

大気圧化学イオン化法LC/MSによる 豚肉中のサルファ剤の分析

アプリケーション

食品

Ralph Hindle Access Analytical Labs #3, 2616 - 16 Street N.E. Calgary, AB.T2E 7J8 Canada

Agilent 連絡担当: Chin-Kai Meng Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808-1610 USA

概要

著者

このアプリケーションノートでは、豚肉中のスルホンアミ ド系抗菌剤を分析するための簡便な手法を紹介します。サ ンプル抽出は酸を添加したメタノールで行い、遠心分離を 経て抽出物の一部を水で希釈した。そして、この希釈液を 直接、大気圧化学イオン化を用いたLCMSにて分析した。全 成分は5分以内に溶出した。内部標準を用いて、50 ppb (ng/g)の添加試験にて7種のスルホンアミドの回収率は84%-118%の範囲であった。検出限界は10-25 ppb であることが 分かった。固相抽出によって精製したサンプルと簡便な抽 出法の比較、およびスクリーニング(最大感度)と同定 (フラグメントイオン生成)のための質量選択型検出器の設 定の比較も行われた。Agilent の四重極質量選択型検出器の 高い感度により、ハイスループットな分析が要求されるラ ボでも希釈クリーンアップのテクニックが使用可能となっ た。

はじめに

肉、食品用の臓物、飼料および動物の排泄物などは、 食品に混入する恐れのある抗菌剤、成長ホルモンおよ びその他の化学物質を含んでいる可能性がある。これ らの化合物は、動物の健康維持、成長促進およびスト レス低減のために使用されている。これらの物質の人 体への暴露は、汚染された肉を食べたり、流出した排 泄物や堆肥およびそれらの浸出物に接したりすること で起こる。微生物の抗菌薬耐性株は低レベルの暴露か らでも生ずることから、専門家はペニシリンやサル ファ剤などの抗生物質が効果的な治療薬剤として選択 できなくなることを危惧している。

スルホンアミドとは、ヒトにも動物にも処方される抗 **菌薬である。カナダにおけるスルホンアミドの最大残** 留基準値(MRL)は、食肉では 100 ppb (ng/g)、牛乳 では 10 ppb であるが、EU ではどちらの食品にも100 ppb という MRL を設定している。カナダ食品検査庁 が肉組織中のスルホンアミド検出に用いる手法では、 酢酸エチル中での抽出、グリシンバッファーでの分配、 さらにpH調整後、塩化メチレンへの逆抽出 [1] を行う ように定めている。抽出物は、濃縮および還元を経て、 薄層クロマトグラフィー (TLC) にて分離され、誘導 体化を経て、デンシトメトリーによって定量される。 Alberta Agriculture は大気圧化学イオン化 (APCI) を 用いた液体クロマトグラフィー/質量分析(LC/MS) によって、最終分析の定性的および定量的精度を向上 させた[2]。Alberta 法では抽出に数多くの工程を必要 とするが、食品内の残留物をモニタリングするラボに は、より迅速なメソッドが有用であると思われる。

このアプリケーションノートで取り上げる手法の目的 は、規制値の半分かそれ以下のサルファ剤で信頼性の 高い定量方法を確立することであり、そしてサンプル 調製を最小限にして、注入サイクル時間を10分以内に 収めることである。最大感度は通常、できるだけフラ グメントイオンの生成を抑えて、疑分子イオン [M+H]*を生成させることで得られる。またタンデム 四重極型検出器(LCMSMS)は操作が複雑であること から、シングル四重極型装置でもフラグメント情報が 得られることが望ましい。この目的のためには、衝突 誘起解離(CID)によって各成分の特徴的なフラグメン トイオンを生成させれば達成できるものと思われる。

実験

薬品および用具

すべてのスルホンアミド標準は Sigma Aldrich Canada から購入し、最低純度は99%とした。スルファダイア ジンおよびスルファキノキサリンのナトリウム塩以外 の原液はアセトンで 2 mg/mL になるように調製した。 またこれらの成分が完全に溶解するよう、3 mL の 0.2N NaOH を加えた。異なる濃度の標準液は、スパイ ク用あるいは脱イオン化水で希釈して定量用に使用す るために調製した。

内部標準(IS):スルファクロロピリダジン (SCPD) を脱イオン化水で2mg/mLに調整。

HPLCグレードのメタノールおよびアセトニトリルは Caledon Labs (Georgetown, Ontario)から購入した。

ギ酸 (min. 98%) は、EM Science で購入した。

100 μL の98% ギ酸を100-mL メタノールに加え、酸性化 したメタノールを調製した。

Ultra-Turrax T8 homogenizer、50-mL ポリプロピレン 遠心分離チューブ、および 13-mm ポリフッ化ビニリデ ン(PVDF) シリンジフィルタ (0.2 µm)は VWR Scientific で購入した。

Oasis HLB (3 cc, 60 mg) 固相抽出 (SPE) カートリッジ はWatersで購入した。

サンプル調製

- 1. サンプルである豚赤身肉 3 g は50-mL ポリプロピレン遠心分離チューブ内で直接計量した。
- 2. サンプルをUltra-Turrax ホモジナイザにて、10 mL 酸を添加したメタノールで3分間ホモジナイズした。
- 3. 次いで 10 分間の遠心分離を行い、上澄みをきれい な試験管に移した。
- 4. 次にサンプルを 10mL の酸を添加したメタノール でもう一度抽出し、遠心分離を再度行った。
- 5. 上澄み液を合わせ、1 mL のIS (2 mg)を合わせた抽 出液に加える。
- 抽出液を脱イオン化水で4倍に希釈し (250 μL 抽出 液 + 750 μL 脱イオン化水)、0.2 μm PVDF フィルタ でオートサンプラ用バイアルでフィルタリングし、 これをLC/MSで直接分析する。

合わせた抽出液に正確な量のIS を加えることで、抽出 物の最終的な体積を測定する必要が無く、ChemStation による内標計算で、分析物と内部標準物質の相対 量が判明する。これにより、サンプル中の濃縮または 希釈による影響が補正される。

希釈のみの抽出物と比較するため、サンプル抽出物は さらに 固相抽出カートリッジを通過させた。60-mg Oasis HLBカートリッジは、1.5 mL の酸添加したメタ ノールで予備洗浄し、次いで 1.5 mL 脱イオン化水を流 した。1 mLの抽出物は10 mLの脱イオン化水で希釈し、 カートリッジを通して溶離させ、溶離液は廃棄した。 次いでサルファ剤を1.5 mL の酸添加したメタノールで 溶出させた。溶離液を窒素雰囲気下で気化させた。乾 固させたサンプルは 1 mL の 25% メタノールで再溶解 し、ろ過したのち、LC/MSで分析した。

さらに別の比較をおこなうために、固相抽出なしに、 1 mL メタノールをほぼ乾燥するまで気化させ、1 mL の 25% メタノール溶液で再溶解した試料を調製した。 この操作によりサンプル抽出物の溶媒組成が HPLC 分 析に適したものとなるが、希釈のステップを行わない ため成分の検出限界 (DL) が低下すると考えられる。

LC/MS 条件

今回使用したLC/MS システムは、Agilent Technologies 1100 Series の溶媒デガッサ、バイナリポンプ、 オートサンプラ、カラムオーブン、ダイオードアレイ 検出器、および四重極質量選択型検出器(MSD)から 構成される(表1)。

成分の定性および確認

通常、対象化合物のモニタリング法の目的は、夾雑成 分から目的成分を分離して、且つ最大の感度を得るこ とである。質量分析 (MS)を利用すると、最大感度は 選択イオン検出モードにおいて、特定のモニターイオ ンの検出 (例えば エレクトロスプレーイオン化(ESI)、 APCIでのプロトン付加イオン[M+H]⁺)の生成によっ て達成される。しかし、たとえ結果が陽性となったと しても、疑わしいピークが本当に検出対象のものなの か、あるいは共溶出した別の成分が同じイオンを発生 しただけなのかを確認する必要がある。確認のための 方法は数多く存在する。例えば、サンプルを別の溶媒 系で再抽出する、サンプルをさらにクリーンアップし て最終的な濃度を向上させて、手がかりとなる別のイ オンを検出するかスキャンモードでの分析をおこな う、誘導体化の後、ガスクロマトグラフィー/質量分 析(GC/MS)で分析をおこなう、あるいはタンデム四重 極LC/MS/MSにて抽出物を再分析する、などが挙げら れる。これらのテクニックはすべて有用であるが、難 点としては時間とコストが増してしまうことで、特に LC/MS/MSに関してはその傾向が顕著である。

表 1. LC/MSD 条件表 1. LC/MSD 条件

HPLC								
カラム	Zorbax Eclipse XDB-C8, 150 mm $ imes$ 4.6 mm, 5 μ m (p/n 993967-906)							
溶媒A	0.1% ギ酸水溶液							
溶媒 B	0.1% ギ酸アセトニトリル溶液							
グラジェント	$t_0 = 20\% B$							
	t ₁ = 20% B							
	t ₃ = 90% B							
	t _{6.5} = 90% B							
	Post time = 1.5 min							
流量	1.0 mL/min							
注入量	50 μL							
カラム温度	30 °C							
MSD								
イオンソース	APCI (陽イオンモード)							
Dwell time	各 63 ミリ秒で 8 イオン							
フラグメンタ	70 V							
乾燥ガス	6.0 mL/min							
ネブライザ圧	60 psi							
乾燥ガス温度	350 °C							
気化器温度	400 °C							
キャピラリ電圧	3000 V							
コロナ電流	4 uA							

Agilent 1100 MSD は一度の分析で最大 4 つの MS シグ ナルを取り込むことができる。各シグナルは、複数の 選択イオン (SIM:選択イオンモニタリング)、あるい はスキャンの組み合わせが可能である。例えば、親イ オンの生成を最大化するために低いフラグメンタ電圧 で設定されたシグナル 1 は、ターゲットリスト中のそ れぞれの [M+H]* イオンを含むが、高いフラグメンタ 電圧で設定されたシグナル 2 は確認用のフラグメンタ 電圧で設定されたシグナル 2 は確認用のフラグメント イオンが得られる。高濃度での検出が予想される分析 対象では、シグナル1は定量用のSIMモードで得られ、 シグナル2は定性用のスキャンモードで得られる。図 1 は前者の例を示し、フラグメンタ電圧はシグナル 1 (MSD1) で 70 V に、シグナル 2 (MSD2)で 200 V に設 定されている。

図 1. Dual MSD で得られたシグナル (質量 108 および 156 はスルホンアミドに特有のフラグメント)

表 2 はフラグメンタ電圧をさまざまに変化させたとき のスルホンアミドのマススペクトルである。質量108 と 156 はスルホンアミド特有のフラグメント(それぞ れ $H_2N^{+=}[C_6H_4]=O \ge H_2N^{+}=[C_6H_4]=SO_2)$ であり、プロ トン化分子イオンと共に得られた場合に化合物の同定 に非常に適したイオンとなる。

表 2. さまざまなフラグメンタ電圧を用いた場合の、スルホンアミドの APCI スペクトル

表2. さまざまなフラグメンタ電圧を用いた場合の、スルホンアミドの APCI スペクトル(続き)

クロマトグラフィー

質量分析による検出をおこなう場合には、ターゲット となる成分をかならずしも完全に分離する必要は無い が、一般的なイオンが存在する場合には、分離が必須 となる。例えば、SPY のプロトン化分子イオンは m/z=250 に得られる。天然に存在する同位体 C¹³ によ り、イオン 251 は親イオン 250 と同時に存在する。 SPY の SDZ (m/z = 251) からの分離は、クロマトグラ フ条件を最適化するときには重要であり、図 2 に示し たように分離が達成されている。これによりクロマト グラフィーに要する時間は多少長くなるが、データ解 析中のピークの積分はより整合的となり、クロマトグ ラムの解釈が容易となり、標準溶液中のSPY共溶出に よってSDZ 量が実際より低く計算されることが無くなる。

最近発行されたアプリケーションでは、2-ポジション 10-ポートのバルブを用いて、並列に接続した2本の分 析カラムと2台のバイナリポンプを用い、1.1分の注入 サイクル時間で4種のスルホンアミドを分析している [3]。たいていのラボはそこまでのサンプル処理量を必 要としないため、本アプリケーションノートで解説す る手法では、既存のテクニックを用い、システムの導 入にさらなる機器コストがかからないようにデザイン されている。条件は、比較的短い6分という時間内に 満足の行く分離結果が得られるように設定した(サイ クル時間の合計は10分)。

図 2. スルホンアミド標準ミックス、各 500 pg (SIM)

サンプル クリーンアップ

図3の全イオンクロマトグラム(TIC)から、サンプ ルよりかなりのマトリクスに起因するバックグラウン ドが生じていることが分かる。このため簡単な溶媒置 換がおこなわれた。1mLの抽出液を窒素雰囲気下で気 化し、25%メタノール溶液で再溶解した。溶媒置換の み行った場合の問題の1つに、マトリクス物質のかな りの量が HPLC カラムに注入されることがある。ピー クの形状はオーバーロードによって負の影響を受け、 結果としてカラム性能が低下する。このマトリクスは すべて MSD にも導入される。この場合、MSDのク リーニングやメンテナンスを頻繁に必要とするため、 生産性はさらに低下する。 ハイスループットの手法を開発するためには、必要と なるステップの数を最小限に抑える必要がある。Agilent の液体クロマトグラフィー/質量分析(LC/MSD) は、サンプル クリーンアップの手法として単なる水で 希釈した抽出物サンプルを分析できる高い感度を持 つ。これによってコストのかかる SPE カートリッジを 使用する必要が無くなり、サンプル調製に必要な時間 も短縮できる。サンプル調製ステップが最低限で済め ば、各ステップでのロスも減るために、回収率も向上 する。

図3 の 3 番目のクロマトグラフは、SPE クリーンアッ プが共抽出された物質のほとんどを除去し、最終的な 抽出物の濃度を高め、検出限界を極限まで低くするこ とを示している。さらには、積分やデータ解釈がおこ ないやすいシンプルなクロマトグラムが得られる。

図 3. クリーンアップ手法の TIC による比較

しかしながら、本手法の目的が多数のサンプルをスク リーニングして MRL 汚染の可能性のあるものを発見 することならば、希釈の方法はなるべく簡便であるこ とが望ましい。単純な希釈は、必要な検出限界の要件 を満たす為の十分に濃縮された状態を保ちつつ、優れ たクロマトグラフィー分離の為の十分なクリーンナッ プを与えるであろう。図3の2番目のクロマトグラム は、非常に改善されたベースラインを示している。図 4 から6は SIM モードですべてのターゲットイオンを 含む、同じサンプルの分析を示している。

MSD1 256, EIC=255.7:256.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
3.05	4 - STZ					
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 251, EIC=250.7:251.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
3.0	94 - SDZ					
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 250, EIC=249.7:250.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
	3.340 - SPY					
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 265, EIC=264.7:265.7 (SF03	0817\SULFA018.D) AF	2CI, Pos, SIM, Frag: 70 3.794 - SMR				
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 279, EIC=278.7:279.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
	3.180	4.083	B - SMZ	4.760		
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 285, EIC=284.7:285.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
			4.345 - SCPE) (IS)		
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 301, EIC=300.7:301.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
		\sim	4.549	- SQ		
3.0	3.5	4.0	4.5	5.0	5.5	min
MSD1 311, EIC=310.7:311.7 (SF03	0817\SULFA018.D) AF	PCI, Pos, SIM, Frag: 70				
			4.57	2 - SDMX		
3.0	3.5	4.0	4.5	5.0	5.5	min

図 4. 溶媒置換のみ (SIM)

MSD1 256, EIC=255.7:256.7 (SF030816\SULFA011.D) APCI, Pos, SIM, Frag: 70

図 5. 水で 4 倍に希釈

MSD1 256, EIC=255.7:256.7 (SF030817\SULFA010.D) APCI, Pos, SIM, Frag: 70

図 6. HLB クリーンアップ後 (SIM)

結果と考察

50 ppb になるようスパイク添加(サンプル3 g 中に各 スルホンアミド150 ng) した7つのサンプルで得られ た回収率を以下の表に示した。スパイク溶液は、ホモ ジナイズの前に添加され、抽出の前に最低30分静置し た。SMR(スルファメラジン)は、ホモジナイズの前 に1サンプルあたり300 ng 別に添加し、この化合物を サロゲートとして使用した。表 3 の結果は、抽出物を 単に水で 4 倍に希釈して得られた(回収率 84%-118%)。 表 4 の結果は SPE クリーンアップを介して得た抽出 物から得られた (回収率 79%-104%)。 両方のケースにて、20から200pgのターゲット成分 と2,000pgのSCPDを含む標準試料を注入し、SCPD を内部標準に用いた5点検量線を作成して使用した。 スパイク添加サンプルを7回分析する前後に、5レベ ルの標準試料のセットを注入し、検量線は前後のキャ リブレーションを平均して作成した。これらの化合物 はピークテーリングが顕著であり、ピーク面積よりも 変動が少ないピーク高さを測定に使用した。検量線の 直線性については(R²)を表3と4に示した。

主?	抽出物 た 水 て /	位それした担今のフルホンマミドの同切変	
1X J.	油山物で小し 4	旧布朳しに吻口のヘルホノアニトの回収卒	

	回収量								
説明	STZ	SDZ	SPY	SMR	SMZ	SCPD(IS)	SQ	SDMX	
豚スパイク1	167	172	164	317	151	2,000	148	130	
豚スパイク 2	168	197	68	343	164	2,000	169	137	
豚スパイク3	160	183	158	315	157	2,000	133	121	
豚スパイク 4	158	189	167	336	156	2,000	138	129	
豚スパイク 5	151	169	154	295	169	2,000	133	129	
豚スパイク 6	147	161	144	322	143	2,000	120	112	
豚スパイク 7	144	72	141	272	151	2,000	124	125	
スパイク量 (ng)	150	150	150	300	150	2,000	150	150	
平均	156	178	157	314	156	2,000	138	126	
SD (精度)	9	13	11	24	9	-	17	8	
MDL (SD $ imes$ t-stat) ng	29	40	34	77	28	-	53	26	
LOQ (SD $ imes$ 10) ng	94	126	108	245	88	-	167	82	
RSD (SD × 100/平均)	6	7	7	8	6	-	12	7	
精度 (%)	104	118	104	105	104	100	92	84	
直線性 (R ²)	0.9997	0.9996	0.9997	0.9972	0.9996	1.0000	0.9984	0.9992	
t-stat (N=7)	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	

表 4. Oasis HLB クリーンアップカートリッジ使用時のスルホンアミドの回収率

	回収量(回収量 (ng)							
説明	STZ	SDZ	SPY	SMR	SMZ	SCPD(IS)	SO	SDMX	
豚スパイク1	161	157	132	273	149	2,000	139	126	
豚スパイク 2	154	156	132	293	157	2,000	153	131	
豚スパイク3	149	158	124	267	155	2,000	132	113	
豚スパイク 4	145	152	122	279	144	2,000	119	111	
豚スパイク 5	151	162	127	294	149	2,000	127	121	
豚スパイク 6	136	147	127	274	136	2,000	116	108	
豚スパイク 7	148	161	128	275	155	2,000	124	116	
スパイク量 (ng)	150	150	150	300	150	2,000	150	150	
平均	149	156	127	279	149	2,000	130	118	
SD (精度)	8	5	4	10	7	-	13	8	
MDL (SD $ imes$ t-stat) ng	24	17	11	33	23	-	40	26	
LOQ (SD $ imes$ 10) ng	76	53	36	104	73	-	128	82	
RSD (SD × 100/平均)	5	3	3	4	5	-	10	7	
精度 (%)	99	104	85	93	100	100	87	79	
直線性 (R ²)	0.9994	0.9994	0.9997	0.9979	0.9998	1.0000	0.9989	0.9989	
t-stat (N=7)	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	

表5は水希釈のみの場合とOasis HLB カートリッジに よるクリーンアップを行った場合の回収率の比較をま とめたものである。一般的に、保持の小さな成分では 回収率が大きく異なってくる。サンプルはほぼ水相に 近い(10%メタノール水溶液)相でカートリッジにロー ドされているため、水溶性のマトリクス成分はカート リッジを通過してしまう傾向にある。これらの保持の 小さな成分は HPLC カラムへのインジェクション前に 除去されるため、クロマトグラムはよりクリーンにな り、クロマトグラフィーの再現性は向上する。このこ とは、回収率の標準偏差がより小さいことから分かる。 HLB クリーンアップの結果は、より小さな標準偏差と、 より低い検出限界レベル(MDL)を示していた。

結論

高速かつ高感度のシングル四重極LC/APCI/MS を使用 して豚肉に含まれるスルホンアミド残留物の検出メ ソッドを開発し妥当性を検証した。抽出物を単に希釈 して分析した場合には10 から25 ng/g の検出限界、 SPE によりクリーンアップした場合は4 から13 ng/gの 検出限界が得られた。たいていのラボで一般的なカラ ムと条件を使って10 分間の注入サイクル分析が可能で ある。

表 5. 希釈 vs Oasis HLB クリーンアップによる回収率の比較

説明	STZ	SDZ	SPY	SMR	SMZ	SCPD(IS)	SQ.	SDMX
精度 % (4倍希釈)	104	118	104	105	104	100	92	84
SD (精度)	9.4	12.6	10.8	24.5	8.8	-	16.7	8.2
MDL (ng)	29	40	34	77	28	_	53	26
精度 % (HLB クリーンアップ)	99	104	85	93	100	100	87	79
SD (精度)	7.6	5.3	3.6	10.4	7.3	-	12.8	8.2
MDL (ng)	24	17	11	33	23	-	40	26

参考資料

- 1. TLC-Densitometric Procedure for Sulfonamide Residues in Animal Tissue, SUL-SP08, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada; 2001/04.
- 2. Sulfonamides in Tissue by LC/MS, Alberta Agriculture, Edmonton, Alberta, Canada, Standard Operating Procedure TX-0278-01.
- Mark Stahl, "High-throughput analysis with the Agilent 1100 Series high-throughput LC/MS system", Agilent Technologies, publication 59889638EN. www.agilent.com/chem

www.agilent.com/chem

詳細情報

Agilent の製品およびサービスについての詳細情報は、 Webサイト www.agilent.com/chem/jp でご覧ください。

お問い合わせ: 0120-477-111 横河アナリティカルシステムズ株式会社 〒192-0033 東京都八王子市高倉町9−1

Agilentは、本文書に含まれる誤り、および本文書の内容または使用に関連して、 付随的または間接的に引き起こされる損害について、一切の責任を負いません。

本文書に記載の情報、説明、および仕様は、予告なく変更されることがあります。

© Agilent Technologies, Inc. 2004

Printed in the USA October 20, 2003 5989-0182JAJP

