Agilent
Oligonucleotide
Array-Based CGH for
Genomic DNA Analysis

ULS Labeling for Blood, Cells,
Tissues or FFPE (with a High
Throughput option)

Protocol
Version 3.1, August 2009

Research Use Only. Not for Diagnostic
Procedures.
Notices

© Agilent Technologies, Inc. 2009

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
G4410-90020

Edition
Version 3.1, August 2009
Printed in USA
Agilent Technologies, Inc.
5301 Stevens Creek Blvd.
Santa Clara, CA 95051 USA

Technical Support
Technical product support may be obtained by contacting your local Agilent Support Services representative. Agilent’s worldwide sales and support center telephone numbers can be obtained at the following Web site:
www.agilent.com/chem/contactus
or send an e-mail to:
genomics@agilent.com
If you have comments about this guide, please send an e-mail to feedback_genomics@agilent.com

Notice to Purchaser
These products are intended for research use only. Agilent products may not be resold, modified for resale, or used to manufacture commercial products without written approval of Agilent Technologies, Inc.

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
In This Guide...

This guide describes Agilent's recommended operational procedures to analyze DNA copy number variations using Agilent 60-mer oligonucleotide microarrays for array-based comparative genomic hybridization (aCGH) analysis. This protocol is specifically developed and optimized to non-enzymatically label DNA from blood, cells, tissues or FFPE samples and is quick, cost-efficient and highly reproducible.

1 **Before You Begin**

This chapter contains information (such as procedural notes, safety information, required reagents and equipment) that you should read and understand before you start an experiment.

2 **DNA Isolation**

This chapter describes the method to isolate genomic DNA (gDNA) from blood, cells, frozen tissues, or FFPE samples prior to labeling.

3 **DNA Labeling**

This chapter describes the steps to chemically label the gDNA samples with fluorescent dyes through ULS technology.

4 **Microarray Processing and Feature Extraction**

This chapter describes the steps to hybridize, wash and scan Agilent CGH microarrays and to extract data using the Agilent Feature Extraction Software.

5 **Troubleshooting**

This chapter contains the causes for above-threshold DLRSD (Derivative Log Ratio Standard Deviation). A poor DLRSD score reflects high probe-to-probe log ratio noise.
6 Reference

This chapter contains reference information related to the protocol.

What’s New in Version 3.1

- The use of the Agilent Ozone-Barrier Slide Cover is described.
- Additional part numbers are added.
- Additional guidelines on yield and specific activity after labeling.

What’s New in Version 3.0

- Guidelines are expanded to enable processing in 96-well plates using the Genomic DNA ULS High-Throughput Labeling Kit (p/n 5190-0450) and Genomic DNA 96-well Purification Module (p/n 5190-0451).
- Processing of 1x1M, 2x400K, 4x180K and 8x60K microarrays is supported.
- Wash Procedure B (with Stabilization and Drying Solution) is improved. This procedure is used to wash microarray slides in an environment in which the ozone level exceeds 5 ppb.
- Troubleshooting instructions are included.
Content

1 **Before You Begin** 7
 Procedural Notes 8
 Safety Notes 9
 Agilent Oligo CGH Microarray Kit Contents 10
 Required Equipment 15
 Required Reagents 18
 Required Hardware and Software 19

2 **DNA Isolation** 21
 Blood, Cells or Frozen Tissues 23
 Step 1. gDNA Extraction 23
 Step 2. gDNA Quantitation and Quality Analysis 26
 FFPE Tissues 28
 Step 1. Paraffin Removal 29
 Step 2. Proteinase K Treatment 30
 Step 3. gDNA Extraction 31

3 **DNA Labeling** 33
 Step 1. Preparation of gDNA Before Labeling 34
 Step 2. Heat Fragmentation 37
 Step 3. ULS Labeling 38
 Step 4. Removal of non-reacted Cy-ULS 41
 To determine yield, degree of labeling or specific activity 44
 Step 5. Preparation of Labeled Genomic DNA for Hybridization 45

4 **Microarray Processing and Feature Extraction** 51
 Step 1. Microarray Hybridization 52
 Step 2. Wash Preparation 54
 Step 3. Microarray Washing 58
Contents

Step 4. Microarray Scanning using Agilent C, B or A Scanner or GenePix Scanner 64
Step 5. Data Extraction using Feature Extraction Software 66

5 Troubleshooting 75
If you have an OD260/230 or OD260/280 value below 1.8 76
If you have poor sample quality due to residual RNA 76
If you get poor sample quality due to degradation 77
If the estimated concentration is too high or low 77
If you have low specific activity or degree of labeling not due to poor sample quality 78
If you have low yield not due to poor sample quality 78
If you have post-labeling signal loss 79
If you have high BGNoise values 79
If you have poor reproducibility 80

6 Reference 81
Supporting User Guides 82
Agilent Microarray Layout and Orientation 83
Array/Sample tracking on a 8x array slide 86
Agilent Information Assets Access Agreement 87
1

Before You Begin

Procedural Notes 8
Safety Notes 9
Agilent Oligo CGH Microarray Kit Contents 10
Required Equipment 15
Required Reagents 18
Required Hardware and Software 19

Make sure you read and understand the information in this chapter and have the necessary equipment and reagents listed before you start an experiment.
Procedural Notes

- Follow the procedure described in this document to isolate gDNA from blood, cells, frozen tissues, or FFPE samples.

- If the DNA isolation procedure described in this document cannot be followed, make sure that the DNA is free of RNA and protein contamination and is in one of the following buffers compatible with ULS labeling:
 - TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5 or pH 8)
 - 10 mM LiCl
 - 10 to 100 mM Na acetate
 - 10 mM NaCl

- To prevent contamination of reagents by nucleases, always wear powder-free laboratory gloves, and use dedicated solutions and pipettors with nuclease-free aerosol-resistant tips.

- Maintain a clean work area.

- Do not mix stock solutions and reactions containing gDNA or enzymes on a vortex mixer. Instead, mix the solutions and reactions by gently tapping the tube with your finger.

- Avoid repeated freeze-thaw cycles of solutions containing gDNA or enzymes.

- When preparing frozen reagent stock solutions for use:
 1. Thaw the aliquot as quickly as possible without heating above room temperature.
 2. Mix briefly on a vortex mixer, then spin in a microcentrifuge for 5 to 10 seconds to drive the contents off the walls and lid.
 3. Store on ice or in a cold block until use.

- In general, follow Biosafety Level 1 (BL1) safety rules.
Safety Notes

CAUTION

Wear appropriate personal protective equipment (PPE) when working in the laboratory.

WARNING

• ULS-Cy3 and ULS-Cy5 are considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Contains material that causes damage to the following organs: kidneys, liver, cardiovascular system, respiratory tract, skin, eye lens or cornea, stomach. May be harmful if swallowed. Avoid contact with eyes, skin and clothing.

• Agilent-CGHblock may be harmful if swallowed. Avoid contact with eyes, skin and clothing.

• 2X Hi-RPM Hybridization Buffer is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Contains material that causes damage to the following organs: skin, central nervous system. May be harmful if swallowed. Avoid contact with eyes, skin and clothing.

• Triton is harmful if swallowed. Risk of serious damage to eyes. Wear suitable PPE. Triton is a component of Agilent’s 2X Hi-RPM Hybridization Buffer.

• Agilent Stabilization and Drying Solution is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Flammable liquid and vapor. Keep away from heat, sparks and flame. Keep container closed. Use only with adequate ventilation. This solution contains material which causes damage to the following organs: kidneys, liver, cardiovascular system, upper respiratory tract, skin, central nervous system (CNS), eye, lens or cornea.
Agilent Oligo CGH Microarray Kit Contents

Store entire kit at room temperature. After the microarray foil pouch is opened, store the microarray slides at room temperature (in the dark) under a vacuum desiccator or N₂ purge box. Do not store microarray slides in open air after breaking foil.

Catalog CGH Microarray Kits

- Five 1-inch x 3-inch glass slides for 1x and 2x Microarray Kits
- Three 1-inch x 3-inch glass slides for 4x and 8x Microarray Kits
- Disk that contains microarray design files in various file formats

See Table 1 and Table 2 for available designs.

Table 1 Available Catalog SurePrint HD CGH Microarray Kits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4411B</td>
<td>Human Genome CGH Microarray Kit 1x244K</td>
</tr>
<tr>
<td>G4412A</td>
<td>Human Genome CGH Microarray Kit 2x105K</td>
</tr>
<tr>
<td>G4417A</td>
<td>Human CNV Association Microarray Kit 2x105K</td>
</tr>
<tr>
<td>G4413A</td>
<td>Human Genome CGH Microarray Kit 4x44K</td>
</tr>
<tr>
<td>G4415A</td>
<td>Mouse Genome CGH Microarray Kit 1x244K</td>
</tr>
<tr>
<td>G4416A</td>
<td>Mouse Genome CGH Microarray Kit 2x105K</td>
</tr>
<tr>
<td>G4435A</td>
<td>Rat Genome CGH Microarray Kit 1x244K</td>
</tr>
<tr>
<td>G4436A</td>
<td>Rat Genome CGH Microarray Kit 2x105K</td>
</tr>
</tbody>
</table>

1 Before You Begin
Agilent Oligo CGH Microarray Kit Contents
Table 2 Available Catalog SurePrint G3 CGH Microarray Kits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4447A</td>
<td>SurePrint G3 Human CGH Microarray Kit 1x1M</td>
</tr>
<tr>
<td>G4448A</td>
<td>SurePrint G3 Human CGH Microarray Kit 2x400K</td>
</tr>
<tr>
<td>G4449A</td>
<td>SurePrint G3 Human CGH Microarray Kit 4x180K</td>
</tr>
<tr>
<td>G4450A</td>
<td>SurePrint G3 Human CGH Microarray Kit 8x60K</td>
</tr>
<tr>
<td>G4506A</td>
<td>SurePrint G3 Human High-Resolution Discovery Microarray 1x1M</td>
</tr>
<tr>
<td>G4507A</td>
<td>SurePrint G3 Human CNV Microarray Kit 2x400K</td>
</tr>
</tbody>
</table>
Before You Begin
Agilent Oligo CGH Microarray Kit Contents

Unrestricted SurePrint HD and G3 CGH Microarray Kits

- One, two, four or eight microarray(s) printed on each 1-inch x 3-inch glass slide
- Number of microarrays varies per kit and per order
- Disk that contains microarray design files in various file formats

See Table 3 and Table 4 for available designs.

Table 3 Unrestricted High-Definition CGH Microarrays

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4423B, AMADID 014693</td>
<td>Unrestricted HD-CGH Microarray, 1x244K, Human (same design as G4411B)</td>
</tr>
<tr>
<td>G4423B, AMADID 016266</td>
<td>Unrestricted HD-CGH Microarray, 1x244K supplemental, Human</td>
</tr>
<tr>
<td>G4423B, AMADID 014695</td>
<td>Unrestricted HD-CGH Microarray, 1x244K, Mouse (same design as G4415A)</td>
</tr>
<tr>
<td>G4423B, AMADID 015223</td>
<td>Unrestricted HD-CGH Microarray, 1x244K, Rat (same design as G4435A)</td>
</tr>
<tr>
<td>G4423B, AMADID 019553</td>
<td>Unrestricted HD-CGH Microarray, 1x244K, Chicken</td>
</tr>
<tr>
<td>G4425B, AMADID 014698</td>
<td>Unrestricted HD-CGH Microarray, 2x105K, Human (same design as G4412A)</td>
</tr>
<tr>
<td>G4425B, AMADID 022837</td>
<td>Unrestricted HD-CGH Microarray, 2x105K, Human (same design as G4417A)</td>
</tr>
<tr>
<td>G4425B, AMADID 014699</td>
<td>Unrestricted HD-CGH Microarray, 2x105K, Mouse (same design as G4416A)</td>
</tr>
<tr>
<td>G4425B, AMADID 015235</td>
<td>Unrestricted HD-CGH Microarray, 2x105K, Rat (same design as G4436A)</td>
</tr>
<tr>
<td>G4426B, AMADID 014950</td>
<td>Unrestricted HD-CGH Microarray, 4x44K, Human (same design as G4413A)</td>
</tr>
<tr>
<td>G4426B, AMADID 015028</td>
<td>Unrestricted HD-CGH Microarray, 4x44K, Mouse</td>
</tr>
</tbody>
</table>
Table 4 Unrestricted SurePrint G3 CGH Microarrays

<table>
<thead>
<tr>
<th>Part Number, AMADID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4824A, AMADID 021529</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 1x1M, Human (same design as G4447A)</td>
</tr>
<tr>
<td>G4824A, AMADID 023642</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 1x1M, Human (same design as G4506A)</td>
</tr>
<tr>
<td>G4825A, AMADID 021850</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 2x400K, Human (same design as G4448A)</td>
</tr>
<tr>
<td>G4825A, AMADID 021365</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 2x400K, Human (same design as G4507A)</td>
</tr>
<tr>
<td>G4826A, AMADID 022060</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 4x180K, Human (same design as G4449A)</td>
</tr>
<tr>
<td>G4827A, AMADID 021924</td>
<td>Unrestricted SurePrint G3 CGH Microarray, 8x60K, Human (same design as G4450A)</td>
</tr>
</tbody>
</table>
Custom SurePrint HD and G3 Microarray Kits

- One, two, four or eight microarray(s) printed on each 1-inch × 3-inch glass slide
- Number of microarrays varies per kit and per order

See Table 5 and Table 6 for available formats.

Table 5 Custom High-Definition CGH Microarrays

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4423A</td>
<td>Custom HD-CGH Microarray, 1x244K</td>
</tr>
<tr>
<td>G4425A</td>
<td>Custom HD-CGH Microarray, 2x105K</td>
</tr>
<tr>
<td>G4426A</td>
<td>Custom HD-CGH Microarray, 4x44K</td>
</tr>
<tr>
<td>G4427A</td>
<td>Custom HD-CGH Microarray, 8x15K</td>
</tr>
</tbody>
</table>

Table 6 Custom SurePrint G3 CGH Microarrays

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4123A</td>
<td>SurePrint G3 Custom CGH Microarray, 1x1M</td>
</tr>
<tr>
<td>G4124A</td>
<td>SurePrint G3 Custom CGH Microarray, 2x400K</td>
</tr>
<tr>
<td>G4125A</td>
<td>SurePrint G3 Custom CGH Microarray, 4x180K</td>
</tr>
<tr>
<td>G4126A</td>
<td>SurePrint G3 Custom CGH Microarray, 8x60K</td>
</tr>
</tbody>
</table>
Required Equipment

Table 7 Required equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Microarray Scanner Bundle</td>
<td>Agilent p/n G2565BA or G2565CA</td>
</tr>
<tr>
<td>for 1x244K, 2x105K, 4x44K or 8x15K, or</td>
<td>Agilent p/n G2565CA</td>
</tr>
<tr>
<td>for 1x1M, 2x400K, 4x180K or 8x60K</td>
<td></td>
</tr>
<tr>
<td>Hybridization Chamber, stainless</td>
<td>Agilent p/n G2534A</td>
</tr>
<tr>
<td>Hybridization Chamber gasket slides, 5-pack (alternative packaging sizes are available)</td>
<td></td>
</tr>
<tr>
<td>for 1x microarrays or</td>
<td>Agilent p/n G2534-60003</td>
</tr>
<tr>
<td>for 2x microarrays or</td>
<td>Agilent p/n G2534-60002</td>
</tr>
<tr>
<td>for 4x microarrays or</td>
<td>Agilent p/n G2534-60011</td>
</tr>
<tr>
<td>for 8x microarrays</td>
<td>Agilent p/n G2534-60014</td>
</tr>
<tr>
<td>Hybridization oven; temperature set at 65°C</td>
<td>Agilent p/n G2545A</td>
</tr>
<tr>
<td>Hybridization oven rotator for Agilent Microarray Hybridization Chambers</td>
<td>Agilent p/n G2530-60029</td>
</tr>
<tr>
<td>Ozone-barrier slide cover</td>
<td>Agilent p/n G2505-60550</td>
</tr>
<tr>
<td>UV-Transilluminator with SYBR photographic filter</td>
<td>Alpha Innotech p/n Alphalmager 2000 or equivalent</td>
</tr>
<tr>
<td>Nuclease-free 1.5 mL microfuge tubes (sustainable at 95°C)</td>
<td>Ambion p/n AM12400 or equivalent</td>
</tr>
<tr>
<td>Magnetic stir bar (×2 or ×4)</td>
<td>Corning p/n 401435 or equivalent</td>
</tr>
<tr>
<td>Magnetic stir plate (×1 or ×3)</td>
<td>Corning p/n 6795-410 or equivalent</td>
</tr>
<tr>
<td>Magnetic stir plate with heating element</td>
<td>Corning p/n 6795-420 or equivalent</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Eppendorf p/n 5430 or equivalent</td>
</tr>
<tr>
<td>Thermocycler with heated lid</td>
<td>Eppendorf p/n 950000015 or equivalent</td>
</tr>
<tr>
<td>Nuclease-free 0.2 mL PCR tubes, thin-walled</td>
<td>Eppendorf p/n 951010006 or equivalent</td>
</tr>
<tr>
<td>E-Gel Opener‡</td>
<td>Invitrogen p/n G5300-01</td>
</tr>
<tr>
<td>E-Gel PowerBase v.4‡</td>
<td>Invitrogen p/n G6200-04</td>
</tr>
<tr>
<td>UV-VIS spectrophotometer</td>
<td>NanoDrop 8000 or 2000, or equivalent</td>
</tr>
</tbody>
</table>
1 Before You Begin

Required Equipment

Table 7 Required equipment (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10, P20, P200 and P1000 pipettes</td>
<td>Pipetman P10, P20, P200, P1000 or equivalent</td>
</tr>
<tr>
<td>1.5 L glass dish</td>
<td>Pyrex p/n 213-R or equivalent</td>
</tr>
<tr>
<td>Vacuum Concentrator **</td>
<td>Thermo Scientific p/n DNA120-115 or equivalent</td>
</tr>
<tr>
<td>250 mL capacity slide-staining dish, with slide rack (×3 or ×5)†</td>
<td>Wheaton p/n 900200 or equivalent</td>
</tr>
<tr>
<td>Circulating water baths or heat blocks set to 37°C, 70°C, 90°C and 95°C</td>
<td></td>
</tr>
<tr>
<td>Ice bucket</td>
<td></td>
</tr>
<tr>
<td>Powder-free gloves</td>
<td></td>
</tr>
<tr>
<td>Sterile, nuclease-free aerosol barrier pipette tips</td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td></td>
</tr>
<tr>
<td>Vacuum dessicator or N2 purge box for slide storage</td>
<td></td>
</tr>
<tr>
<td>Vortex mixer</td>
<td></td>
</tr>
<tr>
<td>* Optional when processing arrays in high ozone environments.</td>
<td></td>
</tr>
<tr>
<td>† The number varies depending on if wash procedure A or B is selected.</td>
<td></td>
</tr>
<tr>
<td>‡ Optional when Invitrogen E-gels are used.</td>
<td></td>
</tr>
<tr>
<td>** Optional. Depends on array format and processing protocol used</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Optional, recommended when using the high throughput method.

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well PCR plates</td>
<td>Eppendorf p/n 951020401 or equivalent</td>
</tr>
<tr>
<td>Centrifuge (for 96-well plate)</td>
<td>Eppendorf p/n 5810 or equivalent</td>
</tr>
<tr>
<td>Heat Sealer</td>
<td>Eppendorf p/n 951023078</td>
</tr>
<tr>
<td>Peel-it-lite Foil (removable)</td>
<td>Eppendorf p/n 951023205</td>
</tr>
</tbody>
</table>
Table 9 Optional, recommended when using high-throughput method on 2x microarrays.

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Chimney PCR plates</td>
<td>ABgene p/n AB-1184</td>
</tr>
</tbody>
</table>

Table 10 Optional equipment for DNA extraction from tissue or FFPE samples.

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal shaker</td>
<td>Eppendorf Thermomixer p/n 022670000 or equivalent</td>
</tr>
</tbody>
</table>
1 Before You Begin

Required Reagents

Table 11 Required Reagents for gDNA Isolation

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate Buffered Saline pH 7.4 (PBS)</td>
<td>Amresco p/n E504-500ML</td>
</tr>
<tr>
<td>Clear E-Gel 18-Pak (1.2% agarose, no stain)</td>
<td>Invitrogen p/n G5518-01</td>
</tr>
<tr>
<td>SYBR Gold Nucleic Acid Gel Stain</td>
<td>Invitrogen p/n S11494</td>
</tr>
<tr>
<td>TrackIt 1 Kb DNA Ladder</td>
<td>Invitrogen p/n 10488-072</td>
</tr>
<tr>
<td>Qiagen RNase A (100 mg/mL)</td>
<td>Qiagen p/n 19101</td>
</tr>
<tr>
<td>Qiagen DNeasy Blood & Tissue Kit</td>
<td>Qiagen p/n 69504</td>
</tr>
<tr>
<td>Qiagen Proteinase K (>600 mAU/mL, solution)</td>
<td>Qiagen p/n 19131</td>
</tr>
<tr>
<td>Sodium thiocyanate (NaSCN) *</td>
<td>Sigma 467871-50G</td>
</tr>
<tr>
<td>Ethanol (95% to 100% molecular biology grade)</td>
<td>Sigma p/n E7023-6x500ML</td>
</tr>
<tr>
<td>Tween 20 *</td>
<td>Sigma p/n P9416-50ML</td>
</tr>
</tbody>
</table>

* Optional components if isolating DNA from FFPE samples.

Table 12 Required Reagents for ULS Sample Prep and Labeling

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic DNA ULS Labeling Kit or</td>
<td>Agilent p/n 5190-0419</td>
</tr>
<tr>
<td>Genomic DNA High-Throughput ULS Labeling Kit</td>
<td>Agilent p/n 5190-0450</td>
</tr>
<tr>
<td>Genomic DNA Purification Module (pack of 10 Agilent KREApure columns) or</td>
<td>Agilent p/n 5190-0418</td>
</tr>
<tr>
<td>Genomic DNA 96-well Purification Module</td>
<td>Agilent p/n 5190-0451</td>
</tr>
<tr>
<td>For possible use as a reference sample:</td>
<td></td>
</tr>
<tr>
<td>Human Genomic DNA or Mouse Genomic DNA or Rat Genomic DNA</td>
<td>Promega p/n G1521 (female) or p/n G1471 (male) Jackson Labs p/n 000664 (female and male) Harlan Sprague Dawley (custom)</td>
</tr>
</tbody>
</table>
Table 13 Required Reagents for Hybridization and Wash

<table>
<thead>
<tr>
<th>Description</th>
<th>Company and part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Oligo aCGH Wash Buffer 1 and 2 set</td>
<td>Agilent p/n 5188-5226</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Agilent Oligo aCGH Wash Buffer 1 (4 L)</td>
<td>Agilent p/n 5188-5221</td>
</tr>
<tr>
<td>Agilent Oligo aCGH Wash Buffer 2 (4 L)</td>
<td>Agilent p/n 5188-5222</td>
</tr>
<tr>
<td>Stabilization and Drying Solution, 500 mL*</td>
<td>Agilent p/n 5185-5979</td>
</tr>
<tr>
<td>Agilent Oligo aCGH Hybridization Kit</td>
<td>Agilent p/n 5188-5220 (25) or p/n 5188-5380 (100)</td>
</tr>
<tr>
<td>Human Cot-1 DNA or</td>
<td>Invitrogen p/n 15279-011 or 15279-101 or</td>
</tr>
<tr>
<td>Mouse Cot-1 DNA or</td>
<td>Kreatech p/n EA-020</td>
</tr>
<tr>
<td>Rat Hybloc</td>
<td>Invitrogen p/n 18440-016</td>
</tr>
<tr>
<td>Acetonitrile *</td>
<td>Applied Genetics p/n RHB</td>
</tr>
<tr>
<td></td>
<td>Sigma p/n 271004-1L</td>
</tr>
</tbody>
</table>

* Optional components recommended if wash procedure B is selected.

Required Hardware and Software

- Refer to the Agilent Scanner and Feature Extraction manuals for minimum memory requirements and other specifications. Go to http://www.agilent.com/chem.
Before You Begin

Required Hardware and Software
Agilent cannot guarantee microarray performance and does not provide technical support to those who use non-Agilent protocols in processing Agilent microarrays.

Agilent’s array-based Comparative Genomic Hybridization (aCGH) application uses a “two-color” process to measure DNA copy number changes in an experimental sample relative to a reference sample. The type of sample used as a reference is a matter of experimental choice; however, many experimenters use normal commercial gDNA as a reference sample.

This chapter describes Agilent’s recommended procedure to isolate genomic DNA (gDNA) from blood, cells, frozen or FFPE tissues using the Qiagen DNeasy Blood & Tissue Kit (p/n 69504).
Oligo aCGH Workflow

“DNA Isolation” on page 21

Experimental gDNA isolation from blood, cells, frozen tissue, or FFPE tissue

Reference gDNA from commercial source or isolation from blood, cells, frozen tissue or FFPE tissue

“DNA Labeling” on page 33

Heat fragmentation of gDNA

Heat fragmentation of gDNA

Labeling of gDNA

Labeling of gDNA

Clean-up of labeled gDNA

Clean-up of labeled gDNA

“Microarray Processing and Feature Extraction” on page 51

Preparation before hybridization

24- or 40-hour hybridization (65°C)

Microarray washing

Microarray scanning

Feature extraction

Figure 1 Workflow diagram for sample preparation and microarray processing.
Blood, Cells or Frozen Tissues

This section describes Agilent’s recommended procedure to isolate genomic DNA (gDNA) from blood, cells or frozen tissues using the Qiagen DNeasy Blood & Tissue Kit (p/n 69504).

Table 14 Minimum required gDNA amount from blood, cells or frozen tissues

<table>
<thead>
<tr>
<th>Microarray format</th>
<th>gDNA input amount requirement (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray</td>
<td>1500</td>
</tr>
<tr>
<td>2x microarray</td>
<td>1000</td>
</tr>
<tr>
<td>4x microarray</td>
<td>500</td>
</tr>
<tr>
<td>8x microarray</td>
<td>250</td>
</tr>
</tbody>
</table>

Step 1. gDNA Extraction

1 Equilibrate a thermomixer to 55°C and heat block or water bath to 70°C.

2 For blood with nonnucleated erythrocytes (mammals):
 a Put 20 µL proteinase K (supplied with Qiagen DNeasy Blood & Tissue Kit) into the bottom of a 1.5 mL microfuge tube.
 b Add 50 to 100 µL anticoagulated blood.
 c Add enough PBS to make a total volume of 220 µL.
 d Go to step 7.

3 For blood with nucleated erythrocytes (such as chicken):
 a Put 20 µL proteinase K (supplied with Qiagen DNeasy Blood & Tissue Kit) into the bottom of a 1.5 mL microfuge tube.
 b Add 5 to 10 µL anticoagulated blood.
 c Add enough PBS to make a total volume of 220 µL.
 d Go to step 7.
2 DNA Isolation
Step 1. gDNA Extraction

4 For cells:
 a Spin a maximum of 5x10^6 cells in a centrifuge for 5 minutes at 300 x g. Resuspend the pellet in 200 µL PBS.
 b Add 20 µL proteinase K (supplied with Qiagen DNeasy Blood & Tissue Kit).
 c Go to step 7.

5 For frozen tissue:
 a Cut up to 25 mg frozen tissue (up to 10 mg for spleen tissue) into small pieces and put into a 1.5 mL microfuge tube.
 b Add 180 µL Buffer ATL (supplied with Qiagen DNeasy Blood & Tissue Kit).
 c Add 20 µL proteinase K (supplied).
 d Mix well on a vortex mixer.
 e Incubate in a thermomixer at 55°C shaking at 450 rpm until the tissue is completely lysed.

Lysis time varies depending on the type of tissue processed. Usually lysis is complete in 1 to 3 hours. If it is more convenient, samples can be lysed overnight.

 f Let the sample cool to room temperature and spin in a microcentrifuge for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
 g Go to step 7.

6 For further purification of extracted DNA:
 a Take a maximum 25 µg of DNA.
 b Add enough PBS to make a total volume of 220 µL.
 c Add 20 µL proteinase K (supplied with Qiagen DNeasy Blood & Tissue Kit).

7 Add 4 µL of RNase A (100 mg/mL), mix on a vortex mixer, and incubate for 2 minutes at room temperature. Spin in a microcentrifuge for 30 seconds at 6,000 x g to drive the contents off the walls and lid.

8 Add 200 µL Buffer AL (supplied) to each sample, mix thoroughly on a vortex mixer, and incubate at 70°C for 10 minutes in a heat block or water bath. Spin in a microcentrifuge for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
Add 200 µL 100% ethanol to each sample, and mix thoroughly on a vortex mixer. Spin in a microcentrifuge for 30 seconds at 6,000 x g to drive the contents off the walls and lid.

Transfer the sample mixture onto a DNeasy Mini spin column in a 2 mL collection tube (supplied). Spin in a centrifuge at 6,000 x g for 1 minute. Discard the flow-through and collection tube. Put the DNeasy Mini spin column in a new 2 mL collection tube (supplied).

Before using for the first time, prepare Buffer AW1 by adding 100% ethanol to the Buffer AW1 bottle (supplied; see bottle label for volume). Mark the appropriate check box to indicate that ethanol was added to the bottle.

Add 500 µL Buffer AW1 onto the column, and spin in a microcentrifuge for 1 minute at 6,000 x g. Discard the flow-through and collection tube. Put the DNeasy Mini spin column in a new 2 mL collection tube (supplied).

Prepare a fresh 80% ethanol solution by adding 40 mL 100% ethanol to 10 mL nuclease-free water.

Add 500 µL 80% ethanol onto the column, and spin in a centrifuge for 3 minutes at 20,000 x g to dry the DNeasy membrane. Discard the flow-through and collection tube.

Put the DNeasy Mini spin column in a clean 1.5 mL microcentrifuge tube, and pipette 200 µL of nuclease-free water directly onto the center of the DNeasy column membrane.

Incubate at room temperature for 1 minute, and then spin in a microcentrifuge for 1 minute at 6,000 x g to elute the DNA.

Repeat elution with nuclease-free water once as described in step 15 and step 16. Combine the duplicate samples in one microcentrifuge tube for a final volume of 400 µL.

Do not use Buffer AW2 supplied with the Qiagen DNeasy Blood & Tissue Kit for the subsequent step because salt from Buffer AW2 will interfere with the subsequent labeling reaction. This is especially important if you need to do a concentration step before labeling.

If long term storage is needed, store DNA that was eluted in water at -20°C. Make small aliquots before you freeze the DNA so as to avoid repeated freeze-thaw cycles.
Step 2. gDNA Quantitation and Quality Analysis

Accurate assessment of gDNA quantity and quality are crucial to the success of an Agilent Oligo aCGH experiment. High quality gDNA should be free of contaminants such as carbohydrates, proteins, and traces of organic solvents, and should also be intact with minimal degradation. gDNA isolated from FFPE samples typically exhibits varying degrees of degradation depending on the age of the tissue and the paraffin embedding protocol used. See “FFPE Tissues” on page 28 for details on how to isolate gDNA from FFPE tissues.

Use the NanoDrop ND-1000 UV-VIS Spectrophotometer (or equivalent) to assess gDNA concentration and purity. Use the agarose gel electrophoresis to assess gDNA intactness and the average molecular weight for each sample.

UV-VIS Spectrophotometry

1. In the Nanodrop program menu, select Nucleic Acid Measurement, then select Sample Type to be DNA-50.
2. Use 1.5 µL of nuclease-free water to blank the instrument.
3. Use 1.5 µL of each gDNA sample to measure DNA concentration. Record the gDNA concentration (ng/µL) for each sample. Calculate the yield as

 \[
 \text{Yield (µg)} = \frac{\text{DNA concentration (ng/µL)} \cdot \text{Sample Volume (µL)}}{1000 \text{ ng/µg}}
 \]

4. Record the A_{260}/A_{280} and A_{260}/A_{230} ratios. High-quality gDNA samples should have an A_{260}/A_{280} ratio of 1.8 to 2.0, indicating the absence of contaminating proteins, and an A_{260}/A_{230} ratio of >2.0, indicating the absence of other organic compounds such as guanidinium isothiocyanate, alcohol and phenol as well as cellular contaminants such as carbohydrates.
Agarose Gel Electrophoresis

1. Load 20 ng gDNA for each sample in a volume of 10 µL nuclease-free water in the well of a single-comb 1.2% Clear E-Gel. (No need to add loading buffer in this system).

2. As a control, load 20 ng of commercial Human Genomic DNA in a volume of 10 µL nuclease free water in one of the wells of the E-Gel.

3. Mix 5 µL TrackIt 1 Kb DNA Ladder with 95 µL deionized water and load 10 µL of the diluted ladder in one of the wells of the E-Gel.

4. Run the gel for 30 minutes as described in Invitrogen’s instructions.

5. Open the gel cassette with E-Gel Opener as described in Invitrogen’s instructions.

6. Stain the gel with SYBR Gold Nucleic Acid Gel Stain (diluted 1:10,000 by adding 10 µL of SYBR Gold Nucleic Acid Gel Stain to 100 mL of nuclease-free water) in a plastic tray for 15 minutes.

7. Visualize the gel on the UV-transilluminator using a SYBR Gold photographic filter.
FFPE Tissues

This section describes Agilent’s recommended procedure to isolate genomic DNA (gDNA) from formalin-fixed paraffin-embedded (FFPE) samples and is based on the method described by van Beers et al. (Br J Cancer. 2006 Jan 30; 94(2):333-7) using the Qiagen DNeasy Blood & Tissue Kit (p/n 69504). Determine the number of FFPE sections needed for your experiment based on the estimates summarized in Table 15. One 20 micron FFPE section containing 1 cm² of tissue is estimated to generate a minimal yield of 500 ng of gDNA.

For more information about CGH experiments on FFPE samples, please refer to the application note “Copy Number Analysis of Archival FFPE Tumor Samples by Oligo Array CGH” (p/n 5989-7120EN) available from the Agilent Web site at www.agilent.com/chem/dnaapplications.

Table 15 Estimated number of 20 micron FFPE sections needed per microarray

<table>
<thead>
<tr>
<th>Microarray format</th>
<th>gDNA input amount requirement (ng)</th>
<th>Estimated number of 20 micron FFPE sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray</td>
<td>2000</td>
<td>4 to 5</td>
</tr>
<tr>
<td>2x microarray</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>4x microarray</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>8x microarray</td>
<td>250</td>
<td>1</td>
</tr>
</tbody>
</table>
Step 1. Paraffin Removal

1. Equilibrate a heat block or water bath to 90°C and a thermomixer to 37°C.
2. Put up to 5 20-micron FFPE sections into a 1.5 mL nuclease-free microfuge tube.
3. Prepare 10% Tween 20, by adding 100 µL Tween 20 to 900 µL of nuclease-free water. Solution can be prepared in advance and stored up to 6 months at room temperature.
4. Add 480 µL PBS and 20 µL 10% Tween 20 to the FFPE sections in the 1.5 mL nuclease-free microfuge tube.
5. Transfer the sample tube to a circulating water bath or heat block at 90°C. Incubate at 90°C for 10 minutes.
6. Spin immediately for 15 minutes at 10,000 x g in a microcentrifuge.
7. Put the sample tube on ice for 2 minutes.
8. Remove wax disc with a pipette tip or tweezers. Remove and discard the supernatant without disturbing the pellet.
9. Add 1 mL of 100% ethanol to the pellet and vortex briefly.
10. Spin for 5 minutes at 10,000 x g in a microcentrifuge.
11. Remove ethanol without disturbing the pellet and let the sample tube sit at room temperature with the lid open until residual ethanol has completely evaporated.
12. Prepare a 1M NaSCN solution by adding 10 g of NaSCN to 123 mL of nuclease free water. Solution can be prepared in advance and stored up to 1 month at room temperature.
13. Add 400 µL 1M NaSCN to the dry pellet and briefly mix on a vortex mixer.
14. Transfer the sample tube to a thermomixer at 37°C. Incubate overnight at 37°C. Shake at 450 rpm.
Step 2. Proteinase K Treatment

1. Equilibrate a thermomixer to 55°C.
2. Transfer the sample tube to a microcentrifuge. Spin for 20 minutes at 10,000 x g.
3. Remove and discard the supernatant without disturbing the pellet.
4. Add 400 µL PBS to the pellet and vortex briefly.
5. Spin again for 20 minutes at 10,000 x g in a microcentrifuge.
6. Remove and discard the supernatant without disturbing the pellet.
7. Add 360 µL of Qiagen buffer ATL (supplied with Qiagen DNeasy Blood & Tissue Kit).
8. Add 40 µL proteinase K (supplied), mix well on a vortex mixer, and incubate overnight in a thermomixer at 55°C shaking at 450 rpm.
9. Transfer the sample tube to a microcentrifuge. Spin for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
10. Add 40 µL proteinase K, mix well on a vortex mixer, and incubate in a thermomixer for approximately 6 to 8 hours at 55°C shaking at 450 rpm.
11. At the end of the day, transfer the sample tube to a microcentrifuge and spin for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
12. Add 40 µL proteinase K, mix well on a vortex mixer and incubate overnight in a thermomixer at 55°C shaking at 450 rpm.
Step 3. gDNA Extraction

1. Equilibrate a heat block or water bath to 70°C.
2. Let samples cool to room temperature and spin in a microcentrifuge for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
3. Add 8 µL of RNase A (100 mg/mL), mix on a vortex mixer, and incubate for 2 minutes at room temperature. Transfer the sample tube to a microcentrifuge and spin for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
4. Add 400 µL Buffer AL (supplied), mix thoroughly on a vortex mixer, and incubate in a circulating water bath or heat block at 70°C for 10 minutes. Transfer the sample tube to a microcentrifuge and spin for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
5. Add 440 µL 100% ethanol, and mix thoroughly on a vortex mixer. Transfer the sample tube to a microcentrifuge and spin for 30 seconds at 6,000 x g to drive the contents off the walls and lid.
6. Put two DNeasy Mini spin columns in two clean 2 mL collection tubes (supplied). Split the entire sample mixture onto two DNeasy Mini spin columns (i.e. 660 µL each).

NOTE
Use two DNeasy Mini spin columns per sample to prevent clogging.

7. Spin in a microcentrifuge for 1 minute at 6,000 x g. Discard the flow-through and collection tube. Put the DNeasy Mini spin columns in fresh 2 mL collection tubes (supplied).
8. Before using for the first time, prepare Buffer AW1 by adding 100% ethanol to the Buffer AW1 bottle (supplied; see bottle label for volume). Mark appropriate check box to indicate that ethanol was added to the bottle.
9. Add 500 µL Buffer AW1 onto each spin column, and spin in a centrifuge for 1 minute at 6,000 x g. Discard the flow-through and collection tube. Put the DNeasy Mini spin columns in fresh 2 mL collection tubes (supplied).
2 DNA Isolation
Step 3. gDNA Extraction

10 Prepare a fresh 80% ethanol solution by adding 40 mL 100% ethanol to 10 mL nuclease-free water.

CAUTION Do not use Buffer AW2 supplied with the Qiagen DNeasy Blood & Tissue Kit for the subsequent step because salt from Buffer AW2 will interfere with the subsequent labeling reaction. This is especially important if you need to do a concentration step before labeling.

11 Add 500 µL 80% ethanol onto each column, and spin in a microcentrifuge for 3 minutes at 20,000 x g to dry the column membrane. Discard the flow-through and collection tube.

12 Put the DNeasy Mini spin column in a clean 1.5 mL microcentrifuge tube, and add 50 µL of nuclease free water directly to the center of each spin column.

13 Let stand at room temperature for 1 minute, and then spin in a microcentrifuge for 1 minute at 6,000 x g to elute the DNA.

14 Combine the purified DNA from the same sample in one microcentrifuge tube for a final total volume of 100 µL.

Measure gDNA concentration and purity, and analyze on an agarose gel as described in “Step 2. gDNA Quantitation and Quality Analysis” on page 26.

NOTE If long term storage is needed, store DNA that was eluted in water at -20°C. Make small aliquots before you freeze the DNA so as to avoid repeated freeze-thaw cycles.
The Agilent Genomic DNA ULS labeling kit (p/n 5190-0419) offers a one-step non-enzymatic procedure to differentially label gDNA samples with fluorescent dyes. The kit contains sufficient two-color labeling reaction reagents for 5 microarray slides of the formats 1x, 2x, 4x or 8x. It also contains sufficient purification columns for processing 5 1x-microarrays. For use with 2x, 4x or 8x microarrays, you can order additional columns and tubes (p/n 5190-0418) separately.

The Genomic DNA High-Throughput ULS Labeling Kit (p/n 5190-0450) contains sufficient two-color labeling reaction agents for:

- 16 1x arrays (blood, cells, tissue samples)
- 12 1x arrays (FFPE samples) or
- 24 2x arrays or
- 48 4x arrays or
- 96 8x arrays

You also need to order the Genomic DNA 96-well Purification Module (p/n 5190-0451) or the Genomic DNA Purification Module (pack of 10 Agilent KREApure columns) (p/n 5190-0418) to purify the labeled DNA.
3 DNA Labeling
Step 1. Preparation of gDNA Before Labeling

For Agilent's Oligo aCGH application, the experimental sample is labeled with one dye while the reference sample is labeled with the other dye. The “polarity” of the sample labeling is a matter of experimental choice.

You use equal amounts of gDNA for both the experimental and reference channels. The required gDNA input amount depends on the microarray format used (see Table 16 on page 36).

Step 1. Preparation of gDNA Before Labeling

CAUTION

gDNA samples need to be clean of salt and other (wash) buffer components as well as divalent cations (e.g. Mg 2+) which can disturb the subsequent labeling efficiency. Follow the DNA isolation procedure described in Chapter 2, “DNA Isolation”. Failure to clean samples thoroughly will result in unsatisfactory microarray results.

If the DNA isolation procedure described in this document cannot be followed make sure that the DNA is free of RNA and protein contamination and is in one following buffers compatible with ULS labeling:

- TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5 or pH 8)
- 10 mM LiCl
- 10 to 100 mM Na acetate
- 10 mM NaCl

If needed, repurify already isolated DNA and start from step 6 on page 24 in the previous chapter.

Make sure that the gDNA is completely in solution by pipetting up and down. If needed, incubate at 37°C for 30 minutes. If the gDNA concentration > 350 ng/µL, dilute 1:2 in water and requantitate to make sure quantitation is accurate.

1. Estimate the average molecular weight for each gDNA sample based on the agarose gel analysis (see “DNA Isolation” on page 21).
2. If the gDNA concentration is less than those listed in Table 16, concentrate the sample using a concentrator (such as Speed Vac) before you continue to the heat fragmentation.
You can concentrate the gDNA to dryness and resuspend in water to the final volume listed below. Do not excessively dry the gDNA because the pellets will become difficult to resuspend.
3 DNA Labeling

Step 1. Preparation of gDNA Before Labeling

Table 16 gDNA Input Amount Required and Volume per Microarray

<table>
<thead>
<tr>
<th>Microarray format*</th>
<th>gDNA input amount (ng)†</th>
<th>Volume of gDNA (µL)</th>
<th>Minimum gDNA concentration (ng/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray (non-FFPE samples)</td>
<td>1500</td>
<td>16.5</td>
<td>91</td>
</tr>
<tr>
<td>1x microarray (FFPE samples)</td>
<td>2000</td>
<td>16</td>
<td>125</td>
</tr>
<tr>
<td>2x microarray</td>
<td>1000</td>
<td>17</td>
<td>59</td>
</tr>
<tr>
<td>4x microarray</td>
<td>500</td>
<td>8</td>
<td>62.5</td>
</tr>
<tr>
<td>8x microarray</td>
<td>250</td>
<td>8</td>
<td>32</td>
</tr>
</tbody>
</table>

* Input gDNA requirements and volumes are the same for both FFPE and non-FFPE samples for the 2x, 4x, and 8x arrays.

† You can use more gDNA, but you will also need to use more ULS dye. Always use a ratio of 1 µL ULS dye per microgram gDNA.

3 Put the appropriate amount of gDNA and nuclease-free water in a 0.2 mL nuclease-free PCR tube or plate to achieve the volumes listed in Table 16.

NOTE Process samples that have the same average molecular weight together. For example do not put DNA isolated from FFPE samples and non-FFPE samples in the same 96-well plate.
Step 2. Heat Fragmentation

1. Incubate the gDNA at 95°C in a thermocycler with heated lid for the time period indicated in Table 17 to fragment the gDNA.

2. Transfer the sample tubes to ice and incubate on ice for 3 minutes. You can also hold at 4°C for 3 minutes in a thermocycler.

3. Spin in a microcentrifuge for 30 seconds at 6,000 × g to drive the contents off the walls and lid.

Store heat-fragmented DNA on ice until ready for labeling.

Table 17 Length of heat fragmentation

<table>
<thead>
<tr>
<th>Average molecular weight</th>
<th>Sample type</th>
<th>Fragmentation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 KB</td>
<td>Intact gDNA</td>
<td>10 minutes</td>
</tr>
<tr>
<td>> 7 KB</td>
<td>Some fresh FFPE samples</td>
<td>5 minutes</td>
</tr>
<tr>
<td>< 7 KB</td>
<td>Most FFPE samples</td>
<td>No fragmentation</td>
</tr>
</tbody>
</table>
Step 3. ULS Labeling

In every labeling reaction, always use a ratio of 1 µL ULS dye per 1 microgram DNA. ULS-Cy3 and ULS-Cy5 are light sensitive. Minimize light exposure throughout the labeling procedure.

1. Prepare one Cy3 and one Cy5 Labeling Master Mix by mixing the components in Table 18 through Table 22 on ice, based on your microarray format and sample type. Avoid pipetting volumes less than 2 µL to ensure accuracy.

Table 18 Preparation of Labeling Master Mix (for 1x microarray using non-FFPE samples)

<table>
<thead>
<tr>
<th>Components</th>
<th>Per reaction (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULS-Cy3 or ULS-Cy5</td>
<td>1.5</td>
<td>12.75</td>
<td>37.5</td>
<td>75</td>
</tr>
<tr>
<td>10 x labeling solution</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Final volume of Labeling Master Mix</td>
<td>3.5</td>
<td>29.75</td>
<td>87.5</td>
<td>175</td>
</tr>
</tbody>
</table>

Table 19 Preparation of Labeling Master Mix (for 1x microarray using FFPE samples)

<table>
<thead>
<tr>
<th>Components</th>
<th>Per reaction (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULS-Cy3 or ULS-Cy5</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>10 x labeling solution</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Final volume of Labeling Master Mix</td>
<td>4</td>
<td>34</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>
Table 20 Preparation of Labeling Master Mix (for 2x microarray, non-FFPE and FFPE samples)

<table>
<thead>
<tr>
<th>Components</th>
<th>Per reaction (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULS-Cy3 or ULS-Cy5</td>
<td>1</td>
<td>8.5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>10 x labeling solution</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Final volume of Labeling Master Mix</td>
<td>3</td>
<td>25.5</td>
<td>75</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 21 Preparation of Labeling Master Mix (for 4x microarray, non-FFPE and FFPE samples)

<table>
<thead>
<tr>
<th>Components</th>
<th>Per reaction (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>0.5</td>
<td>4.25</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>ULS-Cy3 or ULS-Cy5</td>
<td>0.5</td>
<td>4.25</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>10 x labeling solution</td>
<td>1</td>
<td>8.5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Final volume of Labeling Master Mix</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 22 Preparation of Labeling Master Mix (for 8x microarray, non-FFPE and FFPE samples)

<table>
<thead>
<tr>
<th>Components</th>
<th>Per reaction (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>0.75</td>
<td>6.38</td>
<td>18.75</td>
<td>37.5</td>
</tr>
<tr>
<td>ULS-Cy3 or ULS-Cy5</td>
<td>0.25</td>
<td>2.13</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>10 x labeling solution</td>
<td>1</td>
<td>8.5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Final volume of Labeling Master Mix</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
2 Add the appropriate amount of Labeling Master Mix to each PCR tube containing the gDNA to make a total volume as listed in Table 23. Mix well by gently pipetting up and down.

Table 23 Amount of Labeling Master Mix to add

<table>
<thead>
<tr>
<th>Microarray format*</th>
<th>Volume of Labeling Master Mix</th>
<th>Volume of gDNA</th>
<th>Total volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray (non-FFPE samples)</td>
<td>3.5 µL</td>
<td>16.5 µL</td>
<td>20 µL</td>
</tr>
<tr>
<td>1x microarray (FFPE samples)</td>
<td>4 µL</td>
<td>16 µL</td>
<td>20 µL</td>
</tr>
<tr>
<td>2x microarray</td>
<td>3 µL</td>
<td>17 µL</td>
<td>20 µL</td>
</tr>
<tr>
<td>4x microarray</td>
<td>2 µL</td>
<td>8 µL</td>
<td>10 µL</td>
</tr>
<tr>
<td>8x microarray</td>
<td>2 µL</td>
<td>8 µL</td>
<td>10 µL</td>
</tr>
</tbody>
</table>

* Required master mix amounts are the same for FFPE and non-FFPE samples for the 2x, 4x, and 8x arrays.

3 Transfer PCR tubes or plates to a thermocycler with heated lid and incubate at 85°C for 30 minutes.

4 Transfer the samples to ice and incubate on ice for 3 minutes. You can also hold at 4°C for 3 minutes in a thermocycler.

5 Spin in a microcentrifuge for 1 minute at 6,000 × g to drive the contents off the walls and lid.

Labeled gDNA can be stored on ice until dye removal using the Agilent KREApure columns or the Agilent Genomic DNA 96-well Purification Module.

6 For 4x microarray samples only: add 10 µL of nuclease free water to each PCR tube to make a total volume of 20 µL.

CAUTION

Do not add nuclease free water to the 8x microarray samples as dilution of the samples will prevent accurate measurement of gDNA concentration and Degree of Labeling by Nanodrop.
Step 4. Removal of non-reacted Cy-ULS

Non-reacted ULS-Cy3 or ULS-Cy5 can interfere with the subsequent microarray experiment and increase background noise if they are not efficiently removed prior to hybridization. The Agilent KREApure columns or Genomic DNA 96-well Purification Module effectively removes non-reacted ULS dye.

Agilent KREApure columns

Use the same microcentrifuge speed and length for all three spinning steps (step 4, step 7 and step 11).

1. Resuspend Agilent KREApure column material by briefly mixing on a vortex mixer.
2. Loosen cap ¼ turn and snap off the bottom closure.
3. Place the Agilent KREApure column in a 2 mL collection tube (provided).
4. Pre-spin the Agilent KREApure column in a microcentrifuge for 1 minute at maximum speed (minimum 16,000 x g).
5. Discard the cap, flow-through, and place the Agilent KREApure column back into the same collection tube.
6. Add 300 µL nuclease free water to the Agilent KREApure column.
7. Spin again in a microcentrifuge for 1 minute at maximum speed (minimum 16,000 x g).
8. Discard the flow-through and collection tube.
9. Transfer the Agilent KREApure column to a clean 1.5 mL heat-resistant microcentrifuge tube.
10. Add ULS-labeled gDNA (20 µL or 10 µL for 8x microarray samples) onto Agilent KREApure column.
11. Spin in a microcentrifuge for 1 minute at maximum speed (minimum 16,000 x g) to collect the purified labeled gDNA in the collection tube.
12. Take 1.5 µL of each sample to determine the yield and degree of labeling. See “To determine yield, degree of labeling or specific activity” on page 44.
Combine the test and reference sample appropriate ULS- Cy5- labeled sample and ULS- Cy3- labeled sample for a total volume of 37 µL (for 1x, 2x and 4x microarrays) or 17 µL (for 8x microarrays) and bring to the volumes indicated in Table 24 on page 43. Use the appropriate container listed in Table 24.

For 4x and 8x microarrays, use a vacuum concentrator to concentrate the combined Cy5- and Cy3- labeled gDNA mixture to the Total Mixture Volume indicated in Table 24.

If needed, you can concentrate the combined Cy5- and Cy3- labeled gDNA mixture to dryness and resuspend in water to the final volume in Table 24. Do not excessively dry the samples because the pellets will become difficult to resuspend.

Labeled gDNA can be stored in the dark on ice until ready for hybridization, at 4°C for up to one month, or at - 20°C for long term storage (avoid freeze-thaw cycles).

Agilent Genomic DNA 96-well Purification Module

Use the same centrifuge speed and length for all three spinning steps (step 3, step 6 and step 10). If you spin only one plate, make sure you counterbalance.

1. Carefully remove the top and bottom seal of the Agilent KREApure 96-well plates.

 Once the bottom seal is removed, keep the plates on top of a wash plate. Do not allow the bottom surface to come in contact with laboratory bench top liners, wipes, or other materials.

2. Place the 96-well plates in re-usable deep well wash plates (supplied).

3. Pre-spin the 96-well plates in a centrifuge for 3 minutes at 3000 x g.

4. Discard the flow-through from the wash plates, and place the 96-well plates back on the same wash plates.

5. Add 300 µL nuclease free water to the 96-well plates.

6. Spin again in a centrifuge for 3 minutes at 3000 x g.

7. Discard the flow-through.

8. Transfer the 96-well plates to a sample collection plate (supplied).

9. Add each ULS-labeled genomic DNA (20 µL or 10 µL for 8x microarray samples) to a separate well on the plate.
10 Spin in a centrifuge for 3 minutes at 3000 x g to collect the purified labeled gDNA in the sample collection plate.

11 Take 1.5 µL of each sample to determine the yield and degree of labeling. See “To determine yield, degree of labeling or specific activity” on page 44.

12 Combine the test and reference sample appropriate ULS-Cy5-labeled sample and ULS-Cy3-labeled sample for a total volume of 37 µL (for 1x, 2x and 4x microarrays) or 17 µL (for 8x microarrays) and bring to the volumes indicated in Table 24. Use the appropriate container listed in Table 24.

For 4x and 8x microarrays, use a vacuum concentrator to concentrate the combined Cy5- and Cy3-labeled gDNA mixture to the Total Mixture Volume indicated in Table 24.

If needed, you can concentrate the combined Cy5- and Cy3-labeled gDNA mixture to dryness and resuspend in water to the final volume listed below. Do not excessively dry the samples because the pellets will become difficult to resuspend.

<table>
<thead>
<tr>
<th>Microarray</th>
<th>Cy3 or Cy5 sample volume after purification</th>
<th>Volume after Nanodrop and combining</th>
<th>Total mixture volume</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>20 µL</td>
<td>37 µL</td>
<td>37 µL</td>
<td>microfuge tube</td>
</tr>
<tr>
<td>2x</td>
<td>20 µL</td>
<td>37 µL</td>
<td>37 µL</td>
<td>microfuge tube or tall chimney plate</td>
</tr>
<tr>
<td>4x</td>
<td>20 µL</td>
<td>37 µL</td>
<td>concentrate to 22 µL</td>
<td>microfuge tube or tall chimney plate or PCR plate</td>
</tr>
<tr>
<td>8x</td>
<td>10 µL</td>
<td>17 µL</td>
<td>concentrate to 9 µL</td>
<td>microfuge tube or tall chimney plate or PCR plate</td>
</tr>
</tbody>
</table>

Labeled gDNA can be stored in the dark on ice until ready for hybridization, at 4°C for up to one month, or at -20°C for long term storage (avoid freeze-thaw cycles).
To determine yield, degree of labeling or specific activity

Use the NanoDrop 8000 or 2000 UV-VIS Spectrophotometer to measure the yield, degree of labeling or specific activity.

1. From the main menu, select **MicroArray Measurement**, then from the **Sample Type** menu, select **DNA-50**.

2. Use 1.5 µL of 1x labeling solution (dilute 10x labeling solution 1:10) to blank the instrument.

3. Use 1.5 µL of each labeled gDNA sample for quantitation. Measure the absorbance at A\text{260} \text{ nm} (DNA), A\text{550} \text{ nm} (Cy3), and A\text{650} \text{ nm} (Cy5).

4. Calculate the Degree of Labeling or Specific Activity of the labeled genomic DNA:

 \[
 \text{Degree of Labeling} = \frac{340 \times \text{pmol per } \mu \text{L dye}}{\text{ng per } \mu \text{L genomic DNA} \times 1000} \times 100\%
 \]

 \[
 \text{Specific Activity}^* = \frac{\text{pmol per } \mu \text{L dye}}{\mu \text{g per } \mu \text{L genomic DNA}}
 \]

 *pmol dyes per µg genomic DNA

 Note that the Specific Activity is Degree of Labeling divided by 0.034.

5. Record the gDNA concentration (ng/µL) for each sample. Calculate the yield as

 \[
 \text{Yield (µg)} = \frac{\text{DNA concentration (ng/µL) \cdot Sample Volume (µL)}}{1000 \text{ ng/µg}}
 \]

As a general guideline, an optimal Cy5 degree of labeling lies between 0.75% and 2.5% and an optimal Cy3 degree of labeling lies between 1.75% and 3.5%, with a Cy3 minus Cy5 range between 1% and 2%. Because the ULS-labeling does not copy or amplify the input DNA, the yield after the labeling should be the same as the input amount of DNA.
Step 5. Preparation of Labeled Genomic DNA for Hybridization

1 Prepare the **100X Blocking Agent**:
 a Add 135 µL of nuclease-free water to the vial containing lyophilized 10X CGH Blocking Agent (supplied with Agilent Oligo aCGH Hybridization Kit).
 b Mix briefly on a vortex mixer and leave at room temperature for 60 minutes to reconstitute sample before use or storage.
 c Cross out “10X” on the label on the blocking agent vial and write “100X”.

You are actually making a 100X Blocking Agent, so you need to relabel the vial of lyophilized blocking agent as such.

The 100X Blocking Agent can be prepared in advance and stored at -20°C.

2 Equilibrate water baths or heat blocks to 95°C and 37°C or use a thermocycler.

3 Prepare the Hybridization Master Mix by mixing the components in the table below according to the microarray format:

Table 25 Preparation of Hybridization Master Mix for 1x microarray, non-FFPE and FFPE samples

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL) per hybridization</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>37.8</td>
<td>321.3</td>
<td>945</td>
<td>1,890</td>
</tr>
<tr>
<td>Cot-1 DNA (1.0 mg/mL) *</td>
<td>50</td>
<td>425</td>
<td>1,250</td>
<td>2,500</td>
</tr>
<tr>
<td>Agilent 100X Blocking Agent †</td>
<td>5.2</td>
<td>44.2</td>
<td>130</td>
<td>260</td>
</tr>
<tr>
<td>Agilent 2X Hi-RPM Hybridization Buffer †</td>
<td>260</td>
<td>2,210</td>
<td>6,500</td>
<td>13,000</td>
</tr>
<tr>
<td>Final Volume of Hybridization Master Mix</td>
<td>353</td>
<td>3,000.5</td>
<td>8,825</td>
<td>17,650</td>
</tr>
</tbody>
</table>

* Use Cot-1 DNA from the appropriate species.

† Supplied with Agilent Oligo aCGH Hybridization Kit
Table 26 Preparation of Hybridization Master Mix for 2x microarray, non-FFPE and FFPE samples

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL) per hybridization</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>0.4</td>
<td>3.4</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Cot-1 DNA (1.0 mg/mL)*</td>
<td>25</td>
<td>212.5</td>
<td>625</td>
<td>1,250</td>
</tr>
<tr>
<td>Agilent 100X Blocking Agent†</td>
<td>2.6</td>
<td>22.1</td>
<td>65</td>
<td>130</td>
</tr>
<tr>
<td>Agilent 2X Hi-RPM Hybridization Buffer†</td>
<td>130</td>
<td>1,105</td>
<td>3,250</td>
<td>6,500</td>
</tr>
<tr>
<td>Final Volume of Hybridization Master Mix</td>
<td>158</td>
<td>1,343</td>
<td>3,950</td>
<td>7,900</td>
</tr>
</tbody>
</table>

* Use Cot-1 DNA from the appropriate species.
† Supplied with Agilent Oligo aCGH Hybridization Kit

Table 27 Preparation of Hybridization Master Mix for 4x microarray, non-FFPE and FFPE samples

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL) per hybridization</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cot-1 DNA (1.0 mg/mL)*</td>
<td>5</td>
<td>42.5</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>Agilent 100X Blocking Agent†</td>
<td>1</td>
<td>8.5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Agilent 2X Hi-RPM Hybridization Buffer†</td>
<td>55</td>
<td>467.5</td>
<td>1,375</td>
<td>2,750</td>
</tr>
<tr>
<td>Final Volume of Hybridization Master Mix</td>
<td>61</td>
<td>518.5</td>
<td>1,525</td>
<td>3,050</td>
</tr>
</tbody>
</table>

* Use Cot-1 DNA from the appropriate species.
† Supplied with Agilent Oligo aCGH Hybridization Kit
Step 5. Preparation of Labeled Genomic DNA for Hybridization

4. Add the appropriate volume of the Hybridization Master Mix to the 1.5 mL microfuge tube, tall chimney plate well or PCR plate well containing the labeled gDNA to make the total volume listed in Table 29.

Table 28 Preparation of Hybridization Master Mix for 8x microarray, non-FFPE and FFPE samples

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
<th>x 8 rxns (µL) (including excess)</th>
<th>x 24 rxns (µL) (including excess)</th>
<th>x 48 rxns (µL) (including excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cot-1 DNA (1.0 mg/mL)*</td>
<td>2</td>
<td>17</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Agilent 100X Blocking Agent†</td>
<td>0.5</td>
<td>4.25</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>Agilent 2X Hi-RPM Hybridization Buffer†</td>
<td>22.5</td>
<td>191.25</td>
<td>562.5</td>
<td>1,125</td>
</tr>
<tr>
<td>Final Volume of Hybridization Master Mix</td>
<td>25</td>
<td>212.5</td>
<td>625</td>
<td>1,250</td>
</tr>
</tbody>
</table>

* Use Cot-1 DNA from the appropriate species.
† Supplied with Agilent Oligo aCGH Hybridization Kit

5. Mix the sample by pipetting up and down, and then quickly spin in a centrifuge to drive the contents off the walls and lid.

Table 29 Volume of Hybridization Master Mix per hybridization, non-FFPE and FFPE samples

<table>
<thead>
<tr>
<th>Microarray format</th>
<th>Volume of Hybridization Master Mix</th>
<th>Total volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray</td>
<td>353 µL</td>
<td>390 µL</td>
</tr>
<tr>
<td>2x microarray</td>
<td>158 µL</td>
<td>195 µL</td>
</tr>
<tr>
<td>4x microarray</td>
<td>61 µL</td>
<td>83 µL</td>
</tr>
<tr>
<td>8x microarray</td>
<td>25 µL</td>
<td>34 µL</td>
</tr>
</tbody>
</table>
6 Incubate the samples:
 a Transfer sample tubes to a circulating water bath or heat block at 95°C. Incubate at 95°C for 3 minutes.
 b Immediately transfer sample tubes to a circulating water bath or heat block at 37°C. Incubate at 37°C for 30 minutes.

 or

 Transfer sample tubes to a thermocycler. Program the thermocycler according to the following table and run the program:

 Table 30

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step I</td>
<td>95 °C</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Step II</td>
<td>37 °C</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

7 Remove sample tubes from the water bath, heat block or thermocycler. Quickly spin in a centrifuge to drive the contents off the walls and lid.

8 Bring the Agilent-CGHblock (supplied with the ULS Labeling Kit) to room temperature.

 Make sure that the Agilent-CGHblock is completely equilibrated to room temperature before you continue.

9 Add the appropriate volume of Agilent-CGHBlock to each well or 1.5 mL microfuge tube containing the labeled gDNA and Hybridization Master Mix to make the final volume of hybridization sample mixture listed in Table 31.

 Mix well by pipetting up and down.

 CAUTION

 The addition of Agilent-CGHBlock to the hybridization is needed to eliminate background noise on the microarray. The Agilent-CGHBlock contains components that cannot be heated to 95°C.
Step 5. Preparation of Labeled Genomic DNA for Hybridization

10 Quickly spin in a centrifuge to drive the contents off the walls and lid. The samples are ready to be hybridized.

<table>
<thead>
<tr>
<th>Microarray format</th>
<th>Volume of Agilent-CGHblock</th>
<th>Final volume of hybridization sample mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x microarray</td>
<td>130 µL</td>
<td>520 µL</td>
</tr>
<tr>
<td>2x microarray</td>
<td>65 µL</td>
<td>260 µL</td>
</tr>
<tr>
<td>4x microarray</td>
<td>27 µL</td>
<td>110 µL</td>
</tr>
<tr>
<td>8x microarray</td>
<td>11 µL</td>
<td>45 µL</td>
</tr>
</tbody>
</table>
3 DNA Labeling
Step 5. Preparation of Labeled Genomic DNA for Hybridization
Microarray processing consists of hybridization, washing, and scanning. Feature Extraction is the process by which data is extracted from the scanned microarray image (.tif) and translated into log ratios, allowing researchers to measure DNA copy number changes in their experiments in conjunction with Agilent Genomic Workbench Software.
Step 1. Microarray Hybridization

Familiarize yourself with the assembly and disassembly instructions for use with the Agilent microarray hybridization chamber and gasket slides. Please refer to the Agilent Microarray Hybridization Chamber User Guide (G2534-90001) for in-depth instructions on how to load samples, assemble and disassemble chambers, as well as other helpful tips. This user guide can be downloaded from the Agilent Web site at www.agilent.com/chem/dnamanuals-protocols.

Microarray Handling Tips

Each microarray is printed on the side of the glass slide containing the “Agilent”-labeled barcode. This side is called the “active side”. The numeric barcode is on the “inactive side” of the glass slide.

The hybridization sample mixture is applied directly to the gasket slide and not to the microarray slide. Then the active side of the microarray slide is put on top of the gasket slide to form a “sandwich slide pair”.

To avoid damaging the microarray, always handle glass slides carefully by their edges. Wear powder-free gloves. Never touch the surfaces of the slides. If you do, you may cause irreparable damage to the microarray.

Never allow the microarray surface to dry out during the hybridization process and washing steps.

Hybridization Assembly

1 Load a clean gasket slide into the Agilent SureHyb chamber base with the gasket label facing up and aligned with the rectangular section of the chamber base. Ensure that the gasket slide is flush with the chamber base and is not ajar.

2 Slowly dispense 490 µL (for 1x microarray), 245 µL (for 2x microarray), 100 µL (for 4x microarray) or 40 µL (for 8x microarray) of hybridization sample mixture onto the gasket well in a “drag and dispense” manner. For multi-pack microarray formats (i.e. 2x, 4x or 8x microarray), load all gasket wells before you load the microarray slide.

CAUTION Keep the temperature of hybridization sample mixtures as close to 37°C as possible. To do this, process them in small batches and/or put them on a heat block, thermocycler or in an oven.
3 Put a microarray slide “active side” down onto the gasket slide, so the numeric barcode side is facing up and the “Agilent”-labeled barcode is facing down. Assess that the sandwich-pair is properly aligned.

4 Put the SureHyb chamber cover onto the sandwiched slides and slide the clamp assembly onto both pieces.

5 Hand-tighten the clamp onto the chamber.

6 Vertically rotate the assembled chamber to wet the slides and assess the mobility of the bubbles. Tap the assembly on a hard surface if necessary to move stationary bubbles.

7 Put assembled slide chamber in the rotator rack in a hybridization oven set to 65°C. Set your hybridization rotator to rotate at 20 rpm.

8 Hybridize at 65°C:
 - 24 hours for blood, cell and tissue samples (4x and 8x microarrays)
 - 40 hours for blood, cell and tissue samples (1x and 2x microarrays)
 - 40 hours for FFPE samples (1x, 2x, 4x and 8x microarrays)

CAUTION
If you are not loading all the available positions on the hybridization rotator rack, be sure to balance the loaded hybridization chambers on the rack similar to a centrifuge to prevent unnecessary strain on the oven motor.

For more information on the effects of hybridization temperature and time, as well as the rotation speed on the final microarray results, please refer to the application note titled “60-mer Oligo-Based Comparative Genomic Hybridization” (publication 5989-4848EN) from the Agilent Web site at www.agilent.com/chem/dnaapplications.
Step 2. Wash Preparation

NOTE

Cyanine 5 has been shown to be sensitive to ozone degradation. Ozone levels as low as 5 ppb (approximately 10 µg/m³) can affect Cyanine 5 signal and compromise microarray results. The Agilent Stabilization and Drying Solution and the Ozone-Barrier Slide Cover are designed to protect against ozone-induced degradation of Cyanine dyes. Use these when working with Agilent oligo-based microarrays in high ozone environments. Note that the Ozone-Barrier Slide covers are compatible with the B and C scanner slide holders only.

Another option to address ozone-induced Cyanine-5 degradation is to use Carbon Loaded Nonwoven Filters to remove ozone from the air. These filters can be installed in either your HVAC system, or as part of small Ozone Controlled Enclosures. These free-standing enclosures can be installed either on a lab bench or as a walk-in room within your lab. These products are available through filter suppliers listed in Agilent Technical Note 5989-0875EN.

Before you begin, determine which wash procedure to use:

Table 32 Wash procedure to follow

<table>
<thead>
<tr>
<th>Ozone level in your lab</th>
<th>Wash Procedure</th>
<th>Ozone-Barrier Slide Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 ppb</td>
<td>“Wash Procedure A (without Stabilization and Drying Solution)” on page 58</td>
<td>No</td>
</tr>
<tr>
<td>> 5 ppb < 10 ppb</td>
<td>“Wash Procedure A (without Stabilization and Drying Solution)” on page 58</td>
<td>Yes</td>
</tr>
<tr>
<td>> 10 ppb</td>
<td>“Wash Procedure B (with Stabilization and Drying Solution)” on page 61</td>
<td>Yes</td>
</tr>
</tbody>
</table>

CAUTION

Do not use detergent to wash the staining dishes as some detergents may leave fluorescent residue on the dishes. If you do, you must ensure that all traces are removed by thoroughly rinsing with Milli-Q water.

- Always use clean equipment when conducting the wash procedures.
- Use only dishes that are designated and dedicated for use in Agilent oligo aCGH experiments.

Cleaning with Milli-Q Water Wash

Rinse slide-staining dishes, slide racks and stir bars thoroughly with high-quality Milli-Q water before use and in between washing groups.

a. Run copious amounts of Milli-Q water through the slide-staining dishes, slide racks and stir bars.

b. Empty out the water collected in the dishes at least five times.

c. Repeat step a and step b until all traces of contaminating material are removed.

Cleaning with Acetonitrile Wash (Wash Procedure B Only)

Acetonitrile wash removes any remaining residue of Agilent Stabilization and Drying Solution from slide-staining dishes, slide racks and stir bars that were used in previous experiments with “Wash Procedure B (with Stabilization and Drying Solution)” on page 61.

WARNING

Do acetonitrile washes in a vented fume hood. Acetonitrile is highly flammable and toxic.

a. Add the slide rack and stir bar to the slide-staining dish, and transfer to a magnetic stir plate.

b. Fill the slide-staining dish with 100% acetonitrile.

c. Turn on the magnetic stir plate and adjust the speed to a setting of 4 (medium speed).

d. Wash for 5 minutes at room temperature.

e. Discard the acetonitrile as is appropriate for your site.

f. Repeat step a through step e.

g. Air dry everything in the vented fume hood.

h. Continue with the Milli-Q water wash as previously instructed.
4 Microarray Processing and Feature Extraction
Step 2. Wash Preparation

Prewarming Oligo aCGH Wash Buffer 2 (Overnight)

The temperature of Oligo aCGH Wash Buffer 2 must be at 37°C for optimal performance.

1. Add the volume of buffer required to a disposable plastic bottle and warm overnight in an incubator or circulating water bath set to 37°C.
2. Put a slide-staining dish into a 1.5 L glass dish three-fourths filled with water and warm to 37°C by storing overnight in an incubator set to 37°C.

Prewarming Stabilization and Drying Solution (Wash Procedure B Only)

The Agilent Stabilization and Drying Solution contains an ozone scavenging compound dissolved in acetonitrile. The compound in solution is present in saturating amounts and may precipitate from the solution under normal storage conditions. If the solution shows visible precipitation, warming of the solution will be necessary to redissolve the compound. Washing slides using Stabilization and Drying Solution showing visible precipitation will have profound adverse affects on array performance.

WARNING
The Agilent Stabilization and Drying Solution is a flammable liquid. Warming the solution will increase the generation of ignitable vapors. Use gloves and eye/face protection in every step of the warming procedures.

WARNING
Do not use a hot plate, oven, an open flame or a microwave. Do not increase temperature rapidly. Warm and mix the material away from ignition sources.

WARNING
Failure to follow the outlined process will increase the potential for fire, explosion, and possible personal injury.

1. Put a clean magnetic stir bar into the Stabilization and Drying Solution bottle and recap.
2. Partially fill a plastic bucket with hot water at approximately 40°C to 45°C (for example from a hot water tap).
3 Put the Stabilization and Drying Solution bottle into the hot water in the plastic bucket.

4 Put the plastic bucket on a magnetic stirrer (*not a hot-plate*) and stir.

5 The hot water cools to room temperature. If the precipitate has not all dissolved replenish the cold water with hot water.

6 Repeat step 5 until the solution is clear.

7 After the precipitate is completely dissolved, allow the solution to equilibrate to room temperature prior to use.

CAUTION

Do not filter the Stabilization and Drying solution, or the concentration of the ozone scavenger may vary.
Step 3. Microarray Washing

Before you begin, determine which wash procedure to use:

Table 33 Wash procedure to follow

<table>
<thead>
<tr>
<th>Ozone level in your lab</th>
<th>Wash Procedure</th>
<th>Ozone-Barrier Slide Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 ppb</td>
<td>“Wash Procedure A (without Stabilization and Drying Solution)” on page 58</td>
<td>No</td>
</tr>
<tr>
<td>> 5 ppb < 10 ppb</td>
<td>“Wash Procedure A (without Stabilization and Drying Solution)” on page 58</td>
<td>Yes</td>
</tr>
<tr>
<td>> 10 ppb</td>
<td>“Wash Procedure B (with Stabilization and Drying Solution)” on page 61</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wash Procedure A (without Stabilization and Drying Solution)

Always use fresh Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2 for each wash group (up to five slides).

Table 34 Wash conditions

<table>
<thead>
<tr>
<th>Dish</th>
<th>Wash buffer</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly</td>
<td>#1 Oligo aCGH Wash Buffer 1</td>
<td>Room temperature</td>
<td></td>
</tr>
<tr>
<td>1st wash</td>
<td>#2 Oligo aCGH Wash Buffer 1</td>
<td>Room temperature</td>
<td>5 minutes</td>
</tr>
<tr>
<td>2nd wash</td>
<td>#3 Oligo aCGH Wash Buffer 2</td>
<td>37°C</td>
<td>1 minute</td>
</tr>
</tbody>
</table>

1 Completely fill slide-staining dish #1 with Oligo aCGH Wash Buffer 1 at room temperature.

2 Put a slide rack into slide-staining dish #2. Add a magnetic stir bar. Fill slide-staining dish #2 with enough Oligo aCGH Wash Buffer 1 at room temperature to cover the slide rack. Put this dish on a magnetic stir plate.
3 Put the prewarmed 1.5 L glass dish filled with water and containing slide-staining dish #3 on a magnetic stir plate with heating element. Fill the slide-staining dish #3 approximately three-fourths full with Oligo aCGH Wash Buffer 2 (warmed to 37°C). Add a magnetic stir bar. Turn on the heating element and maintain temperature of Oligo aCGH Wash Buffer 2 at 37°C; monitor using a thermometer.

4 Remove one hybridization chamber from incubator and record time. Record whether bubbles formed during hybridization and if all bubbles are rotating freely.

5 Prepare the hybridization chamber disassembly.
 a Put the hybridization chamber assembly on a flat surface and loosen the thumbscrew, turning counter-clockwise.
 b Slide off the clamp assembly and remove the chamber cover.
 c With gloved fingers, remove the array-gasket sandwich from the chamber base by grabbing the slides from their ends. Keep the microarray slide numeric barcode facing up as you quickly transfer the sandwich to slide-staining dish #1.
 d Without letting go of the slides, submerge the array-gasket sandwich into slide-staining dish #1 containing Oligo aCGH Wash Buffer 1.

6 With the sandwich completely submerged in Oligo aCGH Wash Buffer 1, pry the sandwich open from the barcode end only. Do this by slipping one of the blunt ends of the forceps between the slides and then gently turn the forceps upwards or downwards to separate the slides. Let the gasket slide drop to the bottom of the staining dish. Remove the microarray slide and put into slide rack in the slide-staining dish #2 containing Oligo aCGH Wash Buffer 1 at room temperature. Minimize exposure of the slide to air. Touch only the barcode portion of the microarray slide or its edges!

7 Repeat step 4 through step 6 for up to four additional slides in the group. A maximum of five disassembly procedures yielding five microarray slides is advised at one time in order to facilitate uniform washing.

8 When all slides in the group are put into the slide rack in slide-staining dish #2, stir using setting 4 for 5 minutes. Adjust the setting to get good but not vigorous mixing.

9 Transfer slide rack to slide-staining dish #3 containing Oligo aCGH Wash Buffer 2 at 37°C, and stir using setting 4 for 1 minute.
4 Microarray Processing and Feature Extraction
Step 3. Microarray Washing

10 Slowly remove the slide rack trying to minimize droplets on the slides. It should take 5 to 10 seconds to remove the slide rack.

11 Discard used Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2.

12 Repeat step 1 through step 11 for the next group of five slides using fresh Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2 pre-warmed to 37°C.

13 Put the slides in a slide holder:
 - In environments in which the ozone level exceeds 5 ppb, immediately put the slides with Agilent barcode facing up in a slide holder with an ozone-barrier slide cover on top of the array as shown in Figure 2.

 Figure 2 Inserting the ozone-barrier slide cover

 - In environments in which the ozone level is below 5 ppb, put the slides with Agilent barcode facing up in a slide holder.

14 Scan slides immediately to minimize impact of environmental oxidants on signal intensities. If necessary, store slides in the original slide boxes in a N₂ purge box, in the dark.
Wash Procedure B (with Stabilization and Drying Solution)

Cy5 is susceptible to degradation by ozone. Use this wash procedure if the ozone level exceeds 10 ppb in your laboratory.

Always use fresh Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2 for each wash group (up to five slides).

The acetonitrile (dish #4) and Stabilization and Drying Solution (dish #5) below may be reused for washing up to 4 batches of 5 slides (total 20 slides) in one experiment. Do not pour the Stabilization and Drying Solution back in the bottle.

WARNING
The Stabilization and Drying Solution must be set-up in a fume hood. Put the Wash Buffer 1 and Wash Buffer 2 set-up areas close to, or preferably in, the same fume hood. Use gloves and eye/face protection in every step of the washing procedure.

Table 35 lists the wash conditions for the Wash Procedure B with Stabilization and Drying Solution.

<table>
<thead>
<tr>
<th>Dish</th>
<th>Wash Buffer</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly</td>
<td>#1</td>
<td>Oligo aCGH Wash Buffer 1</td>
<td>Room temperature</td>
</tr>
<tr>
<td>1st wash</td>
<td>#2</td>
<td>Oligo aCGH Wash Buffer 1</td>
<td>Room temperature</td>
</tr>
<tr>
<td>2nd wash</td>
<td>#3</td>
<td>Oligo aCGH Wash Buffer 2</td>
<td>37°C</td>
</tr>
<tr>
<td>Acetonitrile wash</td>
<td>#4</td>
<td>Acetonitrile</td>
<td>Room temperature</td>
</tr>
<tr>
<td>3rd wash</td>
<td>#5</td>
<td>Stabilization and Drying Solution</td>
<td>Room temperature</td>
</tr>
</tbody>
</table>

1. Completely fill slide-staining dish #1 with Oligo aCGH Wash Buffer 1 at room temperature.

2. Put a slide rack into slide-staining dish #2. Add a magnetic stir bar. Fill slide-staining dish #2 with enough Oligo aCGH Wash Buffer 1 at room temperature to cover the slide rack. Put this dish on a magnetic stir plate.
3 Put the prewarmed 1.5 L glass dish filled with water and containing slide-staining dish #3 on a magnetic stir plate with heating element. Fill the slide-staining dish #3 approximately three-fourths full with Oligo aCGH Wash Buffer 2 (warmed to 37°C). Add a magnetic stir bar. Turn on the heating element and maintain temperature of Oligo aCGH Wash Buffer 2 at 37°C; monitor using a thermometer.

4 In the fume hood, fill slide-staining dish #4 approximately three-fourths full with acetonitrile. Add a magnetic stir bar and put this dish on a magnetic stir plate.

5 In the fume hood, fill slide-staining dish #5 approximately three-fourths full with Stabilization and Drying Solution. Add a magnetic stir bar and put this dish on a magnetic stir plate.

6 Remove one hybridization chamber from incubator and record time. Record whether bubbles formed during hybridization, and if all bubbles are rotating freely.

7 Prepare the hybridization chamber disassembly.
 a Put the hybridization chamber assembly on a flat surface and loosen the thumbscrew, turning counter-clockwise.
 b Slide off the clamp assembly and remove the chamber cover.
 c With gloved fingers, remove the array-gasket sandwich from the chamber base by grabbing the slides from their ends. Keep the microarray slide numeric barcode facing up as you quickly transfer the sandwich to slide-staining dish #1.
 d Without letting go of the slides, submerge the array-gasket sandwich into slide-staining dish #1 containing Oligo aCGH Wash Buffer 1.

8 With the sandwich completely submerged in Oligo aCGH Wash Buffer 1, pry the sandwich open from the barcode end only. Do this by slipping one of the blunt ends of the forceps between the slides and then gently turn the forceps upwards or downwards to separate the slides. Let the gasket slide drop to the bottom of the staining dish. Remove the microarray slide and put into slide rack in the slide-staining dish #2 containing Oligo aCGH Wash Buffer 1 at room temperature. Minimize exposure of the slide to air. Touch only the barcode portion of the microarray slide or its edges!

9 Repeat step 6 through step 8 for up to four additional slides in the group. A maximum of five disassembly procedures yielding five microarray slides is advised at one time in order to facilitate uniform washing.
10 When all slides in the group are placed into the slide rack in slide-staining dish #2, stir using setting 4 for 5 minutes. Adjust the setting to get good but not vigorous mixing.

11 Transfer slide rack to slide-staining dish #3 containing Oligo aCGH Wash Buffer 2 at 37°C, and stir using setting 4 for 1 minute.

12 Remove the slide rack from Oligo aCGH Wash Buffer 2 and tilt the rack slightly to minimize wash buffer carry-over. Immediately transfer the slide rack to slide-staining dish #4 containing acetonitrile, and stir using setting 4 for 10 seconds.

13 Transfer slide rack to slide-staining dish #5 filled with Stabilization and Drying Solution, and stir using setting 4 for 30 seconds.

14 Slowly remove the slide rack trying to minimize droplets on the slides. It should take 5 to 10 seconds to remove the slide rack.

15 Discard used Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2.

NOTE
The acetonitrile and the Stabilization and Drying Solution may be reused for washing of up to four batches of five slides (that is, total 20 microarray slides) in one experiment. Do not pour the Stabilization and Drying Solution back in the bottle. After each use, rinse the slide rack and the slide-staining dish that were in contact with the Stabilization and Drying Solution with acetonitrile followed by a rinse in Milli-Q water.

16 Repeat step 1 through step 15 for the next group of five slides using fresh Oligo aCGH Wash Buffer 1 and Oligo aCGH Wash Buffer 2 prewarmed to 37°C.

17 Immediately put the slides with Agilent barcode facing up in a slide holder with an ozone-barrier slide cover on top of the array as shown in Figure 2 on page 60.

18 Scan slides immediately to minimize impact of environmental oxidants on signal intensities. If necessary, store slides in original slide boxes in a N₂ purge box, in the dark.

19 Dispose of acetonitrile and Stabilization and Drying Solution as flammable solvents.
Step 4. Microarray Scanning using Agilent C, B or A Scanner or GenePix Scanner

Agilent C Scanner Settings

An Agilent C-scanner and Agilent Scanner Control software v8.3 or higher is required for 1x1M, 2x400K, 4x180K and 8x60K density microarrays and is optional for 1x244K, 2x105K, 4x44K and 8x15K density microarrays.

1 Put assembled slide holders with or without the ozone-barrier slide cover into scanner carousel.

2 Select Start Slot \(m \) End Slot \(n \) where the letter \(m \) represents the Start slot where the first slide is located and the letter \(n \) represents the End slot where the last slide is located.

3 Select Profile Agilent G3_CGH for 1x1M, 2x400K, 4x180K and 8x60K microarrays. Select Profile Agilent HD_CGH for 1x244K, 2x105K, 4x44K and 8x15K microarrays.

4 Verify that
 - Slide ID is set to <Auto Detect>.
 - Channels is set to R+G
 - Scan region is set to Agilent HD (61 × 21.6 mm).
 - Resolution (\(\mu \text{m} \)) is set to 3 \(\mu \text{m} \) for 1x1M, 2x400K, 4x180K and 8x60K microarrays, and 5 \(\mu \text{m} \) for 1x244K, 2x105K, 4x44K and 8x15K microarrays.
 - Tiff is set to 16 bit
 - R PMT is set to 100%.
 - G PMT is set to 100%.
 - XDR is set to <No XDR>.
 - Output Path Browse is set for desired location.

5 Verify that the Scanner status in the main window says Scanner Ready.

6 Click Scan Slot \(m-n \) on the Scan Control main window where the letter \(m \) represents the Start slot where the first slide is located and the letter \(n \) represents the End slot where the last slide is located.
Agilent A and B Scanner Settings

Agilent Scanner Control software v7.0 is recommended for 5 µm scans of 1x, 2x, 4x and 8x density microarrays.

1. Assemble slides into appropriate slide holders:
 - For version B and A slide holders, put slide into slide holder, with or without the ozone-barrier slide cover, with Agilent barcode facing up.
 - For version A slide holders, check that slides are seated parallel to the bottom of the slide holder.

2. Put assembled slide holders into scanner carousel.

3. Verify Default Scan Settings (click Settings > Modify Default Settings).
 - Scan region is set to Scan Area (61 × 21.6 mm).
 - Scan resolution (µm) is set to 5 for 1x244K, 2x105K, 4x44K and 8x15K microarrays.
 - Dye channel is set to Red & Green.
 - Green PMT is set to 100%.
 - Red PMT is set to 100%.

4. Select settings for the automatic file naming.
 - Prefix1 is set to Instrument Serial Number.
 - Prefix2 is set to Array Barcode.

5. Clear the eXtended Dynamic Range check box.

6. Verify that the Scanner status in the main window says Scanner Ready.

7. Click Scan Slot m-n on the Scan Control main window where the letter m represents the Start slot where the first slide is located and the letter n represents the End slot where the last slide is located.

GenePix Scanner Settings

Agilent 1x244K, 2x105K, 4x44K and 8x15K CGH microarrays require 5 µm scan resolution, which is only supported in the GenePix 4000B scanner.

Agilent 1x1M, 2x400K, 4x180K and 8x60K CGH microarrays require 3 µm scan resolution, which is not supported in the GenePix 4000B scanner.

- Refer to the manufacturer's user guide for appropriate scanner settings.
- Refer to “Agilent Microarray Layout and Orientation” on page 83 for appropriate slide layout and orientation in GenePix scanner.
Step 5. Data Extraction using Feature Extraction Software

The Feature Extraction (FE) software v10.5 or higher supports extraction of microarray TIFF images (.tif) of Agilent CGH microarrays scanned on the Agilent C Scanner but does not support extraction of Agilent CGH microarrays on the GenePix 4000B scanner. The Feature Extraction (FE) software v9.5 supports extraction of microarray TIFF images (.tif) of Agilent CGH microarrays scanned on the Agilent Scanner B and GenePix 4000B Scanner.

Figure 3 shows an example of Agilent 1M CGH microarray image opened in Feature Extraction software v10.5 in both full and zoomed view.

1. Open the Agilent Feature Extraction (FE) program.
2. Add the images (.tif) to be extracted to the FE Project.
 a. Click Add New Extraction Set(s) icon on the toolbar or right-click the Project Explorer and select Add Extraction...
 b. Browse to the location of the .tif files, select the .tif file(s) and click Open. To select multiple files, use the Shift or Ctrl key when selecting.
The FE program automatically assigns a default grid template and protocol for each extraction set, if the following conditions are met:

- For auto assignment of the grid template, the image must be generated from an Agilent scanner and have an Agilent barcode.
- For auto assignment of the CGH FE protocol, the **default CGH protocol** must be specified in the FE Grid Template properties.

To access the FE Grid Template properties, double-click on the grid template in the Grid Template Browser.

3 Set FE Project Properties.

 a Select the **Project Properties** tab.
 b In the **General** section, enter your name in the Operator field.
 c In all other sections, verify that at least the following default settings as shown in Figure 4 below are selected.
 d For FE 9.5, in the **Other** section, select **CGH_QCMT_Feb08**.
 For FE 10.5, the metric sets are part of the protocol, and there is no need to set them.
4 Microarray Processing and Feature Extraction

Step 5. Data Extraction using Feature Extraction Software

4 Check the Extraction Set Configuration.

a Select the Extraction Set Configuration tab.

b Verify that the correct grid template is assigned to each extraction set in the Grid Name column. To assign a different grid template to an extraction set, select one from the pull down menu.

If a grid template is not available to select from the pull down menu, you must add it to the Grid Template Browser. To add, right-click inside the Grid Template Browser, select Add. Look for the design file (.xml) and click Open to load grid template into the FE database.

To update to the latest grid templates via Online Update, right-click Grid Template Browser and select Online Update. You can also download the latest grid templates from Agilent Web site at www.agilent.com/chem/downloaddesignfiles. After downloading, you must add the grid templates to the Grid Template Browser.
After a new grid template is added to the Grid Template Browser, remember to specify the default protocol for the new grid template if you want the Feature Extraction program to automatically assign an FE protocol to an extraction set.

Verify that the CGH-v4_95_Feb07 (in FE 9.5) or CGH_105_Dec08 (in FE 10.5) protocol is assigned to each extraction set in the Protocol Name column.

If a protocol is not available to select from the pull down menu, you must import it to the FE Protocol Browser. To import, right-click the FE Protocol Browser, select Import. Browse for the FE protocol (.xml) and click Open to load the protocol into the FE database. Visit Agilent Web site at www.agilent.com/chem/feprotocols to download the latest protocols.

Save the FE Project (.fep) by selecting File > Save As and browse for desired location.

Verify that the icons for the image files in the FE Project Window no longer have a red X through them. A red X through the icon indicates that an extraction protocol was not selected. If needed, reselect the extraction protocol for that image file.

Select Project > Start Extracting.

After the extraction is completed successfully, view the QC report for each extraction set by double-clicking the QC Report link in the Summary Report tab. Determine whether the grid has been properly placed by inspecting Spot Finding of the Four Corners of the Array. See Figure 5 and Figure 6.
Microarray QC Metrics

These metrics are only appropriate for samples analyzed with Agilent CGH microarrays by following the standard operational procedures provided in this user guide. These metrics are exported to a table in the Feature Extraction QC report (in FE 9.5, select CGH_QCMT_Feb08 in Project Properties before extraction) and in Genomic Workbench. They can be used to assess the relative data quality from a set of microarrays in an experiment. In some cases, they can indicate potential processing errors that have occurred or suggest that the data from particular microarrays might be compromised. Many factors can influence the range of these metrics including the microarray format (1x, 2x, 4x or 8x) biological sample source, quality of starting gDNA, experimental processing, scanner sensitivity and image processing. The value guidelines presented below represent the thresholds that Agilent has observed when analyzing samples using this protocol.

<table>
<thead>
<tr>
<th>Table 36 QC metric thresholds for ULS labeling</th>
<th>Blood and Cell Samples</th>
<th>Tissue Samples</th>
<th>FFPE Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGNoise</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Signal Intensity</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
</tr>
<tr>
<td>Signal to Noise</td>
<td>>20</td>
<td>>20</td>
<td>>10</td>
</tr>
<tr>
<td>Reproducibility</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>DLRSpread</td>
<td><0.2</td>
<td><0.3</td>
<td><0.4</td>
</tr>
</tbody>
</table>
QC Chart Tool

At times the Feature Extraction program is used in a production environment, where the biological samples are similar, microarray processing protocols are identical and monitoring run-to-run consistency is an important goal. The Feature Extraction program can help monitor this consistency with the optional QC Chart Tool. The QC Chart Tool extracts summary statistics from a set of Feature Extraction output text files and can be used to generate metric sets that can be imported into the Feature Extraction program for analysis of each batch of microarrays processed. Only one metric set can be assigned to a Feature Extraction project. When that project is run, the Feature Extraction program summarizes the metric statistics on each microarray’s QC report and shows if the thresholds (if any) were exceeded. In addition, at the end of the project, a summary chart can be opened to display graphically what the results are for each metric for each microarray. The QC Chart Tool can be downloaded at www.agilent.com/chem/FEQCMetrics.
4 Microarray Processing and Feature Extraction

Step 5. Data Extraction using Feature Extraction Software

QC Report - Agilent Technologies : 2 Color CGH

Date: Friday, November 07, 2008 - 20:03
User Name: krishnakant_lowanshi
FE Version: 10.5.0.13
Image: US22502705_25132822285_S01
BG Method: Detrend on (NegC)
Protocol: CGH_105_Nov08 (Read Only)
Grid: 013282_D_20050613
Dye Norm: Linear

Spot Finding of the Four Corners of the Array

Outlier Numbers with Spatial Distribution
206 rows x 215 columns

<table>
<thead>
<tr>
<th>Feature</th>
<th>Red</th>
<th>Green</th>
<th>Any</th>
<th>% Outlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Uniform</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>0.04</td>
</tr>
<tr>
<td>Population</td>
<td>32</td>
<td>44</td>
<td>64</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Spatial Distribution of the Positive and Negative LogRatios

#Positive: 1579 (Red) ; #Negative: 669 (Green)

Histogram of Signals Plot (Red)

Histogram of Signals Plot (Green)

CGH QC report generated from Feature Extraction software v10.5, page 1
Figure 6 CGH QC report generated from Feature Extraction software v10.5, page 2
Microarray Processing and Feature Extraction

Step 5. Data Extraction using Feature Extraction Software
5 Troubleshooting

If you have an OD260/230 or OD260/280 value below 1.8 76
If you have poor sample quality due to residual RNA 76
If you get poor sample quality due to degradation 77
If the estimated concentration is too high or low 77
If you have low specific activity or degree of labeling not due to poor sample quality 78
If you have low yield not due to poor sample quality 78
If you have post-labeling signal loss 79
If you have poor reproducibility 80

This chapter contains the causes for above-threshold DLRSD (Derivative Log Ratio Standard Deviation). A poor DLRSD score reflects high probe-to-probe log ratio noise.
If you have an OD260/230 or OD260/280 value below 1.8

A low OD260/230 value can indicate contaminants, such as residual phenol or salt. A low OD260/280 value indicates residual protein. Either condition can result in low specific activity (pmol dye/µg DNA) or Degree of Labeling. See “To determine yield, degree of labeling or specific activity” on page 44.

✔ Repurify the DNA using the Qiagen DNeasy protocol. See “DNA Isolation” on page 21. This procedure includes a proteinase K treatment.

✔ If you must do a phenol/chloroform DNA extraction, do not get too close to the interface.

✔ The ULS labeling is very sensitive to salt contamination. Use 80% EtOH instead of AW2 in the DNA extraction step and elute in water.

✔ The ULS Labeling will label proteins that compete for dye. Make sure that the DNA is free of proteins. See “DNA Isolation” on page 21.

If you have poor sample quality due to residual RNA

The input amount of DNA for the experimental labeling reaction must be the same as for the reference sample labeling reaction. RNA absorbs at the same wavelength as DNA, which makes an accurate measurement of the DNA concentration in an RNA-contaminated sample impossible.

✔ Repurify the DNA using the Qiagen DNeasy protocol. See “DNA Isolation” on page 21. This procedure includes a RNase A treatment.

✔ The ULS labeling will label RNA that will hybridize to the array.
If you get poor sample quality due to degradation

For non-FFPE samples: On a 1 to 1.5% agarose gel, intact genomic DNA should appear as a compact, high-molecular weight band with no lower molecular weight smears. Degraded DNA results in biased labeling.

✔ Check DNA on a 1 to 1.5% agarose gel, if DNA that was isolated from cells, blood or frozen tissue, is degraded then repurify the DNA using the Qiagen DNeasy protocol. See “DNA Isolation” on page 21.

✔ Make sure that the DNA is not over-fragmented prior to labeling. Possible causes are incorrect temperature or length of incubation at 95°C, or evaporation (use a thermocycler with heated lid). Make sure most of the heat fragmented products are between 1000 and 3000 bases in length.

If the estimated concentration is too high or low

The input amount of DNA for the experimental labeling reaction must be the same as for the reference sample labeling reactions. Precipitated DNA or DNA that is at a very high concentration cannot be quantitated accurately.

Contaminants such as organic solvents and RNA also absorb at 260 nm, which results in an inaccurate DNA quantitation.

✔ Make sure that the gDNA is completely in solution by pipetting up and down. If needed, incubate at 37°C for 30 minutes. If the gDNA concentration is > 350 ng/µL, dilute 1:2 in water and re-quantitate to make sure quantitation is accurate.

✔ If needed, repurify the DNA using the Qiagen DNeasy protocol. See “DNA Isolation” on page 21.
If you have low specific activity or degree of labeling not due to poor sample quality

Low specific activity or degree of labeling can result from sub-optimal labeling conditions such as wrong temperatures or times, volume mistakes, or too much exposure to light or air.

✔ Double check incubation times and temperatures (use a calibrated thermometer), and use a thermocycler with heated lid.

✔ Evaporation can be a problem when you process samples in 96-well plates. Use a plate heat sealer (Eppendorf p/n 951023078) to avoid evaporation.

✔ Make sure that the pipettors are not out of calibration.

✔ Make sure that the gDNA, reagents, and master mixes are well mixed. Tap the tube with your finger or use a pipette to move the entire volume up and down. Then spin in a microcentrifuge for 5 to 10 seconds to drive the contents off the walls and lid. Do not mix the stock solutions and reactions that contain gDNA on a vortex mixer.

If you have low yield not due to poor sample quality

Possible sample loss during clean-up after labeling.

✔ See “Step 4. Removal of non-reacted Cy-ULS” on page 41 to remove unreacted dye. Many other columns result in the loss of shorter fragments.
If you have post-labeling signal loss

Signal loss can be due to wash or hyb conditions that are too stringent, or degradation of the Cyanine 5 signal.

Cyanine 5 signal degradation can be caused by ozone or NOx compounds coming from pollution and/or compressors and centrifuges. Cyanine 5 signal degradation can result in less red signal around the edges of the features, a visible gradient of significant Cy5/Cy3 positive ratios and more significant Cy5/Cy3 negative ratios – especially on the left side of the slide and on slides scanned later in a batch.

✔ Check oven and Wash 2 temperature.
✔ Check that Wash 2 was not accidentally used instead of Wash 1.
✔ Wash and scan slides in an ozone controlled environment (<5 ppb), such as an ozone tent.
✔ Use small batches that can be washed and scanned in about 40 minutes to minimize exposure to air.
✔ Use the Agilent Ozone-Barrier Slide Cover (p/n G2505-60550).
✔ Use the Stabilization and Drying Solution as described in “Wash Procedure B (with Stabilization and Drying Solution)” on page 61.

If you have high BGNoise values

High BGNoise can cause lower signal-to-noise values (see Table 36 on page 70 for thresholds) and higher DLRSD values. BGNoise is defined as the standard deviation of the signals on the negative controls. If the BGNoise is high, examine the array image for visible non-uniformities. High BGNoise is often introduced during the washes.

✔ Make sure that wash dishes, racks and stir bars are clean. Do not use tap water or detergents to clean wash equipment. If needed, rinse wash equipment with acetonitrile followed by rinses with MilliQ water.
If you have poor reproducibility

Poor reproducibility (see Table 36 on page 70 for thresholds), defined as high CVs of signals of replicated probes may indicate that the hybridization volume was too low or that the oven stopped rotating during the hybridization. Only very high scores on this metric will affect the DLRSD.

✔ When setting up the gasket-slide hybridization sandwich dispense the hybridization sample mixture slowly in a “drag and dispense” manner to prevent spills.

✔ Check that the oven is rotating.
6 Reference

Supporting User Guides 82
Agilent Microarray Layout and Orientation 83
Array/Sample tracking on a 8x array slide 86
Agilent Information Assets Access Agreement 87

This chapter contains reference information that pertains to this protocol.
Supporting User Guides

If you are a first-time user of Agilent’s oligo microarray system, please refer to the following user guides for detailed descriptions and operation recommendations for each of the hardware and software components used in the Oligo aCGH application workflow.

The user guides can be downloaded from the Agilent Web site at www.agilent.com/chem/dnamanuals-protocols.

• Agilent Microarray Hybridization Chamber User Guide (p/n G2534-90001)
• Agilent Ozone-Barrier Slide Cover User Guide (p/n G2505-90050)
• Agilent Technical Note “Improving microarray results by preventing ozone-mediated fluorescent signal degradation” (p/n 5989-0875EN)
• Agilent G2545A Hybridization Oven User Manual (p/n G2545-80001)
• Agilent G2565AA and G2565BA Microarray Scanner System User Manual
• Agilent G2565CA Microarray Scanner System User Manual
• Agilent Microarray Format Technical Drawings with Tolerances (p/n G4502-90001)
• Agilent Feature Extraction Software Quick Start Guide
• Agilent Feature Extraction Software User Guide
• Agilent Feature Extraction Software Reference Guide
Agilent Microarray Layout and Orientation

Agilent oligo microarray (1 microarray/slide format) as imaged on the Agilent microarray scanner (G2565CA)

Microarrays are printed on the side of the glass with the “Agilent”-labeled barcode (also referenced as "active side" or "front side").

![Agilent Microarray slide holder](image)

Figure 7 Agilent microarray slide and slide holder

Agilent oligo microarray formats and the resulting “microarray design files” are based on how the Agilent microarray scanner images 1-inch × 3-inch glass slides. Agilent designed its microarray scanner to scan through the glass slide (back side scanning). The glass slide is securely placed in an Agilent microarray slide holder with the “Agilent”-labeled barcode facing upside down. In this orientation, the “active side” containing the microarray is protected from potential damage by fingerprints and other elements. Once securely placed, the numeric barcode, “non-active side” of the slide is visible.

Figure 7 depicts how the Agilent microarray scanner reads the microarrays and how this relates to the “microarray design files” that Agilent generates during the manufacturing process of its *in situ*-synthesized oligonucleotide microarrays. Thus, if you have a scanner that reads microarrays from the “front side” of the glass slide, the collection of microarray data points will be different in relation to the “microarray design files” supplied with the Agilent oligo microarray kit you purchased. Therefore, please take a moment to become familiar with the microarray layouts for each of the Agilent oligo microarrays and the layout information as it pertains to scanning using a “front side” scanner.
Non-Agilent Front Side Microarray Scanners

When scanning Agilent oligo microarray slides, the user must determine:

- If the scanner images the microarrays by reading them on the “front side” of the glass slide (“Agilent”-labeled barcode side of the slide) and
- If the microarray image produced by the non-Agilent scanner is oriented in a “portrait” or “landscape” mode, and “Agilent”-labeled barcode is on the left-side, right-side, up or down, as viewed as an image in the imaging software (see Figure 8).

This changes the feature numbering and location as it relates to the “microarray design files” found on the disk in each Agilent oligo microarray kit.
Figure 8 Microarray slide orientation
Array/Sample tracking on a 8x array slide

Use the form below to make notes to track your samples on a 8-pack array slide.

Arrays

<table>
<thead>
<tr>
<th>Array 1_1</th>
<th>Array 1_2</th>
<th>Array 1_3</th>
<th>Array 1_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>Sample:</td>
<td>Sample:</td>
<td>Sample:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcode Number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Array 2_1</th>
<th>Array 2_2</th>
<th>Array 2_3</th>
<th>Array 2_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>Sample:</td>
<td>Sample:</td>
<td>Sample:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86 Array-Based CGH for Genomic DNA Analysis - ULS Labeling
I. PURPOSE

1 Agilent Technologies ("Agilent") and User have entered into a business relationship that would be fostered by granting User access to certain of Agilent's Information Assets ("Assets"). Accordingly, User and Agilent have entered into this Information Assets Access Agreement (IAAA) in order to protect the confidentiality, integrity, availability, and physical security of Agilent's various information assets and to prevent unauthorized individuals from gaining access to Agilent's various networks, computers and information assets. Access is granted only for the purposes of fulfilling the specific business relationship between User and Agilent which gives rise to this agreement. The use of Agilent information for any other purpose is expressly prohibited.

2 User and Agilent acknowledge that they have entered into other agreements or contractual arrangements defining their business relationship. These agreements are independent of this IAAA and in the event of any conflict between them, the terms of this IAAA shall prevail only as applies to this IAAA.

II. PHYSICAL SECURITY OF AGILENT INFORMATION ASSETS

1 User agrees to exercise no less than a reasonable degree of care to ensure that access to Agilent's information assets is limited solely to its authorized personnel who have been granted access by Agilent to specific information assets. Under no circumstance may User allow an individual to access an Agilent information asset without a properly authorized grant of access from Agilent for that individual and for that information asset. Only those Users provided access to the information assets via an Agilent authorized authentication procedure may access the information assets.

USE OF AGILENT INFORMATION ASSETS FOR OTHER THAN INTERNAL USE AND/OR FOR COMMERCIAL PURPOSES WITHOUT AGILENT'S PRIOR WRITTEN CONSENT IS EXPRESSLY PROHIBITED.

Use of any other computer systems or Agilent information assets is expressly prohibited in the absence of written authorization from Agilent. This prohibition applies even when an information resource which User is authorized to access serves as a gateway to other information resources outside of User's scope of authorization. These prohibitions apply even if Agilent fails to implement physical or logical security measures which prevent the access.
USE OF AGILENT INFORMATION ASSETS BY OTHER INDIVIDUALS
NOT AUTHORIZED IN WRITING OR VIA ELECTRONIC MAIL BY
AGILENT IS EXPRESSLY PROHIBITED.

2 Without limiting the foregoing, User specifically agrees to:
 a Control physical access to passwords, tokens, log-on scripts and
 other such hardware/data as may be used to access Assets. No
 passwords, security tokens or other authentication information may
 be shared between individuals without written approval from Agilent.
 User agrees to access Agilent information resources only from the
 specific locations that have been approved for access by Agilent
 management. For access outside of Agilent premises, Agilent will
 specify in writing or via electronic mail the specific network
 connections that will be used to access Agilent information assets.
 b Periodically review personnel granted access under this IAAA to
 insure that access remains necessary to the underlying business
 purpose.
 c Coordinate within User's organization the proper implementation of
 this agreement and ensure that all the rules and obligations
 contained in this agreement are strictly followed and complied with
 at all times in User's organization.

3 In its sole discretion and without incurring liability, Agilent reserves the
 right to deny, limit, or terminate access of any person or firm or access
 to any system(s) without notice or cause.

III. PROTECTION OF ELECTRONIC CONFIDENTIAL INFORMATION

1 User and its employees or agents (collectively referred to as User,
 unless the context requires otherwise) shall not disclose any Electronic
 Confidential Information (ECI) received from Agilent to any other
 person without the express prior written consent of Agilent. User shall
 use such information only for purposes necessary for its relationship
 with Agilent or consistent with this Agreement, and shall use
 reasonable care to avoid unauthorized disclosure or use of such ECI.

2 Electronic Confidential Information obtained from Assets shall be
 defined as any information marked as confidential or proprietary, and
 any information, while not marked as confidential or proprietary, which
 is of such a nature that a reasonable person would believe it to be
 confidential or proprietary. Agilent shall take reasonable precautions to
 prevent the User from receiving unmarked confidential or proprietary
 information. However, User acknowledges that due to the nature of
electronic systems, such information may be delivered to User inadvertently or with an inadvertent omission of the markings. If User receives information that a reasonable person would believe to be confidential or proprietary, User shall have an affirmative duty to inquire of Agilent as to the confidentiality of the information before treating it as non-confidential information.

3 This Agreement imposes no obligation upon User with respect to any confidential or proprietary information disclosed to User pursuant to the terms of a separately executed Confidential Disclosure Agreement or other contractual arrangement specifically addressing such information. The obligations of the parties with respect to such information shall be governed solely by the terms of such Confidential Disclosure Agreement or contractual arrangement.

IV. LIMITED RIGHTS TO PUBLISH IN PEER-REVIEWED JOURNALS ONLY

1 User may publish the following only in peer-reviewed scientific journals [“Publication.”]

2 User may publish only fifty (50) probe-sequences in any single Publication.

3 User or its permitted publisher, including without limitation the investigator, scientists, and/or researchers, hereby agrees to add a statement in a prominent location within such publication; provided User publishes the specific design file number that Agilent shall provide, stating the following: ANY PUBLICATION OR PUBLIC DISCLOSURE OF OLIGONUCLEOTIDE SEQUENCES FOR USE WITH MICROARRAYS MAY ONLY BE REPRODUCED OR MANUFACTURED FOR YOU BY AGILENT TECHNOLOGIES, INC. BY REFERENCING THE CATALOG MICROARRAY PRODUCT NUMBER OR THE CUSTOM MICROARRAY DESIGN IDENTIFICATION NUMBER SUPPLIED BY YOU BY AGILENT.

4 User hereby grants Agilent all rights to reproduce products based upon User's Confidential Information for Third Parties requesting such Products.
V. ADMINISTRATION

1 Audit: Upon reasonable notice, User shall allow Agilent access to such information as may reasonably be necessary to ascertain User's compliance with the obligations contained herein.

2 Loss/Damage: User shall indemnify and hold Agilent harmless from all loss, damage, cost and expense arising from User's breach of this Agreement.

3 User warrants and represents that each employee or agent of User who is granted access under this agreement has been informed of the obligations contained herein and has agreed in writing to be bound by them. Without limiting the foregoing, each individual must be informed of the specific information assets he is authorized to access and the duty to refrain from accessing other information assets outside his scope of authorization even if logical or physical security measures are not in place to prevent the access.

VI. MISCELLANEOUS

1 This Agreement is made under and shall be construed according to the laws of the State or Country in which the signing Agilent entity is located.

2 This Agreement constitutes the entire and exclusive agreement of the parties regarding the subject matter of this Agreement. This Agreement may not be varied.
In This Book

This guide contains information to analyze blood, cells, tissues and FFPE samples using ULS technology.