

Iterative MS/MS 法を用いた Agilent 6546 LC/Q-TOF による農薬サスペクトスクリーニング法

Authors

滝埜昌彦

澤田浩和

アジレント・テクノロジー 株式会社

要旨

本アプリケーションノートでは、Iterative MS/MS 法を用いた四重極飛行時間型 LC/MS(LC/Q-TOF)による農薬スクリーニング法について紹介します。Auto MS/MS 法 とはデータ依存型 MS/MS 法です。この手法は検出されたイオンを自動的に強度や価数順に MS/MS 測定する方法で、特徴は 1 回の測定で主要なイオンに対してプロダクトイオンスペクトルの測定が可能な手法であることです。しかし、相対的に強度の低いイオンは MS/MS 測定ができず取りこぼしが生じる可能性があります。最近、この Auto MS/MS 法の新たな測定法として Iterative MS/MS 法という手法が開発され、網羅的な MS/MS 測定に有効な手法となっています。この手法は同一試料を複数回測定する事で取りこぼしを低減した網羅的 MS/MS 測定を可能にします。そこで作物中農薬のサスペクトスクリーニング法に Iterative MS/MS 法を用いた Agilent 6546 LC/QTOFによる分析法を検討しました。

分析条件

システム

1290 Infinity II High speed pump (G7120A)

1290 Infinity II Multisampler (G7167B)

1290 Infinity II Multicolumn thermostat (G7116B)

6546 LC/Q-TOF (G6546A)

MassHunter Data Acquisition B.10.1

MassHunter Qualitative analysis B.10.0

LC-MS条件

今回の分析は高分解能LC/Q-TOF法を使用しました。条件は表1及び2に示した通りです。

表 1. 分析条件

LC	Agilent 1290 Infinity II Prime LC	System		
移動相	A:5 mM酢酸アンモニウム水溶液 B:メタノール			
カラム	ZORBAX Eclipse Plus C18 RRHD(1.8 µm, 2.1 mm×100 mm) (P/N:959758-902)			
流速	0.2 mL/min Time(min) %B			
カラム温度	40 °C	0	10	
注入量	2 µL	30	100	
グラジエント	右図			
MS	Agilent 6546 LC/Q-TOF Syster	m		
イオン源	Agilent Jet Stream(AJS) ESI			
測定モード	Iterative MSMS			
取り込み速度	6 Hz			
乾燥ガス	350 °C 10L/min			
シースガス	300 °C 12 L/min			
ネブライザ圧	50 psi			
キャピラリ電圧	4000 V			
ノズル電圧	0 V			

Iterative MS/MS法はAuto MS/MSの一種で表 2 のAuto MS/MS条件で選択,MS/MS測定したイオンはIterative条件で除外しながら同一試料を4回繰り返し測定しました。

表2 Iterative MS/MSの測定条件

Auto MSMS条件	設定値
プリカーサーイオン数	4
強度閾値	1000
コリジョンエネルギー	30 eV
MSMS測定回数	4
Iterative条件	設定値
許容相対質量誤差	±20 ppm
許容保持時間	±0.2 分

試料調製

農薬混合標準液は林純薬製農薬混合標準溶液(PL2005 LC/MS農薬 Mix $4\sim12$)を混合した後、適宜アセトニトリルで希釈調製しました。予め粉砕した試料(ネギ)はQuEChERS 抽出キット (P/N:5982-5650)及び QuEChERS 分散キット (P/N:5982-5056)を用いて処理しました。その後、抽出精製液は $0.45~\mu$ mのフィルターでろ過しました。Iterative法の検証には上記試料に既知農薬を添加した試料を用いました。

農薬サスペクトスクリーニング法

サスペクトスクリーニングに使用したPCDL(Personal Compound Database Library)は表3に示した通りで、化合物名、組成式、モノアイソトピック質量及びプロダクトイオンスペクトルを含みます。農薬サスペクトスクリーニング条件は表4に示しました。

表3. 農薬のPCDL

Aldoxycarb Oxamyl	C7H14N2O4S							
Oxamvl	07111 11120 10	222.06743	Monolinuron	C9H11CIN2O2	214.05091	Indanofan	C20H17CIO3	340.08662
	C7H16N4O3S	236.09431	Fluazifop	C15H12F3NO4	327.07184	Epoxiconazole	C17H13CIFN3O	329.07312
Methomyl	C5H10N2O2S	162.04630	Propham	C10H13N02	179.09463	Cyazofamid	C13H13CIN4O2S	324.04477
Oxydemeton-methyl	C6H15O4PS2	246.01494	Triflusulfuron methyl	C17H19F3N6O6S	492.10389	Diflubenzuron	C14H9CIF2N2O2	310.03206
lumetsulam	C12H9F2N502S	325.04450	Bensulfuron methyl	C16H18N4O7S	410.08962	Naproanilide	C19H17NO2	291.12593
hiamethoxam	C8H10CIN503S	291.01929	Primisulfuron methyl	C15H12F4N4O7S	468.03628	Fenoxycarb	C17H19NO4	301.13141
Thifensulfuron methyl	C12H13N5O6S2	387.03072	Thiodicarb	C10H18N4O4S3	354.04902	Flutolanil	C17H16F3NO2	323.11331
Metsulfuron methyl	C14H15N5O6S	381.07430	Dimethirimol	C11H19N3O	209.15281	Tebufenozide	C18H20N2O2	296.15248
Clothianidin	C6H8CIN502S	249.00872	Pirimicarb	C11H18N4O2	238.14298	Tetrachlorvinphos	C10H9Cl4O4P	363.89926
midacloprid	C9H10CIN5O2	255.05230	Methabenzthiazuron	C10H11N30S	221.06228	Cyprodinil	C14H15N3	225.12660
Azimsulfuron	C13H16N1005S	424.10258	Furametpyr	C17H20CIN3O2	333.12440	Imazalil	C14H14Cl2N2O	296.04832
lorasuram	C12H8F3N5O3S	359.02999	Cyclosulfamuron	C17H19N5O6S	421.10560	Carpropamid	C15H18Cl3NO	333.04540
Chloridazon	C10H8CIN30	221.03559	Diuron	C9H10Cl2N2O	232.01702	Anilofos	C13H19CINO3PS2	367.02325
Cinosulfuron	C15H19N5O7S	413.10052	Forchlorfenuron	C12H10CIN3O	247.05124	Azafenidin	C15H13Cl2N3O2	337.03848
lazasulfuron	C13H12F3N5O5S	407.05112	Azinphos methyl	C10H12N3O3PS2	317.00577	Fenobucarb	C12H17N02	207.12593
Sulfosulfuron	C16H18N6O7S2	470.06784	Acibenzoral-S-methtl	C8H6N2OS2	209.99215	Phoxim	C12H15N2O3PS	298.05410
Cymoxanil	C7H10N4O3	198.07529	Pyriftalid	C15H14N2O4S	318.06743	Clofentezine	C14H8Cl2N4	302.01260
mazosulfuron	C14H13CIN6O5S	412.03567	Haloxyfop	C15H11CIF3NO4	361.03287	Pyraclostrobin	C19H18CIN3O4	387.09858
Oxycarboxine	C12H13N04S	267.05653	Fluridon	C19H14F3NO	329.10275	Triflumuron	C15H10CIF3N2O3	358.03320
ropoxycarbazone	C15H18N4O7S	398.08962	Linuron	C9H10Cl2N2O2	248.01193	Cyflufenamid	C20H17F5N2O2	412.12102
riasulfuron	C14H16CIN5O5S	401.05607	Ametryn	C9H17N5S	227.12047	Pyrazolynate	C19H16Cl2N2O4S	438.02078
Thiacloprid	C10H9CIN4S	252.02364	Pyrimethanil	C12H13N3	199.11095	Pencycuron	C19H21CIN2O	328.13424
Mesosulfuron-methyl	C17H21N5O9S2	503.07807	Azoxystrobin	C22H17N3O5		Cycloate	C11H21NOS	215.13439
thametsulfuron-methyl		410.10085	Methiocarb	C11H15N02S		Indoxacarb MP	C22H17CIF3N3O7	527.07071
Naptalam	C18H13N03	291.08954	Ferimzone(E)	C15H18N4	254.15315	Trifloxystrobin	C20H19F3N2O4	408.12969
Aldicarb	C5H9NS	115.04557	Fenamidone	C17H17N3OS	311.10923	Triflumizole	C15H15CIF3N3O	345.08557
Pyrazosulfuron-ethyl	C14H18N6O7S	414.09577	Dimethomorph(E)	C21H22CINO4	387.12374	Benzofenap	C22H20Cl2N2O3	430.08510
rifloxysulfuron	C14H14F3N5O6S	437.06169	Ferimzone(Z)	C15H18N4	254.15315	Novaluron	C17H9CIF8N2O4	492.01231
Halosulfuron methyl	C13H15CIN6O7S	434.04115	Boscalid	C18H12Cl2N2O	342.03267	Fenoxaprop-ethyl	C18H16CINO5	361.07170
'hiabendazole	C10H7N3S	201.03607	Dimethomorph(Z)	C21H22CINO4	387.12374	Quizalofop-ethyl	C19H17CIN2O4	372.08768
/letosulam	C14H13Cl2N5O4S	417.00653	Dymuron	C17H20N2O	268.15756	Oxaziclomefone	C20H19Cl2NO2	375.07928
enoxsulam	C16H14F5N5O5S	483.06358	Methoxyfenozide	C22H28N2O3	368.20999	Furathiocarb	C18H26N2O5S	382.15624
Chlorimuron ethyl	C15H15CIN4O6S	414.04008	Cumvluron	C17H19CIN2O	302.11859	Propaguizafop	C22H22CIN3O5	443.12480
Cloransulam-methyl	C15H13CIFN505S	429.03100	Chloroxuron	C15H15CIN2O2		Cloquintocet mexyl	C18H22CINO3	335.12882
zamethiphos	C9H10CIN2O5PS	323,97366	Mepanipyrim	C14H13N3		Fenpyroximate(E)	C24H27N3O4	421,20016
Diclosulam	C13H10Cl2FN5O3S	404.98654	Iprovalicarb	C18H28N2O3		Lufenuron	C17H8Cl2F8N2O3	509.97842
thoxysulfuron	C15H18N4O7S	398.08962	Fenhexamid	C14H17Cl2NO2	301.06363	Hexythiazox	C17H21CIN2O2S	352.10123
Bendiocarb	C11H13N04	223.08446	Prometryn	C10H19N5S		Flufenoxuron	C21H11CIF6N2O3	488.03624
'hidiazuron	C9H8N4OS	220.04188	Triflumizole metabolite	C12H14CIF3N2O		Etoxazole	C21H23F2N02	359.16969
Carbofuran	C12H15N03	221.10519	Chromafenozide	C24H30N2O3		Fenpyroximate(Z)	C24H27N3O4	421.20016
Sulfentrazone	C11H10Cl2F2N4O3S		Butafenacil	C20H21CIF3N3O6		Chlorfluazuron	C20H9Cl3F5N3O3	538.96297
Prosulfuron	C15H16F3N5O4S	419.08751	Flufenacet	C14H13F4N302S		Abamectin B1a	C48H75NO14	889.51876
Tebuthiuron	C9H16N4OS	228.10448	Triticonazole	C17H20CIN3O		Spinosyn A	C41H65N010	731.46085
Carbaryl	C12H11N02	201.07898	Simeconazole	C14H20FN30Si		Spinosyn D	C42H67NO10	745.47650
	C14H11CIFNO4	311.03606					1 .2	

表4. 農薬サスペクトスクリーニング条件及び許容値

条件	設定値
抽出質量幅	±30 ppm
抽出時間	±2 分
許容項目	基準値
相対質量誤差	3 ppm
同位体スコア	90
回位体スコア	30

結果

標準液

Iterative MS/MS法は表2に示した通り、Auto MS/MS法を基本としています。従ってなるべく多くのイオンに対して良質なプロダクトイオンスペクトルを得るためには、クロマトグラムのピークあたりのデータ数が低下しない様に測定速度を高くする必要があります。一般的にTOF-MSは測定速度を上げると強度が低下します。そのため農薬標準液(10 ppb)における対象の133農薬の感度を確認しました。表3の農薬PCDLの組成式の情報を用いるスクリーニングにより、133農薬全てが抽出イオンクロマトグラム(EIC)で検出されました(図1)。

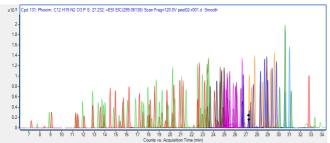


図1 農薬標準液(10 ppb)のEIC

図2はサスペクトスクリーニング結果の例です。サスペクトスクリーニングは標準品を使用しないスクリーニング手法ですので、組成式から計算されるモノアイソトピック質量の質量真度や同位体情報(強度比、質量差)を用いた識別だけでは偽陽性がある程度認められます。しかし、プロダクトイオンスペクトルが取得できればライブラリ検索により偽陽性を大きく低減できます。図2はトリスルフロンの結果を示していますが、相対質量誤差:0.25 pm、同位体スコア:99.9、ライブラリスコア:94でした。

Iterative MS/MS法の検証

Iterative MS/MS法は、Auto MS/MSで測定するプロダクトイオンスペクトルの取りこぼしを低減する目的で、プロダクトイオンスペクトルを取得したイオンを除外しながら繰り返し測定する手法です。そこで農薬標準液(100,10 ppb)及びネギ抽出液(10 ppb)を4回測定し、プロダクトイオンスペクトルが取得できた農薬数を図3に示しました。

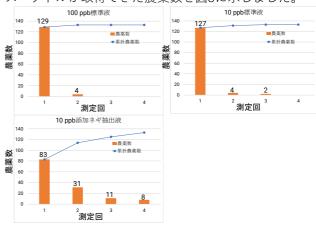


図3 各Iterative MS/MS測定におけるスペクトル取得農薬数

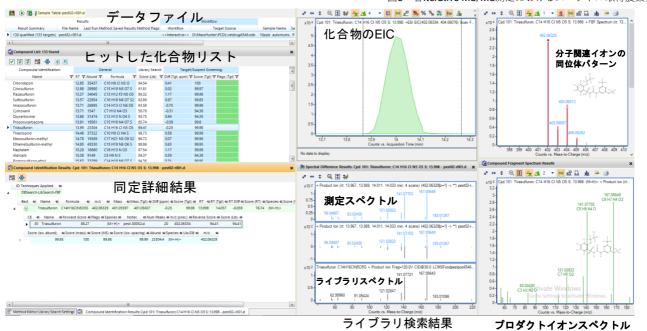


図2 農薬(トリスルフロン)のサスペクトスクリーニング結果

標準品では、1回の測定で殆どの農薬のプロダクトイオンスペクトルの測定が可能でしたが、ネギ抽出液中では同一濃度においてもネギ由来マトリックスの影響で取りこぼしが多く、1回目の測定では60%程度のカバー率でしたが4回の繰り返し測定で全ての農薬でプロダクトイオンスペクトルの測定が可能でした。

図4に各試料中農薬のライブラリ検索のスコアの分布を示します。標準液およびネギ抽出液中における90%以上の農薬において、ライブラリ検索スコアが70以上を示しました。

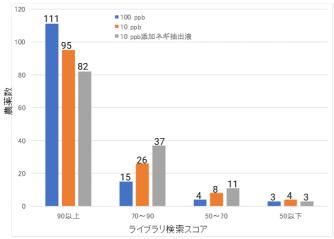


図4 農薬標準液及び農薬添加ネギ抽出液でのライブラリ検索スコア分布

まとめ

Agilent 6546 LC/Q-TOFシステムのIterative MS/MS法を用いた農薬サスペクトスクリーニング法を検証しました。Iterative MS/MS法で同一試料を4回繰り返し測定する事で農薬標準液(10,10 ppb)及び農薬添加ネギ抽出液(10 ppb)で今回測定対象とした133農薬のプロダクトイオンスペクトの取得が可能でした。また、取得したプロダクトイオンスペクトルのPCDLによるライブラリ検索で農薬の確認が可能でした。

Iterative MS/MS法を用いた信頼性の高いスクリーニング 法と考えられ、Agilent 6546 LC/Q-TOF で食品中微量農薬の 偽陽性の少ない信頼性の高いサクペクトスクリーニングが可 能と考えられます。

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111

email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社

© Agilent Technologies, Inc. 2020 Printed in Japan, June 15, 2020 DE44223.7596759259 LC-MS-202006TK-002

