

アジレント Ultivo トリプル四重極 LC/MS を用いた水道水中のグリホサート、グルホシネート、AMPA の一斉 分析

Authors

安田 恭子

澤田 浩和

アジレント・テクノロジー 株式会社

要旨

水質管理設定項目の農薬類の検査法 (別添方法 22) に基づき、FMOC 誘導体化-LC-MS/MS 法を用いた水道水中グリホサート、グルホシネートおよび AMPA の一斉分析を行いました。いずれの農薬も $0.1~\mu$ g/L で検出可能で、濃度範囲 0.1-5 μ g/L において決定係数 $r2 > 0.99以上の直線性をもつ検量線を取得できました。また、水道水中における<math>0.1~\mu$ g/Lの添加回収率は $94.9 \sim 99.5~\%$ と良好でした。

目的

グリホサートとグルホシネートは除草剤として国内で広く流通している農薬です。また、グリホサートは土壌中や水中で代謝されてアミノメチルリン酸(AMPA)を生成することが知られています。これら3つの化合物は高極性であるため、誘導体化法を用いずにGC-MSで検出することが困難です。またHPLCにおいても良好なピーク分離や検出感度が得られ難い事が知られています。

平成27年の厚生労働省健康局水道課長通知により、グルホシネートについてLC-MS/MSによる検査法が示されました。グルホシネートの検査方法として示された別添方法22の「誘導体化- 固相抽出- 液体クロマトグラフ- 質量分析計による一斉分析法」ではグリホサートとAMPAも同時分析が可能となりました。

このアプリケーションノートでは、別添方法22によるグリホサート、グルホシネートおよびAMPAの分析例をご紹介します。

分析条件

各標準物質および水道水に標準物質を所定量添加したサンプルは、FMOC誘導体化を行ってからLC-MSで測定しました。装置感度が十分であり、大過剰添加しているFMOC試薬と分析種がLCカラムで分離できていることから、固相抽出の操作は省略しました。

またFMOC誘導体化については、アジレントのアミノ酸 誘導体化キットを利用することで、煩雑な試薬調製を簡単 に行えます。誘導体化に使用した試薬、方法は図1に示し ました。ろ過は、メルクミリポア社のウルトラフリーMC (Hydrophilic PTFE Membrane、UFC30LG00)を用いまし た。

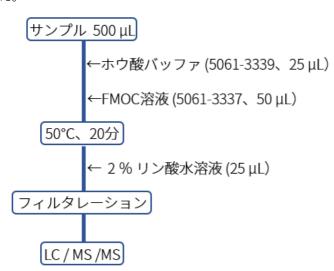


図1 FMOC誘導体化

分析に使用した機器一覧は表1に、LCおよびMSのパラメータは表2にまとめました。

表 1 機器一覧

型番	装置名
Ultivo	トリプル四重極 MS 検出器
G7104C	1260 Infinity II フレキシブルポンプ
G7167A	1260 Infinity II マルチサンプラ
G7116A	1260 Infinity II マルチカラムサーモスタット
G7115A	1260 Infinity II ダイオードアレイ検出器 WR

表 2 分析条件

パラメータ	値							
乾燥ガス	N ₂ 、350 °C、10 L/min							
シースガス	N ₂ 、350 °C、10 L/min							
極性	ネガティブ							
イオンソース	AJS (Agilent Jet Stream, ESI)							
ネブライザ	N ₂ , 50 psi							
ノズル電圧	0 V							
キャピラリ電圧	3500 V							
MRM*	グリホサート	390 > 168	CE=8	F = 70				
			CE=22					
	グルホシネート	402 > 180	CE=6	F=80				
		402 > 206	CE=12	F=80				
	AMPA	332 > 110	CE=4	F=120				
		332 > 136	CE=14	F=120				
カラム Poroshell HPH-C18 (Agilent, 3.0 mm i.d. x 100 m								
	1.9 μm P/N 695675-502)							
移動相	A:5mM 酢酸アンモニウム水溶液							
	B:アセトニトリル							
流速	0.3 mL/min							
グラジェント	15% B (0 min) →(10 分)→100% B							
カラム温度	40 °C							
注入量	5 μ L							
波長	260nm、Reference 360nm							

CE = Collision energy (eV), F = Fragmentor (V)

結果および考察

図2には $0.1~\mu$ g/L濃度のグリホサート、グルホシネート、AMPAのMRMクロマトグラムを示しました。別添方法22によると、目標値としての定量下限値は $0.2~\mu$ g/Lとなっていますので、その1/2濃度でも十分に検出できていることが示されました。

また、波長260nmにおけるUVクロマトグラムから、誘導体化のために大過剰に添加されているFMOC試薬と分析種は、分離できていることも確認できました。そこでダイバートバルブを切り替えて、4~8分の溶離液のみ質量分析装置に導入しました。これによりFMOC等の試薬が質量分析装置を汚染することを避けることが可能となりました。

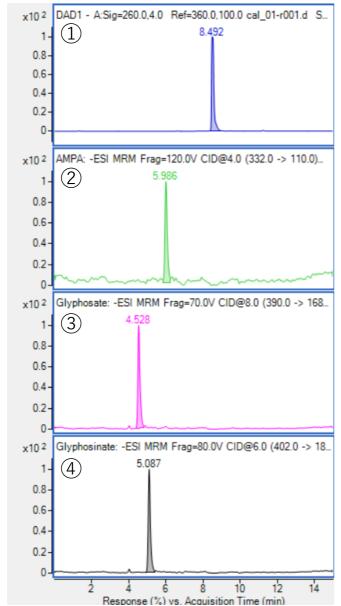


図2①UV(260nm) ②AMPA ③グリホサート ④グルホシネートのクロマトグラム。標準品の濃度は $0.1\,\mu\,\mathrm{g/L}$

0.1、0.2、0.5、1.0、2.0、および $5.0\,\mu\,\mathrm{g/L}$ の標準品を本法で測定し、得られた検量線を図3に示しました。グリホサート、グルホシネート、AMPAいずれの検量線も決定係数0.99以上と良好な直線性を示しました。また検量線の真度はすべてのポイントで $90.7\sim110.7\%$ の範囲に収まりました。濃度 $0.1~\mu\,\mathrm{g/L}$ における併行精度(RSD)を検討したところ、面積値でグリホサートが4.66%、グルホシネートが4.41%、AMPAが4.67%と良好な再現性を示しました。

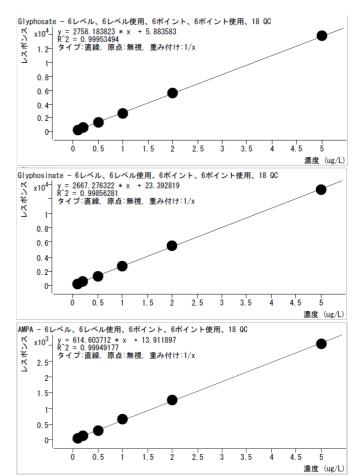


図3 各化合物の検量線

次に、0.1および 1μ g/Lを添加した添加試料の回収率を表3に示しました。検水はアスコルビン酸ナトリウムで脱塩素処理したのち、所定量の分析種3種を添加後、標準品と同じ手法で誘導体化をしたものを用いました。どちらの濃度においても、グリホサート、グルホシネート、AMPAの回収率は93.1~99.5%と良好であることが分かりました。また自由度4における併行精度は3.62~8.89%と良好でした。

計算濃度 (0.1μg/L添加)					平均值	% RSD	回収率
n=1	n=2	n=3	n=4	n=5	1 3 (a.e.	70 1100	L-X-
0.0918	0.1015	0.0916	0.0913	0.1109	0.0974	8.89	97.4
0.0919	0.0906	0.1004	0.0905	0.1008	0.0949	5.55	94.9
0.0961	0.0895	0.1057	0.0977	0.1085	0.0995	7.66	99.5
計算濃度(1μg/L添加)					亚杓猫	06 DSD	回収率
n=1	n=2	n=3	n=4	n=5	十一八日	75 1(30	EPAT
0.8912	0.9250	0.9899	0.9334	0.9263	0.9332	3.83	93.3
0.9694	0.9556	0.9503	0.8644	0.9134	0.9306	4.56	93.1
0.9913	1.0048	0.9375	0.9472	0.9252	0.9612	3.62	96.1
	0.0918 0.0919 0.0961 n=1 0.8912 0.9694	n=1 n=2 0.0918 0.1015 0.0919 0.0906 0.0961 0.0895 s+算減期 n=1 n=2 0.8912 0.9250 0.9694 0.9556	n=1 n=2 n=3 0.0918 0.1015 0.0916 0.0919 0.0906 0.1004 0.0961 0.0895 0.1057 計算速度 (1µg/ n=1 n=2 n=3 0.8912 0.9250 0.9899 0.9694 0.9556 0.9503	n=1 n=2 n=3 n=4 0.0918 0.1015 0.0916 0.0913 0.0919 0.0906 0.1004 0.0905 0.0961 0.0895 0.1057 0.0977 計算課度 (1µg/L添加) n=1 n=2 n=3 n=4 0.8912 0.9250 0.9899 0.9334 0.9694 0.9556 0.9503 0.8644	n=1 n=2 n=3 n=4 n=5 0.0918 0.1015 0.0916 0.0913 0.1109 0.0919 0.0906 0.1004 0.0905 0.1008 0.0961 0.0895 0.1057 0.0977 0.1085 計算課度 (1μg/L添加) n=1 n=2 n=3 n=4 n=5 0.8912 0.9250 0.9899 0.9334 0.9263 0.9694 0.9556 0.9503 0.8644 0.9134	n=1	n=1

表40.1および 1μ g/Lにおける添加回収試験結果

まとめ

水質管理設定項目の農薬類の検査法(別添方法 22)に基づき、FMOC 誘導体化-LC-MS/MS 法を用いた水道水中グリホサート、グルホシネートおよび AMPA の一斉分析を行いました。今回は、固相抽出による10倍濃縮を行わず、誘導体化した化合物をそのまま質量分析装置で検出しました。その結果、 $0.1\,\mu\,\mathrm{g/L}$ 濃度において各成分が問題なく検出できていることが分かりました。また、大過剰に含まれるFMOC試薬は分析カラムで分離できていることもわかりました。

 $0.1 \mu \text{ g/L}$ 濃度における水道水の添加回収試験においても良好な結果が得られました。

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社

② Agilent Technologies, Inc. 2021
Printed in Japan, January 25, 2021
DE44217.7217013889
LC-MS-202101-YD-001

