

モノクローナル抗体のマルチ特性解析

3D-LC/MS と²D マルチメソッドオプションによる同時および 並行マルチ特性解析

著者

Liesa Verscheure, Gerd Vanhoenacker, Pat Sandra, and Koen Sandra RIC biologics President Kennedypark 26 B-8500 Kortrijk Belgium

Sonja Schipperges, Sonja Schneider, and Udo Huber Agilent Technologies Hewlett-Packard Strasse 8 D-76337 Waldbronn Germany

概要

このアプリケーションノートでは、Agilent InfinityLab 2D-LC ソリューションおよび Agilent 6530 LC/Q-TOF システムを用いたモノクローナル抗体のマルチ特性解析について説明します。一次元目のプ ロテイン A アフィニティクロマトグラフィー、二次元目のマルチメソッドオプション(SEC、CEX、HIC か ら選択)、および三次元目の脱塩 SEC-MS を組み合わせて分析システムを構成しました。この画期的な 3D-LC/MS セットアップにより、細胞培地上清を直接システムに注入し、mAb の抗体価、サイズ/電荷/ 疎水性変異体、分子量、アミノ酸(AA)配列、および翻訳後修飾を、同時に並行して評価することがで きます。

はじめに

治療用モノクローナル抗体 (mAb) は複雑な 構造を有しており、分析が非常に困難です。こ れらのバイオテクノロジー応用医薬品は、2つ の軽鎖と2つの重鎖による150 kDa 四量体 の状態で、およそ1,300 個のアミノ酸で構成 されています。アミノ酸はさらに翻訳同時修 飾および翻訳後修飾されてさまざまな電荷変 異体や疎水性変異体が生じる可能性があり、 四量体は分解または凝集してサイズ変異体と なります。最終的に、数百の mAb 種によっ て、製品のプロファイル、安全性、効能が構成 されます。この不均一性を解明するには、液 体クロマトグラフィー (LC) および質量分析法 (MS) とともに、広い範囲の分析ツールおよ び分析手法が必要です。^{1~3}

複数の技術を1つの分析システム内に結合す ることによって、分子量 (MW)、アミノ酸配 列、N-グリコシル化、N および C 末端処理、 脱アミド化、酸化、断片化、凝集などのさま ざまな構造的な特性を同時評価できるのが、 マルチ特性評価 (multi-attribute method, MAM) として知られる手法です。 ハートカット またはマルチハートカットモードで動作する二 次元液体クロマトグラフィー (2D-LC) は、こ の点で非常に有用視されています。4~7 この コンセプトは近年、プロテイン A アフィニティ クロマトグラフィー、サイズ排除クロマトグラ フィー (SEC)、および LC/MS を、(マルチ) ハートカット三次元 (³D) セットアップで組み 合わせることによって次のレベルへと向上しま した。8

現行の研究ではこのコンセプトを基に、カチ オン交換クロマトグラフィー(CEX)と疎水性 相互作用クロマトグラフィー(HIC)の2つの メソッドを二次元目にさらに追加し、カラムセ レクタによって²D(SEC、CEX、または HIC) で使用するモードを選択して分析することが できます。この²D マルチメソッドオプション付 きの 3D-LC/MS マルチ特性解析システムで は、細胞培地の上清から直接、mAb 抗体価、 サイズ/電荷/疎水性変異体、分子量、アミノ 酸配列、翻訳後修飾を同時並行して評価でき ます。

実験方法

材料

アセトニトリル (HPLC-S)、イソプロパノー ル (HPLC)、水 (ULC/MS)、およびギ 酸 (ULC/MS) は、Biosolve (オランダ、 ファルケンスワールト)から入手しました。 NaH₂PO₄、Na₂HPO₄、NaCl、NH₄HCO₂、 (NH₄)₂SO₄、および酢酸は、Sigma-Aldrich (米国、ミズーリ州セントルイス)から購入し ました。タイプ1の超純水は、Sartorius (ド イツ、ゲッティンゲン) 製の Arium Pro ラボ用 超純水システムを用いて水道水から精製しま した。ヒト化モノクローナル抗体のトラスツズ マブ (ハーセプチンとして販売)を Roche (ス イス、バーゼル)から入手しました。トラスツ ズマブのバイオシミラー、チャイニーズハムス ター卵巣(CHO)細胞培養の上清は、地元の バイオテクノロジー企業から入手しました。

サンプル前処理

トラスツズマブ希釈系列(0.02、0.05、0.1、 0.2、0.5、1.0、 お よ び 2.0 mg/mL) は 50 mM リン酸ナトリウム pH 7.45(プロテイ ン A 移動相 A)で作成しました。トラスツズマ ブ産生 CHO クローンの細胞培養上清サンプ ルを、プロテイン A カラムにロードし、その後 2 分間 1,000 g で遠心分離しました。

装置構成

マルチハートカットオプションを搭載した Agilent 1290 Infinity II 2D-LC システム、追 加の Agilent 1260 Infinity II クォータナリ ポンプ、2 個の Agilent 1290 Infinity バル ブドライブ、Agilent 2D-LC アクティブ溶媒 モジュレーション (ASM) バルブ、Agilent InfinityLab クイックチェンジ溶媒選択バルブ、 Agilent InfinityLab クイックチェンジ 4 カラム 選択バルブを使用しました。内径 0.12 mm の ステンレス配管を用いて、各モジュール間を接 続しました。構成については、図1 に概略を 示し、以下に詳細を説明します。一次元目(プ ロテイン A) および二次元目 (SEC/CEX/ HIC) でダイオードアレイ検出器 (DAD) を使 用しました。さらに、三次元目(SEC 脱塩) の後の検出には、Agilent Jet Stream ESI ソースを搭載した Agilent 6530 LC/Q-TOF を使用しました。

構成 ¹D:プロテイン A クロマトグラフィー

- Agilent 1260 Infinity II クォータナリポン プ、アクティブインレットバルブ (AIV) 搭載 (G7111B、オプション 032)
- Agilent 1290 Infinity II マルチサンプラ、 サンプルサーモスタット搭載(G7167B、 オプション 101) および 80 µL の拡張シー トキャピラリ付き(G4226-87303)
- Agilent 1290 Infinity II マルチカラムサー モスタット (MCT)、バルブドライブ搭載 (G7116B、オプション 058)
- Agilent 1290 Infinity II ダイオードアレ イ 検 出 器 (G7117B)、HDR 3.7 mm Agilent InfinityLab Max-Light カートリッ ジセル付き (G4212-60032)
- Agilent 1290 Infinity バルブドライブ (G1170A)、2D-LC ASM バルブ1300 bar (G4243A、部品番号 5067-4266)を 搭載、および次の機器
 - デッキA:80 µL ST 0.35 mm × 831 mm M/M キャピラリー(部品 番号 5067-6645)、0.12 mm × 170 mm M/M トランスファーキャ ピラリー(部品番号 5500-1376) と ZDV M/M ユニオン(部品番 号 5023-3150)を各2個接続
 - デッキB: 0.12 mm × 150 mm M/M キャピラリー(部品番号 5500-1204)
 - ASM: 0.12 mm × 85 mm M/M キャピラリー(部品番号 5500-1300)

注:シグナル強度を低減して UV シグナルの 飽和を防ぐために、光路長の短い検出器フロー セル (光路長 3.7 mm)を取り付けました。

図 1.¹D プロテイン A 分離、²D SEC/CEX/HIC、および ³D SEC-MS ベースの脱塩を組み込んだ 3D-LC/MS 構成

²D:SEC、CEX、HICの選択

- Agilent 1290 Infinity II ハイスピードポン プ (G7120A)、Agilent 1290 Infinity バ ルブドライブ (G1170A) に取り付けられ た Agilent InfinityLab クイックチェンジ 12 ポジション/13 ポート溶媒セレクタ、 200 bar バルブヘッド (G4235A、部品番 号 5067-4159)をポンプクラスタとしてプ ログラムしました
- バルブドライブ搭載 Agilent 1290 Infinity II マルチカラムサーモスタット (MCT) (G7116B、オプション 058)、 Agilent InfinityLab クイックチェンジ4カ ラムセレクタバルブ800 bar (G4237A、 部品番号 5067-4279)
- Agilent 1290 Infinity II ダイオードアレイ 検出器 (G7117B)、Agilent InfinityLab Max-Light カートリッジセル 10 mm (G4212-60008)

マルチハートカット

- Agilent 1290 Infinity バルブドライブ (G1170A) と 2D-LC バルブ (G4236A)
- 2個の Agilent 1290 Infinity バルブドライブ (G1170A)、40 µL ループ付きマルチハートカットバルブ (G4242-64000)

³D:脱塩 SEC-MS

- Agilent 1290 Infinity II ハイスピードポン プ (G7120A)
- Agilent 1290 Infinity II マルチカラムサー モスタット (MCT)、バルブドライブ搭載 (G7116B、オプション 058)
- Agilent 6530 LC/Q-TOF、Jet Stream ESIソース (G6530A)

注:プロテイン A カラムおよび脱塩用 SEC カ ラムは同一のカラムコンパートメント内の異な るゾーンに配置しました。

ソフトウェア

- Agilent OpenLab CDS ChemStation リ ビジョン C.01.07 SR4 [505]
- 2D-LC アドオンソフトウェアリビジョン
 A.01.04 [017]
- Agilent MassHunter Acquisition (B.09.00)
- Agilent MassHunter、データ解析用 BioConfirm アドオン付き(B.07.00)

メソッド

²D と³D は 2D-LC ソフトウェアで構成します が、¹D の設定は通常のメソッドセットアップで 制御されます。MassHunter Acquisition は、 2D-LC システムからのリモートスタートによっ てトリガーしました。SEC、CEX、または HIC 分析でさまざまなハートカットを実行しまし た。どの分析でも、最初のハートカットはブラ ンクカットで、分析対象のハートカットの前に すべての次元のプレコンディショニングを行い ました。二次元目で、異なるクロマトグラフィー モードへ切り替えるには、次のモードへ切り替 える前に移動相と流量に関してシステムをプ レコンディショニングすることが必要です。

¹ D プロテイン A クロマトグラフィー			
カラム	Agilent Bio-Monolith Protein A カラム、 $5.2 \times 5 \text{ mm}$ (p/n 5069-3639)		
温度	25 °C		
移動相A	50 mM リン酸ナトリウム pH 7.45		
移動相 B	500 mM 酢酸、pH 2.5		
流量	0.75 mL/min		
グラジエント	時間(分) %B 0.0 0 0.2 0 0.3 100 1.4 100 2.0 0 4.0 0		
注入量	0.4 ~ 40 µg (検量線 プロテイン A) 40 µg (CEX およびメイン SEC) 100 µg (HIC) 500 µg (HMW SEC)		
DAD 検出	280 nm		
ピーク幅	> 0.05 分(5 Hz)		
ASM	² D CEX および HIC	² D SEC	
	0 分:ポジション 2 (ポート 1 & 8 ASM) 1.7 分:ポジション 4 (ポート 1 & 3 ASM)	0 分:ポジション 1 (ポート 1 & 8) 1.7 分:ポジション 5 (ポート 1 & 3)	
	¹ D プロテイン A クロマトグラフィーによる目的 80 µL ループで収集し ² D クロマトグラフィーモ	リピークを、ASM バルブに取り付けられた Eードに移送しました。	

² D サイズ排除クロマトグラフィー			
カラム	Agilent AdvanceBio SEC 300A, 7.8 \times 300 mm, 2.7 μ m (p/n PL1180-5301)		
温度	25 °C		
移動相	150 mM リン酸ナトリウム pH 7.0		
流量	0.7 mL/min		
分析時間	30 分		
DAD 検出	214 および 280 nm		
ピーク幅	> 0.05 分(5 Hz)		
カラム選択バルブ	ポジション 2 (ポート 2 → 2')		
	先発薬	クローン	
	ブランク:4.94 分	ブランク:4.94 分	
MHC	HMW:9.62 分	HMW:9.36 分	
	メイン:10.8 分	メイン:10.8 分	
	² D SEC における目的ピークを、マルチハートカットバルブに取り付けられた 40 μL ループで収集し、 ³ D 脱塩 SEC-MS に移送しました。		

² D カチオン交換クロマトグラフィー		
カラム	Agilent Bio MAb NP5 PK、2.1 × 250 mm、5 μm (p/n 5190-2411)	
温度	25 ℃	
移動相A	25 mM リン酸ナトリウム pH 7.0	
移動相 B	25 mM リン酸ナトリウム pH 7.0 + 10	00 mM NaCl
流量	0.2 mL/min	
グラジエント	時間(分)%B 0.055 3.055 43.065 44.095 49.095 50.055 65.055	
DAD 検出	280 nm	
ピーク幅	> 0.05 分(5 Hz)	
カラム選択バルブ	ポジション 1 (ポート 1 → 1')	
	先発薬	クローン
	ブランク:4.8 分	ブランク:4.8 分
	プレ1:13.35分	プレ3:16.29分
	プレ2:15.60分	メイン:19.45 分
	プレ3:16.66分	ポスト1:20.83 分
МНС	メイン:19.89 分	ポスト2:21.61 分
	ポスト1:21.7 分	ポスト 3':24.96 分
	ポスト 2:22.85 分	
	ポスト 3:24.01 分	
	² D CEX における目的ピークを、マルチハートカットバルブに取り付けられた 40 μL ループで収集し、 ³ D 脱塩 SEC-MS に移送しました。	

² D プレコンディショニング実行		
移動相	初期条件 ² D クロマトグラフィーモード	
グラジエント	時間(分) 0.0 0.1 1.0 11.0 11.01 11.5 12.5 15.0	流量 0 0 1.0 1.0 0.1 0.1 流量初期条件 ² D モード 流量初期条件 ² D モード
ASM	² D SEC = 初期条件 する前に、 1回コンラ ² D CEX ま 開始移動が ² D SEC ² D CEX	コンディショニング: でのコンディショニング実行および ASM 機能を無効に ASM キャピラリーをフラッシュするため、H ₂ O を用いて ディショニングを実行 Sよび HIC コンディショニングでま行 ポジション 2 (ポート 1 → 8 ASM) - H ₂ O でフラッシュ ポジション 1 (ポート 1 → 8) - SEC コンディショニング ポジション 2 (ポート 1 → 8 ASM)
	² D HIC	ポジション 2 (ポート 1 → 8 ASM)
カラム選択バルブ	時間(分) 0.00 0.05 11.25	流量 現在位置を使用 ポジション 4 (ポート 4 → 4) ² D モード初期条件のバルブポジション
コンディショニングの浮	尾行中、 ¹ D お	よび ³ D の初期条件が適用されます。

² D 疎水性相互作用クロマトグラフィー			
カラム	Agilent AdvanceBio HIC、4.6 $ imes$ 100 mm、3.5 µm (p/n 685975-908)		
温度	25 ℃		
移動相A	1.5 M 硫酸アンモ	Eニウム、50 mM リン	√酸ナトリウム pH 7.0
移動相 B	50 mM リン酸ナトリウム pH 7.0/IPA(80/20)(v/v)		
流量	0.5 mL/min		
グラジエント	時間(分) 0.0 2.0 8.0 38.0 39.0 43.0 44.0 50.0	%B 0 30 45 100 100 0 0	
DAD 検出	280 nm		
ピーク幅	> 0.05 分 (5 Hz)		
カラム選択バルブ	ポジション 3 (ポート 3 → 3')		
	先発薬		クローン
МНС	ブランク:9.92 🖇	分	ブランク:9.92 分
	プレ:20.54 分		プレ:20.54 分
	メイン:22.42 分	}	メイン:22.42 分
	ポスト:24.26 分		ポスト:24.26 分
	² D HIC における目的ピークを、マルチハートカットバルブに取り付けられた 40 µL ループで収集し、 ³ D 脱塩 SEC-MS に移送しました。		

MS データ処理

MassHunter ソフトウェアに統合されている BioConfirm Maximum Entropy デコンボ リューションアルゴリズムを使用して、測定さ れたシグナルのデコンボリューション処理を行 いました。

結果と考察

図1 に、¹D でのプロテイン A クロマトグラ フィー、²D での SEC、CEX、HIC、および ³D での SEC-MS ベースの脱塩化を統合した、 3D-LC/MS マルチ特性解析システムの概略を 示します。

はじめに、プロテイン A アフィニティクロマ トグラフィーを用いた、細胞培地上清からの mAb の精製および mAb 抗体価測定を行い ます。黄色ブドウ球菌由来のプロテイン A は、 IgG の Fc 領域に対して強い親和性があるた め、細胞培地上清中にあるマトリックス成分か ら mAb を分離することが可能です。中性 pH で mAb をプロテイン A 担体に結合させた後 に、酸性移動相へのワンステップグラジエン トを用いて mAb を溶出します。mAb の定量 (抗体価の測定) は、UV 280 nm での溶出 ピーク面積によって求められます。

その後、プロテインAによる分離ピークは ASM バルブに取り付けられた 80 µL ループ で収集され、事前に定義された時間にバル ブスイッチによって二次元目に移送されます (2D-LC ソフトウェアによって制御されません が、一般的なメソッド設定でプログラムされま す)。二次元目で使用されるクロマトグラフィー モード(SEC、CEX、または HIC)はカラム 選択バルブによって決定されます。CEX また は HIC を選択すると、ASM 機能が作動して、 ¹D の溶出液の組成を ²D に対応させることが できます。ASM に固有の希釈効果によりピー クのブロードニングが生じるため、ASM 機 能は SEC では無効にします。²D カラムから のピークの溶出は二次元目の DAD で検出さ れ、酸性および塩基性変異体(CEX)、高分 子量 (HMW) および低分子量 (LMW) 変異 体(SEC)、または疎水性変異体(HIC)を測 定できます。

³ D サイズ排除クロマトグラフィー				
カラム	Agilent AdvanceBio SEC 300A, 4.6 \times 50 mm, 2.7 μ m (p/n PL1580-1301)			
温度	25 ℃			
移動相A	0.1 % ギ酸 , 500 mM ギ酸アンモニウム	λ		
移動相B	0.1 % ギ酸, 20 % アセトニトリル(v/v)			
流量	0.4 mL/min (² D HIC の後は 0.8 mL/min)			
グラジエント	時間(分) %B 0.0 100 3.0 100 3.01 0 8.0 (² D HIC の後は 15.0) 0 8.01 (² D HIC の後は 15.01) 100 20.0 (² D HIC の後は 30.0) 100			
MS 検出				
ダイバータバルブ	² D SEC および CEX	² D HIC		
	0分:MSへ 1.55分:廃液へ	0分:MSへ 0.75分:廃液へ		
	イオン源			
	ポジティブイオン化			
ドライガス温度	300 ℃	300 °C		
ドライガス流量	8 L/min			
ネブライザ圧力	35 psi			
シースガス温度	350 °C			
シースガス流量	11 L/min			
キャピラリ電圧	3,500 V			
ノズル電圧	1,000 V			
フラグメンタ電圧	350 V			
データ取り込み				
モード	High mass range (1 GHz)			
	m/z 500 ~ 10000			
データ取り込み範囲	1 スペクトラム/秒			
	プロファイル取り込み			

²D ピークは、マルチハートカットバルブに取り 付けられた 40 µL ループで収集され、1 つず つ ³D SEC-MS に移送されます。³D SEC カラ ムは、溶出バッファ(SEC/CEX/HIC)で使用 されている非揮発性塩からタンパク質を分離 するための脱塩ツールとして機能します。こ れは後続の MS 測定で必要となる機能です。 バッファ中の塩がカラムに浸透する一方で、 mAb 関連成分は最初に MS システムに溶出 します。MS のダイバータバルブの動作はバッ ファ中の塩の溶出前に廃液に切り替えられる 反復イベントとして MassHunter ソフトウェア 内でプログラムします。 この 3D-LC マルチ特性アナライザの性能は、 市販のトラスツズマブ (ハーセプチン) とバ イオシミラー開発の際のトラスツズマブ産生 CHO クローンを用いて評価しました。トラス ツズマブは、HER2 受容体に結合するヒト化 IgG1 で、この性質を用いて HER2 陽性転移 性乳がんの治療に使用されています。 図2に、トラスツズマブ先発薬およびCHOク ローン10で得られたクロマトグラムとスペク トルを示します。高品質かつ有益な¹Dのプ ロテインAおよび²DのSEC、CEX、および HICクロマトグラムが、CHOクローン10由 来のトラスツズマブと比べて、トラスツズマブ 先発薬では全体的により高い純度で得られま した。各クロマトグラフィーモードでのトラスツ ズマブ先発薬のメインピークの MS 測定(青 で表示)は、比較可能なデコンボリュートさ れた MS スペクトルおよび糖鎖分布を示して います。しかし、かなりの量の硫酸付加体が HIC 分析で観察されます。これは、過剰な量の硫酸アンモニウムが移動相に存在することが原因です。

図 2. (A) トラスツズマブ先発薬および CHO クローン 10 の上澄みの ¹D プロテイン A クロマトグラム。(B) 1.6 分におけるプロテイン A ピークの ²D SEC、CEX、 HIC クロマトグラム。(C) トラスツズマブ先発薬のメイン ²D SEC、CEX、HIC ピークのデコンボリューション処理した ³D SEC-MS スペクトル。採取された ²D ハートカットは 青で示されています。

¹D でのプロテイン A の抗体価測定

検量線は、0.02 ~ 2.0 µg/µL のさまざまな 濃度の市販のトラスツズマブを 20 µL 注入し て作成しました。その後、20 µL の CHO ク ローンの上清を注入し、この検量線を使用し て抗体価を測定しました。図 3 (A、B、およ び C) に、プロテイン A クロマトグラムと検量 線を示します。宿主物質がフロースルーで溶 出し、強度の高いシグナルが検出されます。一 方で mAb はプロテイン A カラムに保持され、 pH が低下した後にのみ溶出します(図 3B)。 先発薬は高度に精製された市販製品であるた め、このフロースルーシグナルが先発薬に存 在しないことは当然のことです。プロテイン A クロマトグラムから、そのピーク面積とトラス ツズマブの希釈系列から作成された外部検量 線とをリンクすることによって、mAb の絶対濃 度を決定することができます(図 3C)。クロー ン3、6、8、9、および 10 に対してそれぞれ 0.40、0.09、0.57、0.74、および 1.0 µg/µL の抗体価が得られました。この結果から、低 収率クローンと高収率クローンを区別するこ とができます。その後、プロテイン A のピーク が収集され、²D の SEC、CEX、HIC に移送さ れ、図 3 (D、E、および F) に示されるような クロマトグラムが得られました。

図 3. ラスツズマブ先発薬およびトラスツズマブ産生 CHO クローンのハートカットプロテイン A -SEC/CEX/HIC 分析。(A) トラスツズマブ先発薬の希釈系列(0.02、0.0、0.1、0.2、0.5、1.0、2.0 µg/µL)の UV 280 nm での¹D プロテイン A クロマトグラム。(B) 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での¹D プロテイン A クロマトグラム。(C)¹D UV 280 nm ピーク面積により作成した検量線。(D) トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での²D SEC クロマトグラムおよび HMW および LMW 変異体の検出を示す拡大表示。(E) トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での²D CEX クロマトグラム。(F) トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クロマトグラム。

それぞれの CHO クローンは主に、溶出する 変異体の強度が異なり、これは抗体価と直接 関連付けられます。

3D-LC/MS と²D SEC オプション

プロテイン A ピークを²D の SEC に移送 することによって、高分子量および低分子量 (HMW および LMW) 変異体の観点で純度 を評価できます。図 4A および 4B に、トラス ツズマブ先発薬と 5 種類のトラスツズマブ産 生 CHO クローンの SEC クロマトグラムを示 します。

異なるサンプル間で HMW と LMW 変異体で 相違が観察されます。CHO クローンは、トラ スツズマブ先発薬で観察されるよりも多くの HMW および LMW の種を含んでいます。さ らに、CHO クローンの HMW 変異体は、先 発薬で観察される HMW 変異体よりも早く溶 出し、HMW の性質に差があることが分かり ます。²D SEC クロマトグラムでは、プロテイン A 溶出バッファ(酢酸、HOAc)に相当する非 常にブロードなピークが 15 分付近に観察さ れることに注意します。さらに、酢酸プラグ中 のプロテイン A により精製された mAb を注 入するため、中性 pH のバッファ中のサンプル の一次元 SEC 分析と比較して、メインピーク でのテーリングファクターが増大します。 図 4C ~ 4F に、トラスツズマブ先発薬と CHO クローン 10 の ³D SEC-MS のマススペクトル およびデコンボリューション処理したスペクト ルを示します。2D が高流量であるために、²D SEC ピークの一部のみが収集されて ³D 脱 塩 SEC-MS に移送されるので、低アバンダン スのピークの MS スペクトルの強度が低くな ることに注意します。結果的に、¹D プロテイ ン A のロード量を 500 µg に増量してHMW ピークの特性分析データを得ました。代わり に、マルチハートカットループ容量を大きくす ることもできますが、この場合は SEC 分離が 低下します。

図 4. トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クローンの ²D SEC オプションを用いた 3D-LC/MS 分析。(A) トラスツズマブ先発薬の UV 280 nm での ²D SEC クロマトグラム。(B) 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での ²D SEC クロマトグラム。(C) トラスツズマブ先発薬のメインおよび HMW ピーク の ³D 生 SEC-MS スペクトル。(D) CHO クローン 10 のメインおよび HMW ピークの ³D 生 SEC-MS スペクトル。(E) トラスツズマブ先発薬のメインおよび HMW ピークの デコンボリューション処理した ³D SEC-MS スペクトル。(F) CHO クローン 10 のメインおよび HMW ピークのデコンボリューション処理した ³D SEC-MS スペクトル。

生のモノマースペクトルは類似する一方で、生 の HMW スペクトルはトラスツズマブ先発薬と CHO クローン 10 との間で異なります。電荷 を帯びたエンベロープ全体のより高い m/z 値 へのシフトおよび低アバンダンスの中間 m/z スペクトルの存在は、トラスツズマブ先発薬で の共有結合性と非共有結合性のダイマーの混 合物を示唆します。トラスツズマブ産生 CHO クローン 10 では、電荷を帯びたエンベロー プのシフトのみが観察され、非共有結合性の ダイマーの存在を示唆します。後者のダイマー は変性する³D SEC-MS 条件では残存できず、 このために崩壊してモノマーになります。実 際、データをデコンボリューションすると、ダ イマー相当の MW はトラスツズマブ先発薬 の HMW ピークでのみ観察されます。CHO クローン 10 HMW の場合、使用される変性 条件のために同じ MW がモノマーとして得ら れ、非共有結合が切断されます。

3D-LC/MS と²D CEX オプション

CEX は、脱アミド化、リジン切断、および N 末端環化などの修飾から生じる可能性のある 電荷変異体をハイライトする優れたツールで す。図 5A および 5B に、トラスツズマブ先発 薬と 5 種類のトラスツズマブ産生 CHO クロー ンの²D CEX クロマトグラムを示します。全 体として、CHO クローンの純度は²D CEX ク ロマトグラムは、トラスツズマブ先発薬の分析 で明らかにされた高い純度と同等でした。各 CHO クローンのクロマトグラムでは、プロテ イン A の溶出条件に由来する酸性プラグが原 因と考えられる強度の高いピークが、3、5、 10 分付近に観察されました。 図 5C に、トラスツズマブ先発薬と CHO ク ローン10から選んだ電荷変異体でのデコン ボリューション処理した ³D SEC-MS スペクト ルを示します。特に注意することは、より強い MS スペクトルを得るために、アバンダンスが 低いピーク (ピーク1と5)ではロード量を 100 µg に増やしたことです。トラスツズマブ先 発薬と CHO クローン 10 は、メイン ²D CEX ピーク (ピーク3と6) で、MW 値およびグリ コシル化パターンが同等でした。²D CEX ピー ク1、2、および4は、メインピーク(機器の 質量精度範囲内) と類似する MW 値を持ち、 脱アミド化または異性化の傾向を示していま す。Harris ら⁹ および Verscheure ら¹⁰ は、 CEX フラクションコレクションおよびペプチド マッピングをそれぞれ、オフラインおよびオン ライン手法で実行し、ピーク1は2か所の脱 アミド化変異体に、ピーク2は1か所の脱ア ミド化変異体に、ピーク4はイソアスパラギン

図 5. トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クローンの ²D CEX オプションを用いた 3D-LC/MS 分析。(A) トラスツズマブ先発薬の UV 280 nm での ²D CEX クロマトグラム。(B) 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での ²D CEX クロマトグラム。(C) トラスツズマブ先発薬と CHO クローン 10 で収集 されたピークのデコンボリューション処理した ³D SEC-MS スペクトル。

酸含有変異体に相当することを確認しました。 ²D CEX ピーク 5 で、C 末端リジンに相当す る、約 128 Da の質量増大のある変異体が観 察されました。

3D-LC/MS と ²D HIC オプション

HIC は、タンパク質バイオ医薬品のダウンスト リーム精製で主力となる手法で、分析ツール としても価値があります。分離メカニズムは、 高塩濃度における弱い疎水性固定相へのタン パク質の吸着に基づいています。塩濃度を下 げることによって、疎水性が増加する順にタン パク質が脱着し、酸化、脱アミド化、異性化、 C 末端リジン、N 末端環化、およびクリッピン グなどの抗体の不均一性をハイライトすること ができます。

図 6A および 6B に、トラスツズマブ先発薬と 5 種類のトラスツズマブ産生 CHO クローンの HIC クロマトグラムを示します。図 6C および 6D にそれぞれ、トラスツズマブ先発薬とトラ スツズマブ産生 CHO クローンの 10 のメイン ピークをデコンボリューション処理した MS ス ペクトルを示します。定性 可能なマススペクト ルを得るために、ロード量を 100 µg まで増 やしました。³D SEC による脱塩を行ったにも かかわらず、実質的に感度の低下をまねく付 加体が生成し、複雑なスペクトルが得られました。硫酸/リン酸アンモニウムバッファに代わる 適切なバッファを見つけるための、さらなるメ ソッド開発が必要です。

図 6. トラスツズマブ先発薬および 5 種類のトラスツズマブ産生 CHO クローンの ²D HIC オプションを用いた 3D-LC/MS 分析。(A) トラスツズマブ先発薬の UV 280 nm での ²D HIC クロマトグラム。(B) 5 種類のトラスツズマブ産生 CHO クローンの UV 280 nm での ²D HIC クロマトグラム。(C) トラスツズマブ先発薬で収集されたピークの デコンボリューション処理した ³D SEC-MS スペクトル。(D) CHO クローン 10 で収集されたピークのデコンボリューション処理した ³D SEC-MS スペクトル

自動化された²D モード切り替え

前述の 3D-LC/MS マルチ特性解析システム は、カラムセレクタバルブを搭載することに よって、二次元目で3つの異なるクロマトグラ フィーモード(SEC、CEX、または HIC)から 選択できるオプションを提供します。すべての クロマトグラフィーモードで適切な移動相組成 が異なり、互換性はないため、²Dモード間の 自動切り替えの評価が必要です。カラムに適 切でない移動相が流入するのを防ぐために、 システムではカラム選択バルブのバイパス位 置を使用し、次に予定するクロマトグラフィー モードの移動相組成を用いてフラッシュするこ とによって事前にコンディショニングしました。 その後、サンプルの注入前にカラムを十分に コンディショニングするブランクランを実行し ました。

各クロマトグラフィーモードを順次に実行す るシーケンスを実行し評価を行いました。例 えば、²D SEC を1回ランした後、システムは CEX 条件に合わせてプレコンディショニング され、ブランクランの後にトラスツズマブが注 入されました。このクロマトグラムの²D CEX ランと²D HIC ランの後に得たクロマトグラム との比較を、図7の最初の列に示しました。 全体的に見て、同等のクロマトグラムがすべ てのクロマトグラフィーモードで得られました。 したがって、クロマトグラフィー品質を損なう ことなく、異なる²D モードを単一シーケンス で実行でき、このセットアップの最終目標にか なっていることが分かります。

図 7. SEC、CEX、および HIC 間で切り替わる ²D モードの評価中に得られた ²D UV 280 nm クロマトグラム

結論

一次元目のプロテイン A アフィニティクロマト グラフィーと、二次元目のマルチメソッドオプ ション (SEC、CEX、HIC から選択)と、三次 元目の脱塩 SEC-MS を組み合わせた完全に 自動化された 3D-LC/MS マルチ特性解析シ ステムについて解説しました。このセットアッ プでは、mAb を細胞培地の上清から精製し、 mAb 抗体価、サイズ/電荷/疎水性変異体、分 子量、アミノ酸配列、翻訳後修飾を測定できま す。また、分離能に影響を及ぼすことなく、異 なる²D メソッド間を自動で切り替えることが できます。

参考文献

- Sandra, K.; Vandenheede, I.; Sandra, P. Modern Chromatographic and Mass Spectrometric Techniques for Protein Biopharmaceutical Characterization. *J. Chromatogr.A* 2014, *1335*, 81–103.
- 2. Fekete, S. *et al*. Chromatographic, Electrophoretic and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals.*Anal.Chem*.**2016**, *88*, 480–507.
- Walsh G. Biopharmaceutical Benchmarks 2018. Nat. Biotechnol.2018, 32, 992–1000.
- Stoll, D. *et al.* Characterization of Therapeutic Antibodies and Related Products by Two-Dimensional Liquid Chromatography Coupled with UV Absorbance and Mass Spectrometric Detection.*J. Chromatogr.B* **2016**, *1032*, 51–60.
- Sandra, K. *et al* Characterizing Monoclonal Antibodies and Antibody-Drug Conjugates using 2D-LC-MS. *LCGC Europe* **2017**, *30*, 149-157.

- Stoll, D. R. *et al*. Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. *Anal. Chem.* 2015, *87*, 8307–8315.
- Sandra, K. *et al.* The Versatility of Heart-Cutting and Comprehensive Two-Dimensional Liquid Chromatography in Monoclonal Antibody Clone Selection. *J. Chromatogr. A.* **2017**, *1523*, 283– 292.
- Vanhoenacker, G. et al. Multi-Attribute Analysis of Monoclonal Antibodies Using the Agilent InfinityLab 2D-LC Solution and Q-TOF MS. Agilent Technologies application note, publication number 5994-0947EN, 2020.
- Harris, R. J. *et al.* Identification of Multiple Sources of Charge Heterogeneity in a Recombinant Antibody.*J. Chromatogr.B* **2001**, 752, 233–245.
- Verscheure, L. *et al.* Fully Automated Characterization of Monoclonal Antibody Charge Variants Using 4D-LC/MS. *Agilent Technologies application note*, publication number 5994-2020EN, **2020**.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE44308.1141550926

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2021 Printed in Japan, May 11, 2021 5994-3521 JAJP

