トが平均 1,000 回の被験者で確認されまし た。これは FRDA の最重症型と一致します。 興味深いことに、フラタキシン-M 濃度と平均 GAA リピートとの間に良好な相関関係 (R^2 = 0.8547) が示されました (図 6)。この相関関 係はナノフロー UHPLC-PRM/MS を用いた 過去の測定結果と一致します¹³。Y 軸の切片 は、健康な対照被験者の血液で確認された平 均フラタキシン-M 濃度に相当します。

結論

全血サンプル中のフラタキシンのプロテオ フォームを濃縮するために、共有結合抗フ ラタキシンマウス mAb を使用して、免疫沈 降(IP) メソッドを開発しました。IP ステッ プの前に、内部標準として、安定同位体標識 フラタキシン-M タンパク質を血液サンプル に添加しました。 次にすべての IP サンプル を Asp-N プロテアーゼで消化しました。ター ゲットペプチドの定量には、最初はナノフロー UHPLC-PRM/MS システムを使用しました。 次いで、Agilent 6495 LC/TQ システムを使 用して、オンカラムでのサンプル濃縮が不要 な、より迅速な標準流速 UHPLC-MRM/MS メソッドを開発しました。このアプリケー ションノートでは、全血試料中のフラタキシ ン-M タンパク質の定量のための、これら の 2 つの LC/MS システムの分析性能を比 較しています。6495 LC/TQ システムによる 大幅に高速なメソッド、優れた直線性、精 度および正確度により、従来のナノフロー UHPLC-PRM/MS メソッドを、より迅速な標 準流速 UHPLC-MRM/MS メソッドに代替で きることが確認されました。

図 6. Agilent 6495 LC/TQ の分析結果に基づき、血液サンプル中の ヒトフラタキシン-M 濃度は、疾患被験者の遺伝子の平均 GAA リピートと 高い相関が示されました。赤は健康な対照被験者を示します。

参考文献

- Evans-Galea, M. V. et al. Cell and Gene Therapy for Friedreich Ataxia: Progress to Date. Hum. Gene Ther. 2014, 25(8), 684–93. Epub 2014/04/23. doi: 10.1089/ hum.2013.180. PubMed PMID: 24749505.
- Pousset, F. et al. Durr A. A 22-Year Follow-up Study of Long-term Cardiac Outcome and Predictors of Survival in Friedreich Ataxia. JAMA Neurol. 2015, 72(11), 1334–41. Epub 2015/09/29. doi: 10.1001/ jamaneurol.2015.1855. PubMed PMID: 26414159.
- Lynch, D. R. *et al.* Safety, Pharmacodynamics, and Potential Benefit of Omaveloxolone in Friedreich Ataxia. *Ann. Clin. Transl. Neurol.* **2019**, *6*(1), 15–26.Epub 2019/01/19. doi: 10.1002/acn3.660. PubMed PMID: 30656180; PMCID: PMC6331199.
- Santos, R. *et al.* Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities. *Antioxid. Redox. Signal* **2010**, *13*(5), 651–90. Epub 2010/02/17. doi: 10.1089/ ars.2009.3015. PubMed PMID: 20156111; PMCID: PMC2924788.
- Gellera, C. et al. Frataxin Gene Point Mutations in Italian Friedreich Ataxia Patients. *Neurogenetics* 2007, 8(4), 289–99. Epub 2007/08/19. doi: 10.1007/s10048-007-0101-5. PubMed PMID: 17703324.

- Sacca, F. *et al.* A Combined Nucleic Acid and Protein Analysis in Friedreich Ataxia: Implications for Diagnosis, Pathogenesis and Clinical Trial Design. *PLoS One* **2011**, *6*(3), e17627. Epub 2011/03/18. doi: 10.1371/journal.pone.0017627. PubMed PMID: 21412413; PMCID: PMC3055871.
- Rotig, A. *et al.* Aconitase and Mitochondrial Iron-Sulphur Protein Deficiency in Friedreich Ataxia. *Nat. Genet.* **1997**, *17(2)*, 215–7. doi: 10.1038/ng1097-215. PubMed PMID: 9326946.
- Delatycki, M. B.; Bidichandani, S. I. Friedreich Ataxia- Pathogenesis And Implications for Therapies. *Neurobiol Dis.* 2019, *132*, 104606. Epub 20190905. doi: 10.1016/ j.nbd.2019.104606. PubMed PMID: 31494282.
- Doni, D. et al. The Displacement of Frataxin from the Mitochondrial Cristae Correlates with Abnormal Respiratory Supercomplexes Formation and Bioenergetic Defects in Cells of Friedreich Ataxia Patients. *FASEB J.* 2021, 35(3), e21362. doi: 10.1096/fj.202000524RR. PubMed PMID: 33629768.
- Monfort, B. et al. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich's Ataxia. Front Neurosci.
 2022, 16, 838335. Epub 20220302. doi: 10.3389/fnins.2022.838335. PubMed PMID: 35310092; PMCID: PMC8924461.

- Guo, L. *et al.* Characterization of a New N-Terminally Acetylated Extra-Mitochondrial Isoform of Frataxin in Human Erythrocytes. *Sci. Rep.* **2018**, *8*(1), 17043.Epub 2018/11/20. doi: 10.1038/s41598-018-35346-y. PubMed PMID: 30451920; PMCID: PMC6242848.
- Rodden, L. N. *et al.* DNA Methylation in Friedreich Ataxia Silences Expression of Frataxin Isoform E. *Sci. Rep.* 2022, *12(1)*, 5031. Epub 20220323. doi: 10.1038/s41598-022-09002-5. PubMed PMID: 35322126; PMCID: PMC8943190.
- Wang, Q. *et al.* Simultaneous Quantification of Mitochondrial Mature Frataxin and Extra-Mitochondrial Frataxin Isoform E in Friedreich's Ataxia Blood. *Front. Neurosci.* **2022**, *16*, 874768. Epub 20220428. doi: 10.3389/ fnins.2022.874768. PubMed PMID: 35573317; PMCID: PMC9098139.
- Blair, I. A. et al. The Current State of Biomarker Research for Friedreich' s Ataxia: a Report from the 2018 FARA Biomarker Meeting. Future Sci. OA. 2019, 5(6), FSO398. Epub 2019/07/10. doi: 10.2144/ fsoa-2019-0026. PubMed PMID: 31285843; PMCID: PMC6609901.
- Guo, L. *et al.* Liquid Chromatography-High Resolution Mass Spectrometry Analysis of Platelet Frataxin as a Protein Biomarker for the Rare Disease Friedreich's Ataxia. *Anal. Chem.* **2018**, *90(3)*, 2216–23. Epub 2017/12/23. doi: 10.1021/acs. analchem.7b04590. PubMed PMID: 29272104; PMCID: PMC5817373.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

RA44930.5725

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2023 Printed in Japan, January 26, 2023 5994-5608JAJP

