

イオン排除-LC/MS による有機酸の分析

<要旨>

有機酸は一般に親水性が高く、逆相モードによる保持は困難です。 一方、イオン排除モードは有機酸の分離に優れていますが、UV 検出器 による直接検出もしくは BTB 溶液によるポストカラム発色法が用いら れており、これらの検出法では低濃度の有機酸の検出が困難とされてい ます。

本アプリケーションノートでは、イオン排除モードによる有機酸類の分離を行いシングル四重極 MS による検出を検討しました。

Key Words: 有機酸、イオン排除、シングル四重極 MS

1. はじめに

LC/MS による有機酸分析は、逆相モードにより分離を行うことが多いですが、有機酸は一般に親水性が高く逆相カラムへの保持が小さいため、複雑なマトリックスを含む試料中の共溶出する成分から影響を受けやすいという問題があります。

イオン排除カラムによる有機酸分析では、BTB 溶液によるポストカラム発色-可視吸光光度検出法もしくは UV による直接検出法が用いられてきましたが、低濃度の検出は困難です。本アプリケーションノートではイオン排除モードにより有機酸を分離し、シングル四重極 MS 検出による検討を行いました。

2. 実験条件

表 1. LC/MS 分析条件

<u>LC</u>	1290 Infinity II system		
カラム	Agilent Hi-Plex H, 250 x 4.6 mm, 8 μm		
	PN:PL1570-6830		
移動相	0.01%formic acid/acetonitrile=80/20(v/v)		
流速	0.2 mL/min		
ポストカラム添加剤	0.025%NH4OH in water/acetonitrile=50/50(v/v)		
添加剤流速	0.1 mL/min		
カラム温度	50°C		
注入量	10 μL		
MS	6120 Single Quad LC/MS		
イオン源	ESI		
ドライガス	N2, 12 L/min		
ドライガス温度	200 °C		
ネブライザガス圧	50 psi		
キャピラリー電圧	3000 V		
極性	Negative		
シグナル	SIM		

表 2. 各有機酸の SIM イオン一覧

		[M-H]- (<i>m/z</i>)	Fragmentor (V)
酢酸	acetic acid	59	80
グリオキシル酸	glyoxylic acid	73	80
プロピオン酸	propionic acid	73	80
グリコール酸	glycolic acid	75	80
ピルビン酸	pyruvic acid	87	80
酪酸	butyric acid	87	80
シュウ酸	oxalic acid	89	80
乳酸	lactic acid	89	80
吉草酸	valeric acid	101	80
マロン酸	malonic acid	103	60
フマル酸	fumaric acid	115	80
レブリン酸	levulic acid	115	80
マレイン酸	maleic acid	115	80
コハク酸	succinic acid	117	80
ピログルタミン酸	pyroglutamic acid	128	60
イタコン酸	itaconic acid	129	60
リンゴ酸	malic acid	133	60
ケトグルタル酸	ketoglutaric acid	145	80
アジピン酸	adipic acid	145	80
酒石酸	tartaric acid	149	100
アスコルビン酸	ascorbic acid	175	100
クエン酸	citric acid	191	100
グルコン酸	gluconic acid	195	100

ポストカラム添加剤としてアセトニトリルを含むアンモニア水を、Tコネクタを経由して添加しました。

3. 結果および考察

図 1 に各有機酸の 1 mg/L 標準溶液の SIM クロマトグラムを示しました。すべての有機酸において 1 mg/L 試料でピークを検出できました。このときの S/N 値(Signal/Peak to Peak noise x2)を

表3に示しました。

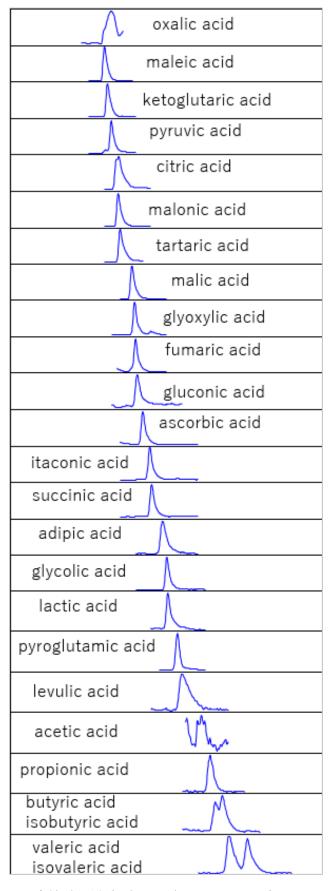


図 1. 有機酸標準液 (1 mg/L) のクロマトグラム

表 3. 各有機酸の保持時間と 1 mg/L での S/N

	[M-H]- (<i>m/z</i>)	RT(min)	S/N
シュウ酸	89	5.9	39.3
マレイン酸	115	6.0	274.0
ケトグルタル酸	145	6.2	68.7
ピルビン酸	87	6.5	527.5
クエン酸	191	6.8	287.4
マロン酸	103	7.0	125.4
酒石酸	149	7.1	171.2
リンゴ酸	133	7.8	268.2
グリオキシル酸	73	8.0	82.9
フマル酸	115	8.1	42.9
グルコン酸	195	8.2	58.6
アスコルビン酸	175	8.5	128.8
イタコン酸	129	8.9	133.9
コハク酸	117	9.1	55.5
アジピン酸	145	9.7	65.3
グリコール酸	75	10.0	59.4
乳酸	89	10.1	84.0
ピログルタミン酸	128	10.7	170.9
レブリン酸	115	11.0	22.7
酢酸	59	12.0	5.8
プロピオン酸	73	12.8	36.3
酪酸	87	13.1	18.2
吉草酸	101	14.0	52.1

実試料として市販ヨーグルトの分析を行いました。ヨーグルトの乳清を採取し、0.22 µm フィルターでろ過したものを 100 倍希釈して試料としました。検出された有機酸のクロマトグラムを図 2 に示しました。この試料に 0.1 mg/L の有機酸標準品を添加し、リンゴ酸の添加回収試験を行いました。このときの回収率は 93%と良好な結果を得られました。0.01 から 0.25 mg/L の範囲の直線性も良好でした。

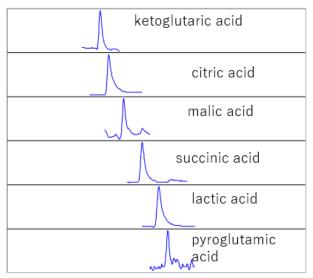


図2. 市販のヨーグルトから検出された有機酸

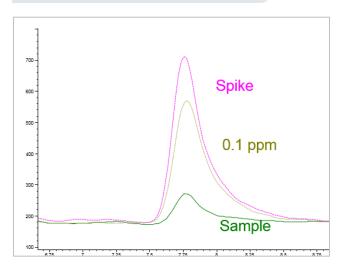


図3. リンゴ酸添加回収試験のクロマトグラム

表 2. リンゴ酸添加回収試験における面積値

Sample	Area
sample	1746.8
Sample + 0.1 mg/L spike	10117.8
0.1 mg/L	7690.7

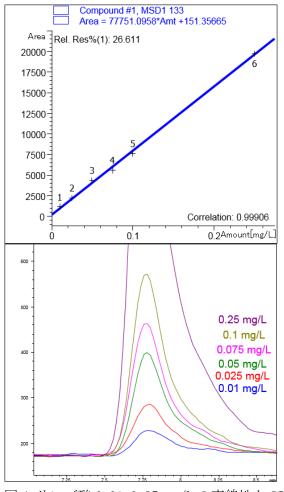


図 4. リンゴ酸 0. 01-0. 25 mg/L の直線性と SIM クロマトグラム

4. まとめ

有機酸をイオン排除モードで分離し、シングル四重極 MS で検出しました。良好な分離が得られ、すべての有機酸において 1 mg/L 試料でピークが検出されました。また、実試料に応用したところ、ヨーグルトから有機酸を検出し添加回収試験を行ったところ回収率も良好でした。

[LC-MS-201611HK-001]

アジレントは、本文書に誤りが発見された場合、また、本文書の使用により付随的または間接的に生じる障害について一切免責とさせていただきます。また、本文書に記載の情報、説明、製品仕様等は予告なしに変更することがあります。

アジレント・テクノロジー株式会社

〒192-8510 東京都八王子市高倉町 9-1 www.agilent.com/chem/jp

